用户名: 密码: 验证码:
针对EGFR的RNA干扰联合紫杉醇治疗激素非依赖型前列腺癌的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:前列腺癌是男性泌尿系最常见的肿瘤之一,而针对晚期前列腺癌的有效治疗方法极为有限,特别是当激素依赖型前列腺癌(ADPC)转化为非激素依赖型前列腺癌(AIPC)后临床缺乏有效的治疗方法,而且预后较差。临床上通常采用化疗,但疗效不满意,而且由于多数AIPC患者年龄均>65岁,难以承受常规剂量的化疗及疗程。
     表皮生长因子受体(EGFR)是表皮生长因子基因(erbB)家族的一员,是一种分子量170kDa的跨膜酪氨酸激酶受体,由膜外结合区域、跨膜转换区域和胞质反应区域三部分组成。其中胞内部分具有酪氨酸激酶活性和ATP底物磷酸化结合部位。EGFR广泛存在于许多病理和生理性上皮组织,其与特异性配体EGF或TGF-α结合后转化为二聚体,同时, EGFR酪氨酸激酶区的自身磷酸化后被活化,细胞内蛋白分子磷酸化,最终将信息传到胞核内,启动与细胞增殖、迁移、粘附、侵入、凋亡、终止以及耐药性增强等有关的基因转录表达。50-90%的非激素依赖型前列腺癌都出现EGFR的过表达,而且EGFR的过表达与ADPC转化为AIPC密切相关,前列腺癌组织在雄激素剥夺后对EGF所产生的生长促进作用非常敏感,全面阻断酪氨酸激酶信号传导系统来治疗晚期AIPC这一思路受到重视,于是,抑制生长因子受体,特别是EGFR的表达或发挥作用成为治疗AIPC极有希望的治疗策略。
     尽管人们在应用EGFR单克隆抗体和小分子酪氨酸激酶抑制剂治疗肿瘤方面取得了较大的进步,但应用于二期临床治疗AIPC效果却不太满意,通过抑制EGFR表达来治疗肿瘤的方法需要改进。
     RNA干扰是用与目的基因mRNA相同序列的21-23nt双链小分子RNA来特异性高效率的抑制目的基因蛋白表达,有研究表明,带有shRNA表达框架的载体可以取得特异性使靶基因沉默的作用。
     前列腺在解剖上具有容易到达,适于反复穿刺注射携带shRNA表达框架的病毒载体进行靶向治疗的优点。而且存在特异性瘤标,易于随访疗效。
     本研究以雄激素非依赖性前列腺癌细胞系PC-3作为研究对象,应用携带针对EGFR基因的shRNA片段的慢病毒颗粒pshRNA-GFP LVEGFRRNAi来处理,了解其对EGFR基因的抑制效果;同时,在体内外实验中,探讨pshRNA-GFP LVEGFRRNAi是否存在抑制雄激素非依赖性前列腺癌细胞的作用,以及探讨pshRNA-GFP LVEGFRRNAi与紫杉醇或Gefitinib联合应用是否存在抗肿瘤的协同作用。
     方法:1、针对EGFR基因的三个亚型同源区设计siRNA序列以及siRNA表达载体的构建。2、使用构建好的siRNA表达载体转染HT1080细胞(人成纤维肉瘤细胞),进行最有效siRNA序列的筛选;3、使用最有效的siRNA序列对应的表达载体进行慢病毒颗粒pshRNA-GFP LVEGFRRNAi的包装和生产;4、使用高质量携带目的片段(siRNA)的病毒颗粒pshRNA-GFP LVEGFRRNAi感染宿主细胞(PC-3),检测RNAi效果。
     5、使用pshRNA-GFP LVEGFRRNAi治疗非激素依赖型前列腺癌荷瘤裸鼠,观察对肿瘤抑制效果,并检测EGFR、MAPK、Akt、PKC、p-MAPK、p-Akt等蛋白表达情况。6、使用pshRNA-GFP LVEGFRRNAi治疗非激素依赖型前列腺癌荷瘤裸鼠,并应用紫杉醇、Gefitinib进行药物刺激实验,观察是否存在抑制肿瘤的协同效应。
     结果:1、针对EGFR基因成功设计了siRNA序列并构建了siRNA表达载体,而且siRNA表达载体测序正确。2、成功的在HT1080细胞(人成纤维肉瘤细胞)中进行了转染实验,转染实验后24小时,转染效率达到了70%,且Realtime PCR检测显示成功的抑制了目的基因EGFR的表达,其中所设计的2号序列的RNAi效果最好,对目的基因EGFR的表达抑制效率达到了90%以上。3、使用慢病毒包装质粒混合物和siRNA表达载体质粒DNA共转染293T细胞,生产出高质量的携带siRNA片段的慢病毒颗粒pshRNA-GFP LVEGFRRNAi。4、体外研究中应用pshRNA-GFP LVEGFRRNAi感染PC-3细胞,并应用RealTime-PCR法测得对EGFR基因抑制比对照组下降90%(1-0.00851/0.08818), Western Blot法测得为88.9%(1-0.05396/0.48455),传代2~3代后仍保持90%左右的抑制率。MTT法检测PC-3 EGFR-RNAi稳转细胞株和正常的PC-3细胞相比,EGFR基因的低表达明显减慢了细胞的增殖速度。5、对于PC-3细胞的抑制生长,RNAi的作用效果和Gefitinib(5mg/L)刺激效果相仿,但是二者共同作用时,效果明显强于二者中的任何一种。6、PC-3 EGFR-RNAi稳转细胞株,相当于使用Gefitinib(5mg/L)刺激PC-3, EGFR、Akt、MAPK、PKC、p-MAPK、p-Akt蛋白的表达量均有不同程度的下调,而且下调程度相对较大。7、应用携带针对EGFR的siRNA片段的慢病毒颗粒pshRNA-GFP LVEGFRRNAi静脉注射后裸鼠瘤体的生长受到了一定的抑制。8、使用EGFR-RNAi结合应用紫杉醇、Gefitinib进行药物刺激实验,发现结合紫杉醇治疗其肿瘤抑制率达到56.8%,结合Gefitinib治疗组其肿瘤抑制率也达到54.0%;与对照组相比RNAi结合Gefitinib以及紫杉醇组抑瘤率达62.5%(P<0.01),而且RNAi组以及RNAi+Gefitinib组EGFR以及Akt下调较为明显,但MAPK下调并不明显。
     结论:携带针对EGFR的siRNA片段的慢病毒颗粒pshRNA-GFP LVEGFRRNAi可以下调EGFR基因的mRNA表达,并通过降低细胞增殖活性和增加细胞凋亡达到抑制PC-3细胞生长的作用,而且这一技术与紫杉醇及Gefitinib有协同作用,有望成为对非激素依赖型前列腺癌的一种有效辅助治疗方法。
Background and objective:Prostate cancer is one of the most common type of cancer in men; however, therapeutic options are limited in advantage stage. In particular, for patients at high risk of progression to more advanced PCs or those diagnosed in the late stages with metastatic and hormone-refractory prostate cancers (HRPCs), The current chemotherapeutic treatments against the metastatic HRPCs generally show no significant, or in case of docetaxel-based regimens, modest beneficial effects for improving the overall survival rate and outcome of patients in the clinics, and ultimately result in the death of patients. The median patient age in the recent multi-center trials of first-line chemotherapy for androgen-independent prostate cancer (AIPC) trials was >65 years, Older patients may not tolerate standard or investigational cytotoxic chemotherapies as well as younger patients.
     The epidermal growth factor receptor (EGFR) , as one of the members of the EGFR/ErbB receptor family of receptor tyrosine kinases (RTKs), is a 170 kDa type I transmembrane glycoprotein containing a ligand-binding ectodomain, a single hydrophobic transmembrane region, and a cytoplasmic tail which includes a tyrosine kinase domain and docking sites for a variety of signaling effectors, At least seven ligands can bind to the extracellular part of EGFR including EGF and transforming growth factor alpha (TGFα), Ligand binding induces homo- and/or heterodimerization, thereby resulting in kinase activation and phosphorylation of tyrosines in the ErbB tail. The downstream signaling network generated by EGF-R activation is able to control cell growth, survival and migration. 50–90% of HRPC cells show an overexpression of EGFR. The human EGFR tyrosine kinases are part of a network of pathways which are implicated in the development and progression of prostate cancer, in particular as part of the progression to androgen-independent growth, EGFR plays a critical role in tumor growth, and the prostate tissue becomes more susceptible to the growth-promoting action of EGF family growth factors during androgen withdrawal, The general inhibition of tyrosine kinase signaling pathways provides therapeutic advantage against prostate cancer metastasis, Therefore, inhibiting the activation of growth factor receptors, especially EGFR, may be a promising strategy for the treatment of prostate cancer.
     Blockade of EGF receptor signaling pathway represents a new perspective on the development of novel and selective anticancer therapies. Although considerable progress has been made in the application of EGF receptor-targeted antibodies and small molecule tyrosinekinase inhibitors, none of these agents is curative. Phase II study was undertaken to evaluate the efficacy of tyrosinekinase inhibitors in patients with HRPC, the results were disappointing .Current therapies of its expression are still need to be improved.
     In RNA interference (RNAi), duplexes of 21-23nt RNAs (small interfering RNA, siRNA) corresponding to mRNA sequences of particular genes are used to efficiently inhibit the expression of the target proteins in mammalian cells. It is approved that vectors containing shRNA expressing cassette could induce gene silencing of the target gene. Prostate cancer is located in the prostate only, fit to puncture according to it’s anatomy, and has sepecific tumor MAPKs which are prone to follow-up, so prostate cancer is fit to inject the vectors containing shRNA expressing cassette for local gene targeted therapies.
     This study is to probe the effect of pshRNA-GFP LVEGFRRNAi on the PC-3 cell’s growth and the expression of EGFR protein, and further confirm the effect of inhibiting AIPC cells, thirdly to to investigate the efficacy and safety of pshRNA-GFP LVEGFRRNAi combined with paclitaxel and Gefitinib for the treatment of AIPC cells in vitro and in vivo.
     Methods: 1.The target sequences were selected according to homological region of three EGFR transcript variants, and the siRNA expression vectors were constructed. 2. HT-1080(a human fibrosarcoma cell line) cells were transfected with the three recombinant vectors, and interference effect was detected by RT-PCR. 3. the most effective siRNA expression vector was co-transfected with lentiviral package plasmids into 293T cells to product lentiviral particles. 4. PC-3 cells were infected by the recombinant lentivirus, and the RNA interference effect was detected. 5. The pshRNA-GFP LVEGFRRNAi was used to treat the non-hormone-dependent prostate cancer in nude mice, the inhibition effect was investigated, and the expression levels of EGFR、MAPK、Akt、PKC、p-MAPK、p-Akt were measured. 6. Nude mice burdened with prostate cancer were injected intravenously with virus supernant which contained pshRNA-GFP LVEGFRRNAi, then treated with paclitaxel or Gefitinib, the cooperative antitumor effect was investigated.
     Result: 1.The siRNA sequences targeted to EGFR gene were designed and the expression vectors were cloned and verified by sequencing. 2. HT1080 cells were transfected with siRNA expression vectors. 24 hours after transfection, the transfect efficiency was about 70%. Real-time PCR analysis revealed that siRNA expression vectors can inhibit the expression of EGFR. The second vector had a better interference effect, and the interference effect reach about 90%.3. The lentiviral package vectors and siRNA expression vector were co-transfected to 293T cells, and high quality pshRNA-GFP LVEGFRRNAi was obtained. 4. pshRNA-GFP LVEGFRRNAi was used to infect the PC-3 cells. Compared with control group , real-time PCR results showed that the expression of EGFR decreased 90%(1-0.00851/0.08818), and results of western blot revealed the inhibition effect was 88.9% (1-0.05396/0.48455).After three passages, the inhibition effect remained 90%. MTT measurement showed that EGFR-RNAi stable PC-3 cell line which expresses EGFR in a low level has a lower proliferation rate. 5. The inhibition effect on PC-3 cells of RNAi is similar as Gefitinib (5mg/L), and the combination of these two treatments, can inhibit the growth of PC-3 better. 6. The expression levels of EGFR、MAPK、Akt、PKC、p-MAPK、p-Akt in EGFR-RNAi stable cell line were down-regulated significantly compared with the cells treated with Gefitinib (5mg/L). 7. Intravenous injection of the pshRNA-GFP LVEGFRRNAi encoding the siRNA targeting EGFR can inhibit the growth of tumor in nude mice. 8. PC-3 were transplanted into nude mice, and treated with pshRNA-GFP LVEGFRRNAi and paclitaxel or Gefitinib. The results showed that RNAi plus paclitaxel treatment can inhibit tumor growth with 56.8% tumor suppression. The tumor growth inhibition rate of the combination of Gefitinib and RNAi was as high as 54.0%. Compared to the control group, the group of RNAi plus Gefitinib and paclitaxel showed the highest effect against tumor with tumor growth inhibition rate as much as 63.5% (P<0.01) . The EGFR and Akt expression levels of the RNAi group or the RNAi plus Gefitinib group were decreased, but the MAPK levels were not affected.
     Conclusion: SiRNA-mediated inhibition of EGFR gene induced by shRNA expressing pshRNA-GFP LVEGFRRNAi is capable of suppressing EGF receptor expression with significantly inhibiting cellular proliferation and tumor growth due to cell cycle arrest and apoptosis induced. There was cooperation effect between pshRNA-GFP LVEGFRRNAi, paclitaxel and Gefitinib. RNAi targeting EGFR may constitute a useful approach in the treatment of human androgen-independent prostate cancer (AIPC).
引文
1.叶定伟.前列腺癌的流行病学和中国的发病趋势.中华外科杂志, 2006, 44: 362-364
    2. Canil C M., Moore M J., Winquist E. et al. Randomized Phase II Study of Two Doses of Gefitinib in Hormone-Refractory Prostate Cancer: A Trial of the National Cancer Institute of Canada-Clinical Trials Group. J Clin Oncol 2005 23:455-460
    3. Di Lorenzo G, Tortora G, D’Armiento FP, et al. Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin Cancer Res. 2002; 8:3438-3444.
    4. Marks RA, Zhang S, Montironi R, et al. Epidermal growth factor receptor (EGFR) expression in prostatic adenocarcinoma after hormonal therapy: a fluorescence in situ hybridization and immunohistochemical analysis. Prostate. 2008; 68(9):919-23.
    5. Buratowski S,Moazed D.Gene regulation:Expression and silencing coupled. Nature. 2005,435:1174-1175.
    6. Kim, D.H., and Rossi, J.J. Strategies for silencing human disease using RNA interference. Nat.Rev. Genet. 2007. 8:173-184.
    7. Hannon, G.J., and Rossi, J.J. Unlocking the potential of the human genome with RNA interference. Nature. 2004.431:371-378.
    8. Tomari, Y., and Zamore, P.D. Perspective: machines for RNAi. Genes Dev. 2005.19:517-529.
    9. Akhtar, S., and Benter, I.F. Nonviral delivery of synthetic siRNAs in vivo. J. Clin. Invest. 2007. 117:3623-3632.
    10. Andersson, M.G., et al. Suppression of RNA interference by adenovirus virus- associated RNA.J. Virol. 2005. 79:9556-9565.
    11. Grimm, D., Pandey, K., and Kay, M.A. Adenoassociated virus vectors for short hairpin RNA expression. Methods Enzymol. 2005.392:381-405.
    12. Chang, A.H., and Sadelain, M. The genetic engineering of hematopoietic stem cells: the rise of lentiviral vectors, the conundrum of the LTR, and the promise of lineage-restricted vectors. Mol. Ther. 2007. 15:445-456.
    13. Tannock IF, de Wit R, Berry WR, et al. TAX 327 Investigators: Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004, 351: 1502-1512.
    14. Herbst RS, Prager D, Hermann R, et al. TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol 2005, 23(25):5892-5899.
    15. Von Pawel J: Gefitinib (Iressa, ZD1839): a novel targeted approach for the treatment of solid tumors.Bull Cancer 2004; 91:E70-76.
    16. Sawai A, Chandarlapaty S, Greulich H,et al. Inhibition of Hsp90 down-regulates mutant epidermal growth factor receptor (EGFR) expression and sensitizes EGFR. Cancer Res. 2008 Jan 15;68(2):589-96
    1. Dykxhoorn, D.M., and Lieberman, J. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu. Rev. Med. 2005.56:401–423.
    2. Hannon, G.J., and Rossi, J.J. Unlocking the potential of the human genome with RNA interference. Nature. 2004.431:371–378.
    3. Kim, D.H., and Rossi, J.J. Strategies for silencing human disease using RNA interference. Nat. Rev. Genet. 2007. 8:173–184.
    4. Tomari, Y., and Zamore, P.D. Perspective: machines for RNAi. Genes Dev. 2005. 19:517–529.
    5. Sumimoto H, Kawakami Y. Lentiviral vector-mediated RNAi and its use for cancer research. Future Oncol. 2007; 3(6):655-64.
    6. Normanno N, De Luca A, Bianco C, et al. Epidermal growth factor receptor ( EGFR ) signaling in cancer. Gene, 2006.366:2-16.
    7. Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. JClin Oncol, 2003, 21 (14): 2787-2799.
    8. Normanno N, Bianco C, De Luca A, et al. Target-based agents against ErbB receptor and their ligands: a novel approach to cancer treatment. Endocr Relat Cancer, 2003, 10; 1-21.
    9. Dahiya R, Lee C, Haughney PC, et al. Differential gene expression of transforming growth factors alpha and beta, epidermal growth factor, keratinocyte growth factor, and their receptors in fetal and adult human prostatic tissues and cancer cell lines. Urology, 1996, 48(6):963-970
    10. Canil C.M, Moore M.J, Winquist E, et al. Randomized Phase II Study of Two Doses of Gefitinib in Hormone-Refractory Prostate Cancer: A Trial of the National Cancer Institute of Canada-Clinical Trials Group. J of Clin Oncol, 2005, 23(3): 455-460.
    11. Guo S,Kemphues KJ.Par-1,a gene required for establishing polarity in C.elegans embryos, encodes, a putative Ser/Thr kinase that is asymmet rically distributed.Cell,1995,81(4):6ll-620
    12. Grimm D, Kay M A. Therapeutic application of RNAi: is mRNA targeting finally ready for prime time? J Clin Invest. 2007, 117:3633–3641.
    13. Patel P, Ashdown D, James N, et al. Is gene therapy the answer for prostate cancer.Prostate Cancer Prostatic Dis, 2004, 7:9-14
    14. Chang, A.H., and Sadelain, M. The genetic engineering of hematopoietic stem cells: the rise of lentiviral vectors, the conundrum of the LTR, and the promise of lineage-restricted vectors. Mol. Ther. 2007. 15:445–456.
    15. Campochiaro, P.A. Potential applications for RNAi to probe pathogenesis and develop new treatments for ocular disorders. Gene Ther. 2006.13:559–562.
    16.徐晓明,杨慧,王晓萍.慢病毒载体的构建及优化.中国临床康复,2006,10(9):147-149
    1. Jorissen RN, Walker F, Pouliot N, et al. Epidermal growth factor receptor: mechanisms of activation and signaling. Exp Cell Res, 2003, 284:31-53.
    2. Frey MR, Golovin A, Polk DB. Epidermal growth factor-stimulated intestinal epithelial cell migration requires Src family kinase-dependent p38 MAPK signaling. J Biol Chem, 2004, 279:44513-44521.
    3. Woodburn J R. The epidermal growth factor receptor and it s inhibition in cancer therapy. Pharmacol Ther, 1999, 82 (2-3):241-250.
    4. Kondapaka SB, Fridman R, Reddy KB. Epidermal growth factor and amphiregulin up-regulate matrix metalloproteinase-9 (MMP-9) in human breast cancer cells. Int J Cancer, 1997, 70: 722-726.
    5. DeHaan AM, Wolters NM, Keller ET, et al. EGFR ligand switch in late stage prostate cancer contributes to changes in cell signaling and bone remodeling. Prostate. 2009;69(5):528-37
    6. Hernes E, Fossa SD, Berner A, et al. Expression of the epidermal growth factor receptor family in prostate carcinoma before and during androgen independence. Brit J Cancer, 2004, 90:449-454.
    7. Zellweger T, Ninck C, Bloch M, et al. Expression patterns of potential therapeutic targets in prostate cancer. Int J Cancer, 2005, 113: 619-628.
    8. Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases : targets for cancer therapy. Nat Rev Cancer, 2004, 4 (5):361-370.
    9. Alroy I, Yarden Y. The ErbB signaling network in embryogenesis and oncogenesis; signal diversification through combinatorial ligand-receptor interactions. FEBS Lett,1997 , 410( 1 ): 83-86.
    10. Yarden Y. The EGFR family and its ligands in human cancer. Signalling mechanisms and therapeutic opportunities. Eur J Cancer, 2001, 37(Suppl. 4):S3-S8.
    11. Adamson E. Developmental activities of the epidermal growth factor receptor. CurrTop Dev Biol, 1990, 1-29.
    12. Normanno N, De Luca A, Bianco C, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene ,2006,366 :2-16.
    13. Lynch TJ, Bell DW, Sordella R S, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to Gefitinib. N Engl J Med, 2004, 350:2129-2139.
    14. Grandis JR, Tweardy DJ. Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early MAPKers of carcinogenesis in head and neck cancer. Cancer Res, 1993, 53: 3579-3584.
    15. Venook AP. Epidermal growth factor receptor-targeted treatment for advanced colorectal carcinoma. Cancer, 2005, 103:2435-2446.
    16. Lee DH, Szczepanski MJ, Lee YJ.Magnolol induces apoptosis via inhibiting the EGFR/PI3K/Akt signaling pathway in human prostate cancer cells. J Cell Biochem. 2009 ,106: 1113 - 1122
    17. Maruta H, Burgess AW. Regulation of the Ras signaling network. Bioessays 1994, 16: 489-496.
    18. Luo J, Manning B, Cantley L, Targeting the PI3K-Akt pathway in human cancer: Rationale and promise. Cancer Cell, 2003, 4:257-262.
    19. Falasca M, Logan SK, Lehto VP , et al. Activation of phospholipase C gamma by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J, 1998,17: 414-422.
    20. Turkson J, Jove R, STAT proteins: novel molecular targets for cancer drug discovery. Oncogene, 2000, 19:6613-6626.
    21. Pandey A, Mann M. Proteomics to study genes and genomes. Nature, 2000; 405(15):837-46.
    22. Fortunato C, Rosa C, Roberto B, et al. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD1839(Iressa), an epidermal growth factor receptor selective tyrosine kinase inhibitor. Clin Cancer Res, 2000, 6:2053-63.
    23. She QB, Solit DB, Ye Q, et al. The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cell. Cancer Cell. 2005,8(4):287-297
    24. Sirotnak FM, Zakowski MF, Miller VA, Scher HI, Kris MG. Efficacy of cytotoxic agents against human tumor xenografts is MAPKedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin Cancer Res, 2000; 6:4885-92
    25. Baselga J, Rischin D, Ranson M et al. Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol, 2002; 20: 4292-02
    26. Ranson M, Hammond LA, Ferry D et al. ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol ,2002; 20: 2240-50
    27. De Miguel P, Royuela, Bethencourt R, Ruiz A, Fraile B, Paniagua R. Immunohistochemical comparative analysis of transforming growth factor alpha, epidermal growth factor, and epidermal growth factor receptor in normal, hyperplastic and neoplastic human prostates. Cytokine ,1999; 11:722-7
    28. Sgambato A, Camerini A, Faraglia B et al. Targeted inhibition of the epidermal growth factor receptor-tyrosine kinase by ZD1839 (‘Iressa’) induces cell-cycle arrest and inhibits proliferation in prostate cancer cells. J Cell Physiol ,2004;201: 97-105
    29. Small E J., Fontana J, Tannir N, et al. A phase II trial of Gefitinib in patients with non-metastatic hormone-refractory prostate cancer. BJU Int, 2007, 100(4):765-9.
    30. Canil C.M, Moore M.J, Winquist E, et al. Randomized Phase II Study of Two Doses of Gefitinib in Hormone-Refractory Prostate Cancer: A Trial of the National Cancer Institute of Canada-Clinical Trials Group. J Clin Oncol ,2005;23:455-460
    1. Sherwood ER, Van Dongen JL, Wood CG, et al. Epidermal growth factor receptor activation in androgen-independent but not androgen-stimulated growth of human prostatic carcinoma cells. Br J Cancer 1998; 77:855–861.
    2. Lee DH, Szczepanski MJ, Lee YJ.Magnolol induces apoptosis via inhibiting the EGFR/PI3K/Akt signaling pathway in human prostate cancer cells. J Cell Biochem. 2009; 106(6): 1113-1122
    3. Wilding G, Soulie P, Trump D, et al. Results from a pilot phase I trial of Gefitinib combined with docetaxel and estramustine in patients with hormone-refractory prostate cancer. Cancer 2006; 106:1917–1924.
    4. Riedel RF, Febbo PG: Epidermal growth factor receptor mutations predict sensitivity to Gefitinib in patients with non-small-cell lung cancer. Future Oncol 2005; 1:461–466.
    5. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin 2006, 56(2):106-130.
    6. Eisenberger MA, Blumenstein BA, Crawford ED, et al .Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N Engl J Med ,1998 ,339 ,1036~1042
    7. Tannock IF, Osoba D, Stockler MR, et al .Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: a Canadian randomized trial with palliative end points. J Clin Oncol 1996, 14(6): 1756-1764.
    8. Kantoff PW, Halabi S, Conaway M, et al .Hydrocortisone with or without mitoxantrone in men with hormone- refractory prostate cancer: results of the cancer and leukemia group B 9182 study. J Clin Oncol 1999, 17(8):2506-2513.
    9. Petrylak DP, Tangen CM, Hussain MH et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med, 2004; 351 :1513–20
    10. Tannock IF, de Wit R, Berry WR et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med,2004;351: 1502–12
    11. Tannock IF, de Wit R, Berry WR, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004, 351(15):1502-1512.
    12. Chen H, Cantor A, Meyer J, et al. Can older cancer patients tolerate chemotherapy? A prospective pilot study. Cancer 2003, 97(4):1107-1114.
    13. De Miguel P, Royuela, Bethencourt R, et al. Immunohistochemical comparative analysis of transforming growth factor alpha, epidermal growth factor, and epidermal growth factor receptor in normal, hyperplastic and neoplastic human prostates. Cytokine,1999;11:722–7
    14. Sherwood ER, Lee C. Epidermal growth factor-related peptides and the epidermal growth factor receptor in normal and malignant prostate. World J Urol. 1995;13: 290–6
    15. Marks RA, Zhang S, Montironi R, et al. Epidermal growth factor receptor (EGFR) expression in prostatic adenocarcinoma after hormonal therapy: a fluorescence in situ hybridization and immunohistochemical analysis. Prostate. 2008; 68(9):919-23.
    16. Pu YS, Hsieh MW, Wang CW, et al. Epidermal growth factor receptor inhibitor (PD168393) potentiates cytotoxic effects of paclitaxel against androgen-independent prostate cancer cells. Biochem Pharmacol. 2006 14; 71(6):751-60.
    17. Salzberg M, Rochlitz C, Morant R, et al. An open-label, noncomparative phase II trial to evaluate the efficacy and safety of docetaxel in combination with Gefitinib in patients with hormone-refractory metastatic prostate cancer.Onkologie. 2007 30(7):355-60.
    18. Sawai A, Chandarlapaty S, Greulich H,et al. Inhibition of Hsp90 down-regulates mutant epidermal growth factor receptor (EGFR) expression and sensitizes EGFR. Cancer Res. 2008 Jan 15;68(2):589-96
    19.徐晓明,杨慧,王晓萍.慢病毒载体的构建及优化.中国临床康复,2006,10(9):147—149
    20. Anderson,J.R.Akkina.HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lent/viral vector.AIDS Res Ther,2005,1(2):1
    21.胡兵,魏于.全表皮生长因子受体靶向肿瘤生物治疗.癌症,2004,23(4):471-475
    22. Gilmore AP, Valentijn AJ, Wang P, et al. Activation of BAD by therapeutic inhibitionof epidermal growth factor receptor and transactivation by insulin-like growth factor receptor . J Biol Che,2002,277:27643-27650
    23. Jost M, Huggett TM, Cari C, et al. Epidermal growth factor receptor-dependent pathway. J Biol Chem, 2001, 276:6320-6326
    24. Jackson, A.L., and Linsley, P.S. Noise amidst the silence: off-target effects of siRNAs? Trends Genet. 2004. 20:521–524.
    25. Chinni SR, Sarkar F H. Akt Inactivation Is a Key Event in Indole-3-carbinol-induced Apoptosis in PC-3 Cells. Clin Cancer Res,2002;8: 1228–1236
    26. Graff JR, Konicek BW, McNulty AM, et al. Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. J Biol Chem,2000 ,275 ,24500~24505
    27. Bouali S, Chrétien AS, Ramacci C, et al. PTEN expression controls cellular response to cetuximab by mediating PI3K/AKT and RAS/RAF/MAPK downstream signaling in KRAS wild-type, hormone refractory prostate cancer cells. Oncol Rep. 2009 Mar;21(3):731-735
    28. Venook AP. Epidermal growth factor receptor-targeted treatment for advanced colorectal carcinoma. Cancer. 2005; 103:2435-2446.
    29. Deeb D, Jiang H, Gao X, et al. Curcumin [1, 7-bis (4-hydroxy-3-methoxyphenyl) -1-6-hepladine-3, 5-dione; C21 H2006] sensitizes human prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L-induced apoptosis by suppressing nuclear factor-kappaB via inhibition of the prosurvival Akt signaling pathway. J Pharmacol Exp Ther, 2007; 321(2):616-625.
    30. Mukherjee B, Mayer D.Dihydrotestosterone interacts with EGFR/MAPK signalling and modulates EGFR levels in androgen receptor-positive LNCaP prostate cancer cells. Int J Oncol. 2008; 33(3):623-9.
    1. 0layioye MA, Neve RM, Lane HA, et al. The ErbB signaling network: receptor heterodimerization in development and cancer EMBO J,2000,19(13):3159-3167
    2. Joazeiro CA, Wing SS, HuangH, et al. the tyrosinekinase negative regulator c-Cbl as a RING type , E2-dependent ubiquitinprotein ligase .Science , 1999 ,286(5438):309-312
    3. Cutacker C,HlockG, Diel P,et al. Nerve growth factor and epidermal growth factor stimulate clusterin gene expression in PC12cells Biochem J , 1999 ,339(Pt3):759-766
    4. Xiao ZQ,Majumdar AP. Induction of transcriptional activity of AP-l and NF kappaB in the gastric mucosa during aging. AM J Physiol Gastrointest Liver Physiol,2000,278(6):G855-G865.
    5. Johnson AC,Murphy BA, Matelis CM,et al. Activation protein-1 mediates induced but not basal epidermal growth factor receptor gene expression Mol Med,2000,6(1):17-27
    6. Biswas DK,Cruz AP ,Cansberger E,et al. Epidermal growth factor induced nuclear factor KB activation: A major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells Proc latl Acad Sci USA,2000,97(15):8542-8547
    7. Sliwkowski MX, Lofgren JA, Lewis GD,et al. Nonclinical studies addressing the mechanism of action of Trastuzumb(Herceptin) Semin Oncol,1999,26(4):60-70
    8. Tzahar E,Moyer JD,Waterman H,et al. Pathogenic poxviruses revea1 viral strategies to exploit the erbB signaling network. EM-BO J,1998,17(20):5948-5963
    9. Graus Porta D,BeerliRR,Daly JM,et al,erbB-2,the peferred heterodimerization partner of all erbB receptors,is a mediator of lateral signaling .EMBO J,1997,16(7):1647-1655
    10. Zvibel I,Brill S,Halpern Z,et al. Soluble and matrix-associated heparin sulfate proteoglycans increase expression of erbB-2 and erbB-3 in colon cancer cell lines Int JCancer,2001,91(3):316-321
    11. Spencer KSR,Graus Porta D,Leng J,et al. erbB-2 is necessary for induction of carcinoma cell invasion by erbB family receptor tyrosine kinases . J Cell Biol,2000,148(2):355-397
    12. Olayioye MA,Beuvink I,Horsch K,et al. erbB receptor induced activation of star transcription factors is mediated by Src tyrosine kinases . J Biol Chem.,1999,274(24):17209-17218
    13. Bridges AT. The rationale and strategy used to develop a series of highly potent ,irreversible , inhibitors of the epidermal growth factor receptor family of tyrosine kinases . Curr Med Chem,1999,6(9):825-843
    14. Srinivasan R,Poulson R,Hurst HC,et al. Expression of the c-erbB-4/HER4 protein and mRNA in normal human fetal and adult tissues and in a survey of nine solid tumor types . J Pathol, 1998,185(3):236-245
    15. Travis A,Pinder SE,Robert JFR, et al. C-erbB-3 in human breast carcinoma: expression and related to prognosis and established prognostic indicators .Br J Cancer,1996, 74(2):229-233
    16. de Fazio A, Chiew YE,Sini RL,et al. Expression of c-erbB receptors,heregulin and oestrogen receptor in human breast cell lines .Int J Cancer,2000,87(4):487-498
    17. Kew TY,Bell JA,Pinder SE,et al. C-erbB-4 protein expression in human breast cancer ,Br J Cancer,2000,82(6):1163-1170
    18. Hirsch FR,Witta S. BioMAPKers for prediction of sensitivity to EGFR inhibitors in non-small cell lung cancer. Curr 0pin Oncol,2005,17(2):118-122
    19. McLendon RE,Wikstrand CJ, Matthews MR,et al. Glioma associated antigen expression in oligodendroglial neoplasms. Tenascin and epidermal growth factor receptor J Histochem Cytochem,2000,48(8):1103-1110
    20. Sampson JH,Crofy LE,Lee S,et al. Unarmed,tumor specific monoclonal antibody effectively treats brain tumors . Proc Nail Acad sci USA,2000,97(13):7503-7508
    21. Tang CK,Gong XQ,Moscatello DK,et al. Epidermal growth factor receptorvⅢenhances tumorigenicity in human breast cancer Cancer Res , 2000 ,60(11):3081-3087
    22. Wong L,Deb TB,Thompson SA,et al. A differential requirement for the COOH-terminal region of the epidermal growth factor (EGF) receptor in amphiregulin and EGF mitogenic signa1ing J Biol Chem 1999,274(13):8900-8909
    23. Shi W,Fan H,Shum L,et al. The tetraspanin CD9 associated with transmembrane TGF-alpha and regulates TGF-alpha induced EGF receptor activation and ce1l pro1iferation .J Cell Biol,2000,148(3):591-602
    24. Alper O,De santis ML, Stormberg K, et al,Anti-sense suppression of epidermal receptor expression alters cellular proliferation,cell-adhesion and tumorignicity in ovarian cancer cells . Int J Cancer,2000,88(4):566-574
    25. Wiecben K,Zimmer C,Dietel M. Selection of a high activity c-erb-2 ribozyme using a fusion gene of c-erb-2 and the enhanced green fluorescent protein ,Cancer Gene Ther,1998,5(1):45-51
    26. Chang JY,Xia W,Shao R,et al. The tumor suppression activity of EI Ain HER2/neu-overexpressing breast cancer. Oncogene,1997,14(5):561-568
    27. Zhang LS,Lau YK,Xi L,et al. Tyrosine kinase inhibitors,emodin and its derivative repress Her-2/Neu-induced cellular transformation and metastasis-associated properties Oncogene,1998,16(22):2855-2863
    28. Azemar M,Schmidt M, Arlt F,et al. Recombinant antibody toxins specific for ErbB2 and EGF receptor inhibit the in vitro growth of human head and neck cancer cells and causer rapid tumor regression invo. Int J Cancer,2000,86(2):269-275
    29. Huang SM, Harari PM,Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair,cell cycle kinetics , and tumor angiogenesis J Clin Cancer Res , 2000 ,6(6):2166-2174
    30. Sun Y,Fry DW Vincent P,et al .Growth inhibition of nasopharyngeal carcinoma cells by ECF receptor tyrosine kinase inhibitors. Anticancer Res,1999,19(2A):919-924
    31. Vacca F,Bagnato A. Catt KJ,et al. Transactivation of the epidermal growth factor receptors in endothelin-1-induce mitogenic signaling in human ovarian carcinoma cells. Cancer Res,2000,60(18):5310-5317
    32. Hirao T,Sawada H,Koyama F,et al. Antisense epidermal growth factor receptor de1ivered by adenoviral vector b1ocks tumor growth in human gastric cancer. Cancer Geno Ther,1999,6(5):423-427
    33. Contessa JN,Reardon DB,Todd D, et al. the inducible expression of dominant negative epidermal growth factor receptor CD533 results in rediosensitization of human mammary carcinoma cells Clin Cancer Res,1999,5(2):405-411
    34. Reardon DB,Contessa JN,Mkkelsen RB,et al. Dominant negative EGFR- CD533 and inhibition of MAPK modify JNKl activation and enhance radiation toxicity of human mammary cells Oncogene,1999,18(3):4756-4766
    35. Beers R ,Chowdhury P, Bigner D,et al. Immunotoxins with increase dactivity against epidermal growth factor receptor vⅢexpressing cells produced by antibody phage display. Clin Cancer Res,2000,6(7):2835-2843
    36. Tan FL,Yin JQ. RNAi,a new therapeutic strategy against viral infection . Cell Res,2004,14(6):460-466
    37. Pomerantz R J. RNA interference: a potential novel therapeutic combating HIV01 in the centra1 nervous system. Arch Immunol Ther Exp(Warsz),2004,52(6):401-409
    38. Yano J,Hirabayashi K,Nakagawa S,et al. Antitumor activity of small interfering RNA /cationic liposome comp lex in mouse models of cancer. Clin Cancer Res,2004,10(22):7721-7726
    39.白莉,祝蓉,陈智鸿,等;靶向EGFR基因的siRNA表达载体构建及其生物学效应的研究,第三军医大学学报,2005,27(23):2307-2310
    40. Wei M,Zhang M,Zhang X,et al. Inhibition of Non-small Cell Lung Cancer by silencing EGFR with RNAi. Molecular Therapy,2004,9(Sul I):s189-190
    41. Nagy P, Dana DJ.,Arndt-Jovin,Jovin TM. Small interfering RNAs suppress the expression of endogenous and GFP2fused epidermal growth factor receptor (erbB1)and induce apoptosis in erbB1-overexpressing cells. Exp Cell Res,2003,285:39-49
    42. Burtness B. The role of cetuximab in the treatment of squamous cell of head and neck. Expert Opin Bio Ther, 2005, 5(8):1085-1093
    43. Ogino S, Meyerhardt JA, CantorM, et al. Molecular alterationsin tumors and response to combination chemotherapy with Gefitinib for advanced colorectal cancer. Clin Cancer Res.2005, 11 (18): 6650-6656
    44. Sirotnak FM, Zakowsky MF, Miller VA, et al. Efficacy of cytotoxic agents against human tumor xenographs is MAPKedly enhanced by coadministration ofZD1839 (‘Iressa’) an inhibitor of tyrosine kinase. Clin Cancer Res, 2000, 6: 4885-4892.
    45. GiacconeG, HerbstRS, Manegold C, et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: A phaseⅢtrial-INTACT 1. J Clin Oncol 2004, 22: 777-784.
    46. Herbst RS, Giaccone G, Schiller JH, et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: A phaseⅢtrial-INTACT 2. J Clin Oncol 2004, 22: 785-794.
    47. Herbst RS, Prager D, Hermann R, et al. TRIBUTE-A phaseⅢtrial of erlotinib HCl (OSI-774) combined with carboplatin and paclitaxei (CP) chemotherapy in advanced non-small cell lung cancer (NSCLC ). Proc Am Soc Clin Onco, 2004,23: 7011.
    48. Albain KS, Green S J, Ravdin PM, et al. Adjuvant chemohormonal therapy for primary breast cancer should be sequential instead of concurrent: initial results from intergroup trial 0100(SWOG-8814). ProcAm Soc Clin Oncol, 2002, 21: 37a
    49. Ahrendt SA, Decker PA, Alawi EA, et al. Cigarette smoking is strongly associated with mutation of the K-fas gene in patients with primary adenocarcinoma of the lung. Cancer, 2001, 92:1525-1530.
    50. Pao W, Wang TY, Riely GJ, et al. KRASmutations and primary resistance of lung adenocarcinomas to Gefitinib and erlotinib. PLoSMed, 2005: 57-61.
    51. Cunningham D, HumbletY, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl JMed,2004, 351: 337-345.
    52. Baselga J, Trigo JM, Bourthis J, et al. Cetuximab (C225) plus cisplatin/carboplatin is active in patients (pts) with recurrent/metastatic squamous cell carcinoma of the head and neck (SC-CHN) progressing on a same dose and schedule platinum based agent. Proc Am Soc Clin Oncol 2002, 21: 226a (abstr900).
    53. Chong G, Cunningham D. The role of cetuximab in the therapy of previously treated advanced colorectal cancer. Semin Onco,l 2005, 32(6 Suppl9): 55-5
    54. Harari PM. Promising new advances in head and neck radiotherapy, Annals ofOncology, 2005, 16 (Suppl6): vi 13-vil9.
    55. Crombet T, Osorio M, Cruz T, etal Use of the humanized antiepidermal growth factor receptor monoclonal antibody h-R3 incombination with radiotherapy in the treatment of locally advanced head and neck cancer patients. JClin Oncol 2004, 22: 1646-1654.
    56. Arteaga CL, O NeiiA, Moulder SL, et al. ECOG1100: A phaseⅠ-Ⅱstudy of combined blockade of the erbB receptor network with trastuzmab and Gefitinib (Iressa) in patients (pts) with HER2-overexpressingmetastatic breast cancer (metbrca). 27th San Antonio Breast Cancer Symposium, San Antonio, TX, December2004 (abstr24).
    57. Chakravarti A, Loeffier JS, Dyson NJ. Insulin-like growth factor receptor I mediates resistance to anti-EGFR therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res, 2002, 62: 200-207.
    58. Camirand A, Zakikhani M, Young F, et al. Inhibition of insulin-like growth factor-1 receptor signaling enhances growth-inhibitory and proapoptotic effects of Gefitinib (Iressa) in human breast cancer cells. Breast Cancer Res. 2005, 7(4):R570-579.
    59. Tabernero J, RojoF, Marimon I, et al. A phaseⅠpharmacokinetic and pharmacodynamic study of weekly 1-hour and 24-hour infusion BMS-214662, a farnesyl transferase inhibitor, in patients with advanced solid tumors. J Clin Oncol, 2005, 23: 2521-2533.
    60. Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in thebiology and treatment of cancer. J Clin Oncol, 2003, 21 (14): 2787-2799.
    61. Herbst RS, Johnson DH, Mininberg E, et al. PhaseⅠ/Ⅱtrial evaluating the anti-vascular endothelial growth factor receptor monocional antibody, bevacizumab, in combination with the HER-l/epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib, for patients with recurrent non-small cell lung cancer . JClin Oncol, 2005, 23: 2544-2555.
    62. Pegram MD, Yeon C, Ku NC, et al. Phase I combined biological therapy of breast cancer using two humanized monoclonal antibodies directed against HER2 proto-oncogene and vascular endothelial growth factor (VEGF). 27th San Antonio Breast Cancer Symposium, San Antonio, TX, December2004 (abstr3039).
    63. Stadler WM. Targeted agents for the treatment of advanced renal cell carcinoma. Cancer. 2005, 104(11): 2323-2333.
    64. Hainsworth JD, Sosman JA, Spigel DR, et al. Treatment of metastatic renal cell carcinoma with a combination of bevacizumab and erlotinib. JClin Oncol 2005, 23(31): 7889-7896.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700