用户名: 密码: 验证码:
激活瞬时受体电位香草醛亚家族1提高小鼠运动耐量的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:
     运动耐量是机体对运动的适应能力,与骨骼肌能量代谢密切相关。骨骼肌是葡萄糖和脂肪代谢的主要场所,骨骼肌的纤维类型、线粒体含量和关键酶活性是影响骨骼肌氧化能力和运动耐量的重要因素。提高运动耐量可以增加骨骼肌线粒体含量、促进脂肪分解和氧化,增加能量消耗,从而减少心血管代谢危险因素。因此,提高运动耐量的策略及分子机制研究对心血管代谢病的防治具有重要意义。
     既往研究发现,辣椒素具有增加运动耐量和能量消耗的作用。经胃管给予辣椒素后2小时,啮齿类动物运动耐量明显提高。健康成人口服一定量辣椒素后耗氧量和脂肪动员迅速增加。这种辣椒素的短期效应与儿茶酚胺水平升高有关,而是否与辣椒素的受体——瞬时受体电位香草醛亚家族1(Transient receptor potential vanilloid subfamily member 1 ,TRPV1)有关尚不明确。辣椒素的长期效应亦未见报道。
     神经细胞TRPV1通道可被高温、酸性环境、脂质、辣椒素等物质激活,导致以Ca2+为主的跨膜离子流动,进而激活一系列细胞内信号,参与多种伤害性刺激的分辨和整合以及炎症反应。我们既往还发现,辣椒素可激活脂肪细胞TRPV1导致细胞内钙增加,减少脂质在细胞内的堆积,辣椒素长期干预可预防高脂饮食诱导的肥胖。据报道,TRPV1在大鼠骨骼肌细胞也有表达,其生理意义还不清楚。我们推测,激活TRPV1可能与运动耐量的提高有关。AMPK、p-AMPK、PPARδ、PGC-1α、UCP3、PEPCK-C都是近年来颇受关注的参与运动耐量调节的分子,并且可能受细胞钙信号的调控。因此我们进一步推测,激活TRPV1可能通过细胞内Ca2+变化影响上述运动耐量相关分子的表达,从而提高运动耐量。
     为了验证上述推测,本研究分为三部分进行。第一部分通过蛋白免疫印迹、RT-PCR和免疫荧光染色证实TRPV1在小鼠骨骼肌组织和C2C12小鼠骨骼肌细胞系的表达,明确其分布以及辣椒素干预对其表达有何影响,还通过检测辣椒素刺激下的细胞内钙离子浓度([Ca2+]i)变化明确骨骼肌细胞上的TRPV1通道是否具有功能。第二部分分题一通过长期辣椒素饮食干预C57/BL6J野生型小鼠和TRPV1基因敲除型小鼠,观察TRPV1激活后对运动耐量相关表型的影响;分题二通过建立TRPV1过表达的转基因小鼠模型并对比观察该转基因小鼠与其同窝野生型对照小鼠的运动耐量相关表型,进一步证实TRPV1在运动耐量调节中的关键作用。第三部分通过检测各组动物骨骼肌运动耐量相关分子的表达,明确TRPV1激活后发挥作用的主要靶分子,并通过细胞实验明确TRPV1激活引起的细胞钙信号变化是否可影响该靶分子的表达。
     材料与方法:
     整个研究包括离体实验和在体实验。离体实验以C2C12小鼠成肌细胞以及TRPV1基因干扰的C2C12成肌细胞为模型,成肌细胞用含2%马血清的培养基诱导分化为成熟的骨骼肌细胞后用于所有细胞试验。在体试验采用了多种动物模型。首先以C57/BL6J野生型和TRPV1基因敲除(TRPV1-/-)小鼠为模型,各分为辣椒素组(含辣椒素饲料喂养)和对照组(普通饲料喂养)。另外,我们还构建了TRPV1过表达的转基因(TRPV1-tg)小鼠,并与其同窝野生型小鼠对比,观察运动耐量相关表型。
     1.使用慢病毒系统进行C2C12成肌细胞TRPV1的特异性RNA干扰。
     2.分别用蛋白免疫印迹、RT-PCR检测TRPV1蛋白和mRNA的表达;用免疫荧光染色观察TRPV1在C2C12肌细胞和小鼠骨骼肌组织的具体分布。
     3.比率荧光成像系统检测辣椒素刺激下C2C12肌细胞[Ca2+]i的变化,观察TRPV1基因干扰和TRPV1特异性拮抗剂辣椒卓平对钙信号变化的影响,并分别观察在含钙或不含钙的细胞外液中辣椒素刺激引起的C2C12肌细胞[Ca2+]i的变化。
     4.显微注射法构建TRPV1过表达的转基因小鼠。
     5.使用活动跑台检测各组小鼠的运动耐量;使用动物呼吸测量系统检测各组小鼠的耗氧量;ATP酶异染性染色方法检测小鼠腓肠肌纤维类型;蛋白免疫印迹法检测骨骼肌I型纤维标志物troponin-ss和脂肪酸转运子FAT/CD36的表达;血清乳酸、游离脂肪酸、甘油三酯、胆固醇、血糖、胰岛素等生化指标的检测均按照试剂盒说明书进行。
     6.蛋白免疫印迹法检测小鼠骨骼肌各运动耐量相关分子(AMPK、p-AMPK、PPARδ、PGC-1α、UCP3、PEPCK-C)的蛋白表达,RT-PCR检测PEPCK-C mRNA的表达。
     7.分别用辣椒素和Ca2+-ATP酶抑制剂毒胡萝卜素在含钙或无钙的细胞外液中刺激C2C12肌细胞,蛋白免疫印迹法检测PEPCK-C的蛋白表达,以明确不同的钙信号对PEPCK-C表达的影响。
     结果:
     1. TRPV1在C2C12肌细胞和小鼠骨骼肌细胞的细胞膜和肌浆网均有表达,辣椒素刺激可显著上调C2C12肌细胞TRPV1的蛋白表达。
     2.辣椒素刺激C2C12肌细胞引起浓度依赖性的[Ca2+]i升高, TRPV1基因干扰或辣椒卓平预处理可抑制这种细胞内钙信号的变化。
     3.辣椒素刺激引起的C2C12肌细胞内钙信号的变化是由细胞内TRPV1敏感的钙库钙离子释放和细胞膜上TRPV1介导的细胞外钙离子内流两部分组成的。
     4.辣椒素饮食干预可长期显著提高野生型小鼠的运动耐量,增加耗氧量和腓肠肌I型肌纤维含量,上调骨骼肌Troponin-ss和FAT/CD36的表达,减少内脏脂肪的堆积,降低血清甘油三酯、游离脂肪酸和乳酸水平,但对TRPV1-/-小鼠无显著影响。
     5.成功构建了TRPV1蛋白显著过表达的转基因小鼠。与同窝野生型小鼠相比,TRPV1过表达的转基因小鼠运动耐量和耗氧量均显著增加,腓肠肌Troponin-ss的表达显著上调,但体重和进食量均无显著差异。
     6.辣椒素饮食干预或使用遗传学技术使TRPV1过表达对小鼠骨骼肌AMPK、p-AMPK、PPARδ、PGC-1α、UCP3的蛋白表达无显著影响。
     7.辣椒素饮食干预可显著上调野生型小鼠骨骼肌PEPCK-C的mRNA和蛋白表达,但对TRPV1-/-小鼠骨骼肌PEPCK-C的mRNA和蛋白表达无显著影响;与同窝野生型小鼠相比,TRPV1-tg小鼠骨骼肌PEPCK-C的蛋白表达亦显著升高。
     8.辣椒素刺激C2C12肌细胞可上调PEPCK-C的蛋白表达,而TRPV1基因干扰或辣椒卓平处理可抑制PEPCK-C表达水平的上调。
     9.在含钙的细胞外液中,辣椒素和毒胡萝卜素刺激均可导致[Ca2+]i升高和PEPCK-C表达的上调;在无钙的细胞外液中,辣椒素和毒胡萝卜素刺激只能导致细胞内钙库钙离子的释放,不能上调PEPCK-C的蛋白表达。
     结论:
     1. TRPV1在小鼠骨骼肌和C2C12肌细胞均有表达。辣椒素刺激引起的肌细胞内钙离子浓度的变化由肌浆网上TRPV1依赖的钙库钙离子释放和细胞膜上TRPV1介导的细胞外钙离子内流共同组成。
     2.辣椒素激活TRPV1或遗传学技术上调TRPV1均可提高小鼠的运动耐量、耗氧量和骨骼肌I型纤维含量。激活TRPV1还可促进骨骼肌脂质氧化、减少糖酵解,降低血清乳酸、游离脂肪酸和甘油三酯水平。
     3.激活或上调TRPV1通过增加细胞外Ca2+内流上调小鼠骨骼肌PEPCK-C mRNA和蛋白的表达,但对AMPK、p-AMPK、PPARδ、PGC-1α、UCP3的蛋白表达均无显著影响,提示TRPV1激活后主要通过上调PEPCK-C提高运动耐量。
Background and objective:
     Exercise endurance is the ability to exert oneself to exercise for a long time, which is closely related to energy metabolism in skeletal muscle. Skeletal muscle is the primary tissue of glucose and fat metabolism and plays a major role in energy balance. The muscle fiber types, mitochondrial content and key enzyme activities mainly contribute to the oxidative capacity of skeletal muscle. Enhancement of exercise endurance can promote lipid oxidation, increase energy expenditure, and thus reduce cardio-metabolic risk factors. Therefore, study on the methods to enhance exercise endurance and the molecular mechanism of exercise endurance regulation is of important significance.
     Several earlier studies showed that administration of a single dose of capsaicin temporally improved exercise endurance in humans and rodents, effects associated with increased catecholamine release. However, it is unclear whether chronic intake of capsaicin enhances exercise endurance on a more permanent basis and whether TRPV1 channels in skeletal muscle are involved in such long-term changes.
     The TRPV1 ion channel was first cloned as a receptor for capsaicin which causes burning pain by activation of nociceptive pathways. TRPV1 responds to noxious stimuli that include capsaicin, heat, and acidic solutions, which results in an extra-cellular calcium influx. TRPV1 also exists in adipocytes. Our previous study showed that chronic administration of capsaicin up-regulated TRPV1 expression in adipose tissue and prevented diet-induced obesity in mice. Recent research also identified TRPV1 in rat skeletal muscle cells, which was assumed to be related to exercise endurance regulation. As indicated by recent studies, several important molecules were involved in the regulation of exercise endurance, such as AMPK、p-AMPK、PPARδ、PGC-1α、UCP3 and PEPCK-C, most of which could be regulated by calcium signals. Thus, we hypothesize that activation of TRPV1 channels would enhance exercise endurance through upregulating some of the above key molecules.
     In the present study, we first confirmed the expression and distribution of TRPV1 in mice skeletal muscle, and detected the TRPV1-dependent change of intracellular calcium ([Ca2+]i). Then we examined the exercise endurance capacity, the skeletal muscle fiber types, and serum parameters of wild-type mice and TRPV1 knockout mice fed with or without capsaicin. We also compared the endurance-related phenotypes between transgenic mice with overexpression of TRPV1 and their wild-type littermates. To find out which molecule was regulated by TRPV1 activation, we detected the above endurance-related key molecules in skeletal muscle, and finally studied whether this endurance-related molecule was affected by different calcium signals in vitro.
     Materials and Methods:
     The present study includes in vivo and in vitro experiments. In vivo models include wild-type mice and TRPV1 knockout mice fed with or without capsaicin, and the transgenic mice with TRPV1 overexpression (TRPV1-tg) and their wild-type littermates fed with normal diet were also observed. In vitro models were myotubes differentiated from control C2C12 myoblasts and TRPV1-RNAi C2C12 myoblasts.
     1. Selective silencing of TRPV1 by RNA interference in C2C12 myoblast was performed using a lentiviral system.
     2. Expressions of TRPV1 protein and mRNA in cells and skeletal muscle were detected by immunoblotting and RT-PCR respectively. Distribution of TRPV1 in C2C12 myotubes and skeletal muscle was shown by immunofluorescence.
     3. Capsaicin induced [Ca2+]i change was examined by PTI systems.
     4. TRPV1-tg mice with TRPV1 overexpression were constructed by DNA microinjection.
     5. Exercise endurance was examined by treadmill test. Skeletal muscle fiber types were distinguished by ATPase metachromia staining. Expression of troponin-ss and FAT/CD36 were detected by immunoblotting. Serum parameters like lactic acid, free fatty acid, triglycerides, total cholesterol, glucose and insulin were examined with special kits.
     6. Expression of endurance related molecules including AMPK、p-AMPK、PPARδ、PGC-1α、UCP3、PEPCK-C, were detected by immunoblotting and Expression of PEPCK-C mRNA was detected by RT-PCR.
     7. Expression of PEPCK-C in C2C12 myotubes after stimulated with capsaicin or thapsigargin, an inhibitor of Ca2+-ATPase, in a medium with or without Ca2+ was detected by immunoblotting.
     Results:
     1. TRPV1 existed in both plasma membrane and sarcoplasmic reticulum (SR) of C2C12 myotubes and mice skeletal muscle. Expression of TRPV1 protein was up-regulated by capsaicin treatment and inhibted by TRPV1-RNAi.
     2. Capsaicin induced a concentration-dependent [Ca2+]i increase in C2C12 myotubes, which was inhibited by TRPV1-RNAi and capsazepine pretreatment.
     3. Activation of TRPV1 increased [Ca2+]i by Ca2+ entry from the extracellular space, as well as by Ca2+ release from intracellular SR stores.
     4. Chronic capsaicin administration continuously enhanced exercise endurance of mice with little effect on food intake. Diatery capsaicin also promoted oxygen consumption, increased oxidative muscle fibers, upregulated expression of troponin-ss and FAT/CD36 in skeletal muscle, inhibited visceral fat accumulation, and reduced serum levels of triglycerides, free fatty acid and lactic acid. However, capsaicin had no effect on TRPV1-/- mice.
     5. TRPV1-tg mice with markedly over-expressed TRPV1 protein were successfully constructed. Compared to wild-type littermates, the exercise endurance and oxygen consumption were impressively higher in TRPV1-tg mice. Expression of troponin-ss protein in skeletal muscle also significantly increased. But the body weight and food intake were similar between two groups.
     6. Expression of AMPK、p-AMPK、PPARδ、PGC-1αand UCP3 in skeletal muscle of capsaicin treated mice or TRPV1-tg mice were similar with that of control mice.
     7. Compared to the control mice, Expression of PEPCK-C mRNA and protein were both significantly up-regulated in capsaicin treated mice and TRPV1-tg mice.
     8. Expression of PEPCK-C protein in C2C12 myotubes was significantly up-regulated by capsaicin, which was inhibited by TRPV1-RNAi and capsazepine treatment.
     9. Similar to capsaicin, the Ca2+-ATPase inhibitor, thapsigargin, also significantly up-regulated PEPCK-C expression in medium containing 1.5 mmol/L Ca2+; however, neither capsaicin nor thapsigargin up-regulated PEPCK-C expression in Ca2+-free medium.
     Conclusions:
     1. Capsaicin induced changes of intracellular free calcium in C2C12 myotubes are composed of calcium release from TRPV1-dependent store in SR and calcium influx from extra-cellular fluid.
     2. Both capsaicin-induced activation and genetic overexpression of TRPV1 increase exercise endurance, oxygen consumption and type I fibers of mice. Activation of TRPV1 also promotes lipid oxidation in skeletal muscle and improves serum parameters.
     3. TRPV1 activation up-regulates expression of PEPCK-C through increased calcium influx, but has no effect on expression of AMPK、p-AMPK、PPARδ、PGC-1αand UCP3. It indicates that activation of TRPV1 enhances exercise endurance mainly through up-regulation of PEPCK-C.
引文
1. Couillard C, Despres JP, Lamarche B, Bergeron J, Gagnon J, Leon AS, et al. Effects of endurance exercise training on plasma HDL cholesterol levels depend on levels of triglycerides: evidence from men of the Health, Risk Factors, Exercise Training and Genetics (HERITAGE) Family Study. Arterioscler Thromb Vasc Biol 2001;21: 1226-1232.
    2. Evans EM, Racette SB, Peterson LR, Villareal DT, Greiwe JS, Holloszy JO. Aerobic power and insulin action improve in response to endurance exercise training in healthy 77-87 yr olds. J Appl Physiol 2005;98:40-45.
    3. Paukstadt W. Fast food, lack of exercise and insufficient treatment. Coronary heart disease can be prevented in 2 out of 3 cases. MMW Fortschr Med 2001;143:16-18.
    4.罗志丹闫振成陈静等.腰围变化对代谢综合征综合干预效果的影响.中华老年心脑血管病杂志2007; 9: 508-511.
    5. Okita K, Yonezawa K, Nishijima H, Hanada A, Ohtsubo M, Kohya T, et al. Skeletal muscle metabolism limits exercise capacity in patients with chronic heart failure. Circulation 1998;98:1886-1891.
    6. Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol 2008;586:35-44.
    7. Oh TW, Ohta F. Dose-dependent effect of capsaicin on endurance capacity in rats. Br J Nutr 2003;90:515-520.
    8. Shin KO, Moritani T. Alterations of autonomic nervous activity and energy metabolism by capsaicin ingestion during aerobic exercise in healthy men. J Nutr Sci Vitaminol (Tokyo) 2007;53:124-132.
    9. Kim NJ, Lee SI. The effect of exercise type on cardiovascular disease risk index factors in male workers. J Prev Med Public Health 2006;39:462-468.
    10. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000;288:306-313.
    11. Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 2000;405: 183-187.
    12. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997;389:816-824.
    13. Pedersen SF, Owsianik G, Nilius B. TRP channels: an overview. Cell Calcium 2005;38:233-252.
    14. Caterina MJ. Vanilloid receptors take a TRP beyond the sensory afferent. Pain 2003;105:5-9.
    15. Zhang LL, Yan Liu D, Ma LQ, Luo ZD, Cao TB, Zhong J, et al. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circulation research 2007;100:1063-1070.
    16. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005;1:15-25.
    17. Ojuka EO. Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle. Proc Nutr Soc 2004;63:275-278.
    18. Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, et al. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2004;2:e294.
    19. Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, et al. AMPK and PPARdelta agonists are exercise mimetics. Cell 2008;134:405-415.
    20. Baar K. Involvement of PPAR gamma co-activator-1, nuclear respiratory factors 1 and 2, and PPAR alpha in the adaptive response to endurance exercise. Proc Nutr Soc 2004;63:269-273.
    21. Schrauwen P, Hesselink M. Uncoupling protein 3 and physical activity: the role of uncoupling protein 3 in energy metabolism revisited. Proc Nutr Soc 2003;62:635-643.
    22. Hakimi P, Yang J, Casadesus G, Massillon D, Tolentino-Silva F, Nye CK, et al. Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse. J Biol Chem 2007;282:32844-32855.
    23. Xin H, Tanaka H, Yamaguchi M, Takemori S, Nakamura A, Kohama K. Vanilloid receptor expressed in the sarcoplasmic reticulum of rat skeletal muscle. Biochemical and biophysical research communications 2005;332:756-762.
    24. Pingle SC, Matta JA, Ahern GP. Capsaicin receptor: TRPV1 a promiscuous TRP channel. Handb Exp Pharmacol 2007:155-171.
    25. Moiseenkova-Bell VY, Stanciu LA, Serysheva, II, Tobe BJ, Wensel TG. Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc Natl Acad Sci U S A 2008;105:7451-7455.
    26. Correll CC, Phelps PT, Anthes JC, Umland S, Greenfeder S. Cloning and pharmacological characterization of mouse TRPV1. Neurosci Lett 2004;370:55-60.
    27. Tominaga M, Tominaga T. Structure and function of TRPV1. Pflugers Arch 2005;451:143-150.
    28. Everaerts W, Sepulveda MR, Gevaert T, Roskams T, Nilius B, De Ridder D. Where is TRPV1 expressed in the bladder, do we see the real channel? Naunyn Schmiedebergs Arch Pharmacol 2009;379:421-425.
    29. Myrdal SE, Steyger PS. TRPV1 regulators mediate gentamicin penetration of cultured kidney cells. Hear Res 2005;204:170-182.
    30. Babes A, Amuzescu B, Krause U, Scholz A, Flonta ML, Reid G. Cooling inhibits capsaicin-induced currents in cultured rat dorsal root ganglion neurones. Neurosci Lett 2002;317:131-134.
    31. Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T. Gating of TRP channels: a voltage connection? J Physiol 2005;567:35-44.
    32. Ahern GP, Premkumar LS. Voltage-dependent priming of rat vanilloid receptor: effects of agonist and protein kinase C activation. J Physiol 2002;545:441-451.
    33. Ahern GP, Wang X, Miyares RL. Polyamines are potent ligands for the capsaicin receptor TRPV1. J Biol Chem 2006;281:8991-8995.
    34. Movahed P, Jonsson BA, Birnir B, Wingstrand JA, Jorgensen TD, Ermund A, et al. Endogenous unsaturated C18 N-acylethanolamines are vanilloid receptor (TRPV1) agonists. J Biol Chem 2005;280:38496-38504.
    35. Ahern GP. Activation of TRPV1 by the satiety factor oleoylethanolamide. J Biol Chem 2003;278:30429-30434.
    36. Szallasi A, Blumberg PM, Annicelli LL, Krause JE, Cortright DN. The cloned rat vanilloid receptor VR1 mediates both R-type binding and C-type calcium response in dorsal root ganglion neurons. Mol Pharmacol 1999;56:581-587.
    37. Szallasi A, Blumberg PM. Specific binding of resiniferatoxin, an ultrapotent capsaicinanalog, by dorsal root ganglion membranes. Brain Res 1990;524:106-111.
    38. Szallasi A, Goso C, Blumberg PM, Manzini S. Competitive inhibition by capsazepine of [3H]resiniferatoxin binding to central (spinal cord and dorsal root ganglia) and peripheral (urinary bladder and airways) vanilloid (capsaicin) receptors in the rat. J Pharmacol Exp Ther 1993;267:728-733.
    39. Toth A, Kedei N, Szabo T, Wang Y, Blumberg PM. Thapsigargin binds to and inhibits the cloned vanilloid receptor-1. Biochemical and biophysical research communications 2002;293:777-782.
    40. Wahl P, Foged C, Tullin S, Thomsen C. Iodo-resiniferatoxin, a new potent vanilloid receptor antagonist. Mol Pharmacol 2001;59:9-15.
    41. Wang JP, Tseng CS, Sun SP, Chen YS, Tsai CR, Hsu MF. Capsaicin stimulates the non-store-operated Ca2+ entry but inhibits the store-operated Ca2+ entry in neutrophils. Toxicol Appl Pharmacol 2005;209:134-144.
    42. Turner H, Fleig A, Stokes A, Kinet JP, Penner R. Discrimination of intracellular calcium store subcompartments using TRPV1 (transient receptor potential channel, vanilloid subfamily member 1) release channel activity. Biochem J 2003;371:341-350.
    43. Premkumar LS, Ahern GP. Induction of vanilloid receptor channel activity by protein kinase C. Nature 2000;408:985-990.
    44. Bhave G, Gereau RWt. Posttranslational mechanisms of peripheral sensitization. J Neurobiol 2004;61:88-106.
    45. Jahnel R, Dreger M, Gillen C, Bender O, Kurreck J, Hucho F. Biochemical characterization of the vanilloid receptor 1 expressed in a dorsal root ganglia derived cell line. Eur J Biochem 2001;268:5489-5496.
    46. Jin Y, Kim DK, Khil LY, Oh U, Kim J, Kwak J. Thimerosal decreases TRPV1 activity by oxidation of extracellular sulfhydryl residues. Neurosci Lett 2004;369:250-255.
    47. Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 2002;36:57-68.
    48. Zhang X, Huang J, McNaughton PA. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J 2005;24:4211-4223.
    1. Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol 2008;586:35-44.
    2. Couillard C, Despres JP, Lamarche B, Bergeron J, Gagnon J, Leon AS, et al. Effects of endurance exercise training on plasma HDL cholesterol levels depend on levels of triglycerides: evidence from men of the Health, Risk Factors, Exercise Training and Genetics (HERITAGE) Family Study. Arterioscler Thromb Vasc Biol 2001;21: 1226-1232.
    3. Evans EM, Racette SB, Peterson LR, Villareal DT, Greiwe JS, Holloszy JO. Aerobic power and insulin action improve in response to endurance exercise training in healthy 77-87 yr olds. J Appl Physiol 2005;98:40-45.
    4. Oh TW, Oh TW, Ohta F. Dose-dependent effect of capsaicin on endurance capacity in rats. Br J Nutr 2003;90:515-520.
    5. Shin KO, Moritani T. Alterations of autonomic nervous activity and energy metabolism by capsaicin ingestion during aerobic exercise in healthy men. J Nutr Sci Vitaminol (Tokyo) 2007;53:124-132.
    6. Kim KM, Kawada T, Ishihara K, Inoue K, Fushiki T. Swimming capacity of mice is increased by oral administration of a nonpungent capsaicin analog, stearoyl vanillylamide. The Journal of nutrition 1998;128:1978-1983.
    7. Zhang LL, Yan Liu D, Ma LQ, Luo ZD, Cao TB, Zhong J, et al. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circulation research 2007;100:1063-1070.
    8. Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, et al. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2004;2:e294.
    9. Ogilvie RW, Feeback DL. A metachromatic dye-ATPase method for the simultaneous identification of skeletal muscle fiber types I, IIA, IIB and IIC. Stain Technol 1990;65:231-241.
    10. Bassett DR, Jr., Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 2000;32:70-84.
    11. Mortensen SP, Dawson EA, Yoshiga CC, Dalsgaard MK, Damsgaard R, Secher NH, et al. Limitations to systemic and locomotor limb muscle oxygen delivery and uptake during maximal exercise in humans. J Physiol 2005;566:273-285.
    12. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 2004;287:R502-516.
    13. Costill DL. Metabolic responses during distance running. J Appl Physiol 1970;28:251-255.
    14. Hunter GR, Bamman MM, Larson Meyer DE, Joanisse DR, McCarthy JP, Blaudeau TE, et al. Inverse relationship between exercise economy and oxidative capacity in muscle. European journal of applied physiology 2005;94:558-568.
    15. Paukstadt W. Fast food, lack of exercise and insufficient treatment. Coronary heart disease can be prevented in 2 out of 3 cases. MMW Fortschr Med 2001;143:16-18.
    16. Okita K, Yonezawa K, Nishijima H, Hanada A, Ohtsubo M, Kohya T, et al. Skeletal muscle metabolism limits exercise capacity in patients with chronic heart failure. Circulation 1998;98:1886-1891.
    17. Rogge MM. The Role of Impaired Mitochondrial Lipid Oxidation in Obesity. Biol Res Nurs 2009.
    18. Pettee KK, Larouere BM, Kriska AM, Johnson BD, Orchard TJ, Goodpaster BH, et al. Associations among walking performance, physical activity, and subclinical cardiovascular disease. Prev Cardiol 2007;10:134-140.
    19. Spargo FJ, McGee SL, Dzamko N, Watt MJ, Kemp BE, Britton SL, et al. Dysregulation of muscle lipid metabolism in rats selectively bred for low aerobic running capacity. Am J Physiol Endocrinol Metab 2007;292:E1631-1636.
    20. Danciu SC, Krause SW, Wagner C, Gonzalez J, Brenchley J, Clark C, et al. VO2 Max and anaerobic threshold in hypertension: a tissue Doppler study. Echocardiography 2008;25:156-161.
    21. Minotti JR, Christoph I, Oka R, Weiner MW, Wells L, Massie BM. Impaired skeletal muscle function in patients with congestive heart failure. Relationship to systemic exercise performance. J Clin Invest 1991;88:2077-2082.
    22. Humphrey R, Bartels MN. Exercise, cardiovascular disease, and chronic heart failure. Arch Phys Med Rehabil 2001;82:S76-81.
    23. Smith AG, Muscat GE. Skeletal muscle and nuclear hormone receptors: implications for cardiovascular and metabolic disease. Int J Biochem Cell Biol 2005;37:2047-2063.
    24. Smith IJ, Huffman KM, Durheim MT, Duscha BD, Kraus WE. Sex-specific alterations in mRNA level of key lipid metabolism enzymes in skeletal muscle of overweight and obese subjects following endurance exercise. Physiol Genomics 2009;36:149-157.
    25. Nicholas C. Legal nutritional supplements during a sporting event. Essays Biochem 2008;44:45-61.
    26. Doutreleau S, Mettauer B, Piquard F, Rouyer O, Schaefer A, Lonsdorfer J, et al. Chronic L-arginine supplementation enhances endurance exercise tolerance in heart failure patients. Int J Sports Med 2006;27:567-572.
    27. Murase T, Haramizu S, Shimotoyodome A, Nagasawa A, Tokimitsu I. Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice. American journal of physiology Regulatory, integrative and comparative physiology 2005;288:R708-715.
    28. Brouns F, van der Vusse GJ. Utilization of lipids during exercise in human subjects: metabolic and dietary constraints. British journal of nutrition, The 1998;79:117-128.
    29. Kim KM, Kawada T, Ishihara K, Inoue K, Fushiki T. Increase in swimming endurance capacity of mice by capsaicin-induced adrenal catecholamine secretion. Bioscience, biotechnology, and biochemistry 1997;61:1718-1723.
    30. Chanda S, Mould A, Esmail A, Bley K. Toxicity studies with pure trans-capsaicin delivered to dogs via intravenous administration. Regul Toxicol Pharmacol 2005;43:66-75.
    31. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000;288:306-313.
    32. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 1998;21:531-543.
    33. Caterina MJ. Vanilloid receptors take a TRP beyond the sensory afferent. Pain 2003;105:5-9.
    34. Gunthorpe MJ, Szallasi A. Peripheral TRPV1 receptors as targets for drug development:new molecules and mechanisms. Curr Pharm Des 2008;14:32-41.
    35. Motter AL, Ahern GP. TRPV1-null mice are protected from diet-induced obesity. FEBS letters 2008;582:2257-2262.
    36. Hakimi P, Yang J, Casadesus G, Massillon D, Tolentino-Silva F, Nye CK, et al. Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse. J Biol Chem 2007;282:32844-32855.
    37. Wang C, Hu HZ, Colton CK, Wood JD, Zhu MX. An alternative splicing product of the murine trpv1 gene dominant negatively modulates the activity of TRPV1 channels. Journal of biological chemistry, The 2004;279:37423-37430.
    38. Lu G, Henderson D, Liu L, Reinhart PH, Simon SA. TRPV1b, a functional human vanilloid receptor splice variant. Molecular pharmacology 2005;67:1119-1127.
    39. Sharif Naeini R, Witty MF, Seguela P, Bourque CW. An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat Neurosci 2006;9:93-98.
    40. Lyall V, Heck GL, Vinnikova AK, Ghosh S, Phan TH, Alam RI, et al. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. Journal of physiology, The 2004;558:147-159.
    1. Carling D. The AMP-activated protein kinase cascade--a unifying system for energy control. Trends in biochemical sciences 2004;29:18-24.
    2. Hardie DG, Scott JW, Pan DA, Hudson ER. Management of cellular energy by the AMP-activated protein kinase system. FEBS letters 2003;546:113-120.
    3. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002;415:339-343.
    4. Rockl KS, Hirshman MF, Brandauer J, Fujii N, Witters LA, Goodyear LJ. Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift. Diabetes 2007;56:2062-2069.
    5. Garcia-Roves PM, Osler ME, Holmstrom MH, Zierath JR. Gain-of-function R225Q mutation in AMP-activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J Biol Chem 2008;283:35724-35734.
    6. Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, et al. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2004;2:e294.
    7. Grimaldi PA. Regulatory role of peroxisome proliferator-activated receptor delta (PPAR delta) in muscle metabolism. A new target for metabolic syndrome treatment? Biochimie 2005;87:5-8.
    8. Scarpulla RC. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 2002;286:81-89.
    9. Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur NK, et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 2007;282:30014-30021.
    10. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 2005;1:361-370.
    11. Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, et al. AMPK andPPARdelta agonists are exercise mimetics. Cell 2008;134:405-415.
    12. Schrauwen P, Hesselink M. Uncoupling protein 3 and physical activity: the role of uncoupling protein 3 in energy metabolism revisited. Proc Nutr Soc 2003;62:635-643.
    13. Fernstrom M, Tonkonogi M, Sahlin K. Effects of acute and chronic endurance exercise on mitochondrial uncoupling in human skeletal muscle. J Physiol 2004;554:755-763.
    14. Franckhauser S, Munoz S, Pujol A, Casellas A, Riu E, Otaegui P, et al. Increased fatty acid re-esterification by PEPCK overexpression in adipose tissue leads to obesity without insulin resistance. Diabetes 2002;51:624-630.
    15. Olswang Y, Cohen H, Papo O, Cassuto H, Croniger CM, Hakimi P, et al. A mutation in the peroxisome proliferator-activated receptor gamma-binding site in the gene for the cytosolic form of phosphoenolpyruvate carboxykinase reduces adipose tissue size and fat content in mice. Proc Natl Acad Sci U S A 2002;99:625-630.
    16. Dhakras PS, Hajarnis S, Taylor L, Curthoys NP. cAMP-dependent stabilization of phosphoenolpyruvate carboxykinase mRNA in LLC-PK1-F+ kidney cells. Am J Physiol Renal Physiol 2006;290:F313-318.
    17. Alleyne GA, Flores H, Roobol A. The interrelationship of the concentration of hydrogen ions, bicarbonate ions, carbon dioxide and calcium ions in the regulation of renal gluconeogenesis in the rat. Biochem J 1973;136:445-453.
    18. Roobol A, Alleyne GA. Regulation of renal gluconeogenesis by calcium ions, hormones and adenosine 3':5'-cyclic monophosphate. Biochem J 1973;134:157-165.
    19. Odedra BR, Palmer TN. A putative pathway of glyconeogenesis in skeletal muscle. Biosci Rep 1981;1:157-165.
    20. Hakimi P, Yang J, Casadesus G, Massillon D, Tolentino-Silva F, Nye CK, et al. Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse. J Biol Chem 2007;282:32844-32855.
    21. Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 2002;277:30409-30412.
    22. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancientenergy gauge provides clues to modern understanding of metabolism. Cell Metab 2005;1:15-25.
    23. Jensen TE, Wojtaszewski JF, Richter EA. AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient? Acta Physiol (Oxf) 2009;196:155-174.
    24. Holmes BF, Lang DB, Birnbaum MJ, Mu J, Dohm GL. AMP kinase is not required for the GLUT4 response to exercise and denervation in skeletal muscle. Am J Physiol Endocrinol Metab 2004;287:E739-743.
    25. Raney MA, Yee AJ, Todd MK, Turcotte LP. AMPK activation is not critical in the regulation of muscle FA uptake and oxidation during low-intensity muscle contraction. Am J Physiol Endocrinol Metab 2005;288:E592-598.
    26. Thomson DM, Porter BB, Tall JH, Kim HJ, Barrow JR, Winder WW. Skeletal muscle and heart LKB1 deficiency causes decreased voluntary running and reduced muscle mitochondrial marker enzyme expression in mice. Am J Physiol Endocrinol Metab 2007;292:E196-202.
    27. Leick L, Wojtaszewski JF, Johansen ST, Kiilerich K, Comes G, Hellsten Y, et al. PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle. Am J Physiol Endocrinol Metab 2008;294: E463-474.
    28. Hesselink MK, Schrauwen P, Holloszy JO, Jones TE. Divergent effects of acute exercise and endurance training on UCP3 expression. Am J Physiol Endocrinol Metab 2003;284:E449-450; author reply 450-441.
    29. Fischer MJ, Reeh PW, Sauer SK. Proton-induced calcitonin gene-related peptide release from rat sciatic nerve axons, in vitro, involving TRPV1. Eur J Neurosci 2003;18:803-810.
    30. Wang X, Weisleder N, Collet C, Zhou J, Chu Y, Hirata Y, et al. Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle. Nat Cell Biol 2005;7:525-530.
    31. Xin H, Tanaka H, Yamaguchi M, Takemori S, Nakamura A, Kohama K. Vanilloidreceptor expressed in the sarcoplasmic reticulum of rat skeletal muscle. Biochemical and biophysical research communications 2005;332:756-762.
    1. Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. The Journal of physiology 2008;586:35-44.
    2. Bassett DR, Jr., Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 2000;32:70-84.
    3. Mortensen SP, Dawson EA, Yoshiga CC, Dalsgaard MK, Damsgaard R, Secher NH, et al. Limitations to systemic and locomotor limb muscle oxygen delivery and uptake during maximal exercise in humans. J Physiol 2005;566:273-285.
    4. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 2004;287:R502-516.
    5. Myers J, Ashley E. Dangerous curves. A perspective on exercise, lactate, and the anaerobic threshold. Chest 1997;111:787-795.
    6. Costill DL. Metabolic responses during distance running. J Appl Physiol 1970;28:251-255.
    7. Hunter GR, Bamman MM, Larson Meyer DE, Joanisse DR, McCarthy JP, Blaudeau TE, et al. Inverse relationship between exercise economy and oxidative capacity in muscle. European journal of applied physiology 2005;94:558-568.
    8. Coyle EF, Martin WH, Ehsani AA, Hagberg JM, Bloomfield SA, Sinacore DR, et al. Blood lactate threshold in some well-trained ischemic heart disease patients. J Appl Physiol 1983;54:18-23.
    9. Coyle EF. Integration of the physiological factors determining endurance performance ability. Exerc Sport Sci Rev 1995;23:25-63.
    10. Rockl KS, Hirshman MF, Brandauer J, Fujii N, Witters LA, Goodyear LJ. Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift. Diabetes 2007;56:2062-2069.
    11. Frosig C, Rose AJ, Treebak JT, Kiens B, Richter EA, Wojtaszewski JF. Effects of endurance exercise training on insulin signaling in human skeletal muscle: interactions at the level of phosphatidylinositol 3-kinase, Akt, and AS160. Diabetes 2007;56:2093-2102.
    12. Fernstrom M, Tonkonogi M, Sahlin K. Effects of acute and chronic endurance exerciseon mitochondrial uncoupling in human skeletal muscle. J Physiol 2004;554:755-763.
    13. Rankinen T, Bray MS, Hagberg JM, Perusse L, Roth SM, Wolfarth B, et al. The human gene map for performance and health-related fitness phenotypes: the 2005 update. Med Sci Sports Exerc 2006;38:1863-1888.
    14. Rico-Sanz J, Rankinen T, Joanisse DR, Leon AS, Skinner JS, Wilmore JH, et al. Associations between cardiorespiratory responses to exercise and the C34T AMPD1 gene polymorphism in the HERITAGE Family Study. Physiological genomics 2003;14:161-166.
    15. Tyni-Lenne R, Gordon A, Jansson E, Bermann G, Sylven C. Skeletal muscle endurance training improves peripheral oxidative capacity, exercise tolerance, and health-related quality of life in women with chronic congestive heart failure secondary to either ischemic cardiomyopathy or idiopathic dilated cardiomyopathy. Am J Cardiol 1997;80:1025-1029.
    16. Drexel H, Saely CH, Langer P, Loruenser G, Marte T, Risch L, et al. Metabolic and anti-inflammatory benefits of eccentric endurance exercise - a pilot study. Eur J Clin Invest 2008;38:218-226.
    17. Couillard C, Despres JP, Lamarche B, Bergeron J, Gagnon J, Leon AS, et al. Effects of endurance exercise training on plasma HDL cholesterol levels depend on levels of triglycerides: evidence from men of the Health, Risk Factors, Exercise Training and Genetics (HERITAGE) Family Study. Arterioscler Thromb Vasc Biol 2001;21: 1226-1232.
    18. Smith AG, Muscat GE. Skeletal muscle and nuclear hormone receptors: implications for cardiovascular and metabolic disease. Int J Biochem Cell Biol 2005;37:2047-2063.
    19. Rogge MM. The Role of Impaired Mitochondrial Lipid Oxidation in Obesity. Biol Res Nurs 2009.
    20. Danciu SC, Krause SW, Wagner C, Gonzalez J, Brenchley J, Clark C, et al. VO2 Max and anaerobic threshold in hypertension: a tissue Doppler study. Echocardiography 2008;25:156-161.
    21. Minotti JR, Christoph I, Oka R, Weiner MW, Wells L, Massie BM. Impaired skeletal muscle function in patients with congestive heart failure. Relationship to systemic exercise performance. J Clin Invest 1991;88:2077-2082.
    22. Humphrey R, Bartels MN. Exercise, cardiovascular disease, and chronic heart failure. Arch Phys Med Rehabil 2001;82:S76-81.
    23. Pettee KK, Larouere BM, Kriska AM, Johnson BD, Orchard TJ, Goodpaster BH, et al. Associations among walking performance, physical activity, and subclinical cardiovascular disease. Prev Cardiol 2007;10:134-140.
    24. Spargo FJ, McGee SL, Dzamko N, Watt MJ, Kemp BE, Britton SL, et al. Dysregulation of muscle lipid metabolism in rats selectively bred for low aerobic running capacity. Am J Physiol Endocrinol Metab 2007;292:E1631-1636.
    25. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005;1:15-25.
    26. Carling D. The AMP-activated protein kinase cascade--a unifying system for energy control. Trends in biochemical sciences 2004;29:18-24.
    27. Hardie DG, Scott JW, Pan DA, Hudson ER. Management of cellular energy by the AMP-activated protein kinase system. FEBS letters 2003;546:113-120.
    28. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002;415:339-343.
    29. Garcia-Roves PM, Osler ME, Holmstrom MH, Zierath JR. Gain-of-function R225Q mutation in AMP-activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J Biol Chem 2008;283:35724-35734.
    30. Jorgensen SB, Viollet B, Andreelli F, Frosig C, Birk JB, Schjerling P, et al. Knockout of the alpha2 but not alpha1 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J Biol Chem 2004;279:1070-1079.
    31. Mahlapuu M, Johansson C, Lindgren K, Hjalm G, Barnes BR, Krook A, et al. Expression profiling of the gamma-subunit isoforms of AMP-activated protein kinase suggests a major role for gamma3 in white skeletal muscle. American journal of physiology 2004;286:E194-200.
    32. Barnes BR, Marklund S, Steiler TL, Walter M, Hjalm G, Amarger V, et al. The 5'-AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate andlipid metabolism in glycolytic skeletal muscle. The Journal of biological chemistry 2004;279:38441-38447.
    33. Raney MA, Yee AJ, Todd MK, Turcotte LP. AMPK activation is not critical in the regulation of muscle FA uptake and oxidation during low-intensity muscle contraction. Am J Physiol Endocrinol Metab 2005;288:E592-598.
    34. Holmes BF, Lang DB, Birnbaum MJ, Mu J, Dohm GL. AMP kinase is not required for the GLUT4 response to exercise and denervation in skeletal muscle. Am J Physiol Endocrinol Metab 2004;287:E739-743.
    35. Leick L, Wojtaszewski JF, Johansen ST, Kiilerich K, Comes G, Hellsten Y, et al. PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle. Am J Physiol Endocrinol Metab 2008;294: E463-474.
    36. Wang C, Hu HZ, Colton CK, Wood JD, Zhu MX. An alternative splicing product of the murine trpv1 gene dominant negatively modulates the activity of TRPV1 channels. Journal of biological chemistry, The 2004;279:37423-37430.
    37. Grimaldi PA. Regulatory role of peroxisome proliferator-activated receptor delta (PPAR delta) in muscle metabolism. A new target for metabolic syndrome treatment? Biochimie 2005;87:5-8.
    38. Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, et al. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2004;2:e294.
    39. Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, et al. AMPK and PPARdelta agonists are exercise mimetics. Cell 2008;134:405-415.
    40. Scarpulla RC. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 2002;286:81-89.
    41. Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur NK, et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 2007;282:30014-30021.
    42. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 2005;1:361-370.
    43. Hakimi P, Yang J, Casadesus G, Massillon D, Tolentino-Silva F, Nye CK, et al.Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse. J Biol Chem 2007;282:32844-32855.
    44. Franckhauser S, Munoz S, Pujol A, Casellas A, Riu E, Otaegui P, et al. Increased fatty acid re-esterification by PEPCK overexpression in adipose tissue leads to obesity without insulin resistance. Diabetes 2002;51:624-630.
    45. Olswang Y, Cohen H, Papo O, Cassuto H, Croniger CM, Hakimi P, et al. A mutation in the peroxisome proliferator-activated receptor gamma-binding site in the gene for the cytosolic form of phosphoenolpyruvate carboxykinase reduces adipose tissue size and fat content in mice. Proc Natl Acad Sci U S A 2002;99:625-630.
    46. Odedra BR, Palmer TN. A putative pathway of glyconeogenesis in skeletal muscle. Biosci Rep 1981;1:157-165.
    47. Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 2002;277:30409-30412.
    48. Nicholas C. Legal nutritional supplements during a sporting event. Essays Biochem 2008;44:45-61.
    49. Doutreleau S, Mettauer B, Piquard F, Rouyer O, Schaefer A, Lonsdorfer J, et al. Chronic L-arginine supplementation enhances endurance exercise tolerance in heart failure patients. Int J Sports Med 2006;27:567-572.
    50. Brouns F, van der Vusse GJ. Utilization of lipids during exercise in human subjects: metabolic and dietary constraints. British journal of nutrition, The 1998;79:117-128.
    51. Murase T, Haramizu S, Shimotoyodome A, Nagasawa A, Tokimitsu I. Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice. American journal of physiology Regulatory, integrative and comparative physiology 2005;288:R708-715.
    52. Oh TW, Ohta F. Dose-dependent effect of capsaicin on endurance capacity in rats. Br J Nutr 2003;90:515-520.
    53. Kim KM, Kawada T, Ishihara K, Inoue K, Fushiki T. Increase in swimming endurance capacity of mice by capsaicin-induced adrenal catecholamine secretion. Bioscience, biotechnology, and biochemistry 1997;61:1718-1723.
    54. Kim KM, Kawada T, Ishihara K, Inoue K, Fushiki T. Swimming capacity of mice isincreased by oral administration of a nonpungent capsaicin analog, stearoyl vanillylamide. The Journal of nutrition 1998;128:1978-1983.
    55. Goodyear LJ. The exercise pill--too good to be true? The New England journal of medicine 2008;359:1842-1844.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700