用户名: 密码: 验证码:
基于小波变换的序列图像感兴趣区域编码
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感兴趣区域(Region-of-interest,ROI)编码技术,即在图像中的感兴趣区域采用低压缩比的有损压缩,甚至无损压缩;而在非感兴趣(背景)区域,采用高压缩比的有损压缩,这样既能够获得较高的全图压缩比,又可以保持图像中的重要信息不丢失,为解决图像压缩比与重建图像质量之间的矛盾提供了一个新的思路,具有重要的理论意义和应用价值。
    根据国内和国际上的相关研究,本文对序列图像ROI编码中的几项关键技术进行了探讨,主要包括ROI位平面偏移方法、序列图像的运动估计算法,以及对ROI的动态跟踪算法等,其目的是建立一种实用的序列图像ROI编码系统,为未来的遥感图像分析、远程医疗和视频通信等应用领域提供算法支持。
    本文的创新性工作概括如下:
    1、提出了一种通用的部分位平面偏移方法(Generalized Partial Bitplanes ShiftMethod,GPBShift)。与标准方法中将全部位平面用统一的偏移值进行移位不同,该方法将ROI系数和背景系数的位平面分别划分成两部分,进行不同的位平面偏移。GPBShift方法兼容Maxshift、GBbBShift和PSBShift三种方法,并提供比上述方法更大的灵活性。它不仅能够在不需要传输ROI形状信息的情况下,对任意形状的ROI进行编码,而且通过选择偏移值,可以灵活调整ROI和背景区的相对压缩质量。此外,它还能够根据不同的优先级,编码多个ROI区域。
    2、提出了一种可预测搜索起点的自适应交叉—准菱形搜索算法(PredictiveAdaptive Cross-Quasi-Diamond Search Algorithm,PACQDSA)。根据序列图像中运动矢量的交叉—中心偏置分布特性和矢量间的时空相关性,该算法设计了一种交叉—准菱形搜索模板,并融合搜索起点预测、半途中止准则和自适应搜索模式等技术,在保证搜索精度的同时,大幅度提高了运动估计的速度,尤其对于大运动序列,具有更明显的优势。
    3、提出了一种基于Hausdorff距离的ROI跟踪算法。该方法首先采用一种新型的非线性边缘检测算法提取ROI模板和待匹配图像帧的边缘特征点,接着用Hausdorff距离将ROI模板的二维二值模型与后续帧进行匹配,然后采用一种基于运动相连成分的模型刷新方法对模型的每一帧进行更新,最终利用二值模型从视频序列中提取出ROI。
    4、提出了一种适于图像压缩的小波基选择和评估的新方法。通过分析小波基函数的数学特性,该方法提出用六个指标全面评估小波基的压缩性能。这六个指标包括:熵H、编码增益G、峰—峰比PPR和增益的乘积PPR×G、最低频子带重构图像的峰值信噪比PSNR、能量集中特性,以及能量分布特性。实验结果显示:该方法能够正确对小波基进行评估,并据此选择出适当的小波基。
Region-of-interest (ROI) image coding technique means to compress interestingregions in an image without loss or with little loss, and to compress uninteresting(background) regions with much loss. Based on this idea a high compression ratio canbe obtained and the important information can be preserved in the image. ROI codingtechnique provides a new way to solve the contradiction between the compressionratio and the image quality. Therefore, it is of great significance in theory andapplications.
    Based on the correlative research at home and abroad, this dissertation discussedsome key techniques related to ROI coding of sequence image, which include ROIbitplanes shift method, motion estimation algorithm, ROI tracking algorithm, and soon. All the work of this dissertation is focused on the realization of ROI video codingsystem by software for such applications as remote sensing image analysis, remotediagnosis and video communication.
    The major innovations achieved in the dissertation are as follows:
    1. A new ROI coding method called generalized partial bitplanes shift (GPBShift)is presented. To control the relative importance between ROI and background, themethod divides the bitplanes of ROI and background coefficients into two parts byusing scaling values S1 and S2, respectively. Instead of shifting the bitplanes all atonce by the same scaling value S in the standard methods, GPBShift shifts part ofthem on the basis of the bitplane shifting scheme. The Maxshift, generalizedbitplane-by-bitplane shift (GBbBShift) and partial significant bitplanes shift(PSBShift) methods are special cases of the GPBShift method, while GPBShiftprovides more flexibility for “degree-of-interest” adjustment of the ROI. TheGPBShift method not only is able to code arbitrarily shaped ROI without explicitlytransmitting any shape information to the decoder, but also flexibly select the scalingvalues to adjust relative compression quality in ROI and background. Additionally,the method may efficiently code multiple ROI with different priorities in an image.
    2. A predictive adaptive cross-quasi-diamond search algorithm (PACQDSA) ispresented. Based on the cross-center-biased motion vector distribution characteristicof the real-world sequences and high space-time correlation of adjacent blocks'motion vectors, a new cross-quasi-diamond search pattern is designed with sucheffective techniques as prediction of initial search point, half-stop criteria and
    adaptive search modes. Experiments show that the algorithm is able to fit all types ofvideo sequences adaptively in spite of the degree of the motions. And it is better thanthe traditional fast motion estimation algorithms such as NTSS, FSS and DS, in termsof both speed and PSNR, especially for the sequences with large motion.3. An ROI tracking algorithm based on Hausdorff distance is presented. Thealgorithm detects edge pixels in an ROI model and an image frame as the recognitionfeatures, then using them matches the ROI in subsequent frames by using theHausdorff distance rule. The ROI model is updated in real time using a new methodbased on the concept of the moving connected components. Finally, the ROIs areextracted from the binary model sequence.4. A new method for selection and evaluation of wavelet bases in imagecompression is proposed. By analyzing mathematical characteristics of wavelet base,several criteria are presented which include entropy, coding gain, product ofpeak-to-peak ratio (PPR) and coding gain, PSNR of the reconstructed image, energycollection characteristic and energy distribution characteristic. The experimentalresults show that the method is effective on selection and evaluation of wavelet bases.
引文
[1] 刘文耀,光电图像处理,北京:电子工业出版社,2002,148、373~374
    [2] 朱秀昌,胡栋,数字图像通信,北京:人民邮电出版社,1994,33~34
    [3] 韦长江,基于感兴趣区域的图像编码研究,博士学位论文,北京大学,2001
    [4] Men Long, Heng-Ming Tai, Region of interest coding for image compression, In: The 2002 45th Midwest Symposium on Circuits and Systems, MWSCAS-2002, 2002(2): II-172~II-175
    [5] Heng-Ming Tai, Men Long, Wei He, et al., An efficient region of interest coding for medical image compression, In: Engineering in Medicine and Biology, 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society, EMBS/BMES Conference'2002, Proceedings of the Second Joint, 2002 (2): 1017~1018
    [6] Deforges O., Ronsin J., Region of interest coding for low bit rate image transmission, In: IEEE International Conference on Multimedia and Expo, ICME'2000, 2000(1): 107~110
    [7] Fukuma S., Ikuta S., Ito M., et al., An ROI image coding based on switching wavelet transform, In: Proceedings -IEEE International Symposium on Circuits and Systems, 2003(2): II420~II423
    [8] Tasdoken Sinan, Cuhadar Aysegul, ROI Coding with Integer Wavelet Transforms and Unbalanced Spatial Orientation Trees, In: Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology, 2003, 1: 841~844
    [9] Dillen G., Georis B., Legat J. D., et al., Combined line-based architecture for the 5-3 and 9-7 wavelet transform of JPEG2000, IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(9): 944~950
    [10] J. M. Shapiro, Smart compression using the embedded zerotree wavelet (EZW) algorithm, In: Proceedings of the 27th Annual Asilomar Conference on Signals, Systems and Computers, 1993: 486~490
    [11] T. W. Ryan, L. D. Sanders, H. D. Fisher, Wavelet-domain texture modeling for image compression, In: IEEE Proc. ICIP'94, 1994,Ⅱ: 380~384
    [12] P. Y. Cheng, C. J. Kuo, Feature-preserving wavelet scheme for low bit-rate coding, In: SPIE Proc. Digital Video Compression: Algorithms and Technologies, 1995, 2419: 385~396
    [13] Tsaifa Yu, Nai-wen Lin, Steve J. Liu, et al., A region-of-interest based transmission protocol for wavelet-compressed medical images, SPIE, 1996, 3078: 56~61
    [14] Jacob Strom, Pamela C. Cosman, Medical image compression with lossless regions of interest, Signal Processing, 1997, 59: 155~171
    [15] Cuhadar Aysegul, Tasdoken Sinan, Multiple, arbitrary shape ROI coding with zerotree based wavelet coders, In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal, 2003, 3: 257~260
    [16] Chih-Chang Chen, Chen O.T.-C., Horng-Hsinn Wu, Region of interest determined by picture contents in JPEG 2000, In: Proceedings of the 2003 International Symposium on Circuits and Systems, 2003, 2: 868~871
    [17] David Nister, Charilaos Christopoulos, Lossless region of interest coding, Signal Processing, 1999,78: 1~17
    [18] 毋立芳,沈兰荪,张晓玲,基于感兴趣区的图像近无损压缩,中国图象图形学报(A 版),2001,6(6):528~532
    [19] 陈军,吴成柯,李云松,基于零树结构的感兴趣区图像内嵌编码算法,西安电子科技大学学报(自然科学版),2002,29(3):343~346,374
    [20] 张立保,王珂,一种基于感兴趣区的小波图像编码算法,计算机工程与应用,2003,(4):22~25
    [21] 郑杰、樊来耀,一种 JPEG2000 感兴趣区域编码方法—中央凹移位,电视技术,2003(5):7~9
    [22] 郑杰,基于 JPEG2000 图像标准的感兴趣区域编码研究,硕士学位论文,西安电子科技大学,2003
    [23] Xiao Jiang, Wu Cheng-Ke, Deng Jia-Xian, et al., A method for ROI coding in multispectral remote sensing image coding system, Yuhang Xuebao/Journal of Astronautics, 2004, 25(1): 13~18
    [24] 张立保,赵铭,基于残差图像的 ROI 编码研究,光电子·激光,2003,14(1):75~78
    [25] 张烨,静止图像的感兴趣区域压缩编码研究,硕士学位论文,苏州大学,2003
    [26] ISO/IEC JTC 1/SC 29/WG 1 (ITU-T SG8), ISO/IEC FCD15444-1, JPEG2000 PartⅠFinal Committee Draft Version 1.0, 16 Mar. 2000
    [27] ISO/IEC JTC 1/SC 29/WG 1 (ITU-T SG8), ISO/IEC FCD15444-2, JPEG2000 Part Ⅱ Final Committee Draft, 7 Dec. 2000
    [28] Taubaman D, Marcellin M, JPEG2000: Image compression, fundamental, standards and practice, Hardbound, 2001
    [29] Santa-Cruz D, Ebrahimi T, An analytical study of JPEG2000 functionalities, In: Proc. of the International Conference on Image Processing (ICIP), 2000, (9): 10~13
    [30] Zhou Wang, Alan C. Bovik, Bitplane-by-Bitplane Shift (BbBShift) — A Suggestion for JPEG2000 Region of Interest Image Coding, IEEE Signal Processing Lett., 2002, 9(5): 160~162
    [31] Lijie Liu, Guoliang Fan, A New JPEG2000 Region-of-Interest Image Coding Method: Partial Significant Bitplanes Shift, IEEE Signal Processing Lett., 2003, 10(2): 35~38
    [32] Doulamis N., Doulamis A., Kalogeras D., et al., Low bit-rate coding of image sequences using adaptive regions of interest, IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8 (8): 928~934
    [33] Morimoto M., Matsumura K., Fujii K., A hierarchical video compression method using object coding, In:Proceedings of World Automation Congress, 2002, 13: 345~350
    [34] Mei-Juan Chen, Ming-Chieh Chi, Ching-Ting Hsu, et al., ROI video coding based on H.263+ with robust skin-color detection technique, Consumer Electronics, 2003, 49(3): 724~730
    [35] Mei-Juan Chen, Chih-Wei Pan, Min-Chie Chi, Improved region-of-interest image coder and its application, In: International Conference on Consumer Electronics, ICCE'2002, 2002: 226~227
    [36] 钟玉琢,王琪,贺玉文,基于对象的多媒体数据压缩编码国际标准—MPEG-4及其校验模型,北京:科学出版社,2000
    [37] 王辉柏,极低码率视频编码技术研究,博士学位论文,天津大学,1999
    [38] ISO/IEC, Description of MPEG-4, N1410, Chicago MPEG meeting, Oct. 1996
    [39] Noel Brady, MPEG-4 standardized methods for the compression of arbitrarily shaped video objects, IEEE Trans. Circuits and Systems for Video Tech., 1999, 9(8): 1170~1189.
    [40] 郑伟,彩色序列图像小波压缩编码的研究,博士学位论文,天津大学,2003
    [41] Schuster M., Rigoll G., Fast online video image sequence recognition with statistical methods, In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-96, 1996, 6: 3450~3453
    [42] Ozyildiz Ercan, Krahnst?ver Nils, Sharma Rajeev, Adaptive texture and color segmentation for tracking moving objects, Pattern Recognition, 2002, 35(10): 2013~2029
    [43] Rigoll Gerhard, Kosmala Andreas, New improved feature extraction methods for real-time high performance image sequence recognition, In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Multidimensional Signal Processing, Neural Networks, 1997, 4: 2901~2904
    [44] 沈未名,江柳,种衍文,视频图像分割及跟踪方法研究,武汉大学学报(信息科学版),2004,29(3):274~277
    [45] M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, Int. J. Comput. Vision, 1988, 1(4): 321~331
    [46] L. D. Cohen, On active contour models and balloons, CVGIP: Image Understanding, 1991, 534(2): 211~218
    [47] Chenyang Xu, J. L. Prince, Gradient vector flow: a new external force for snakes, In: Proc. of IEEE Conf. on Comp. Vis. Patt. Recog. (CVPR'97), 1997: 66~71
    [48] Park H W, Schoepflin T, Yogmin K, et al., Active contour model with gradient directional information, IEEE Trans. on Circuits and Systems for Video Technology, 2001, 11(2): 252~256
    [49] Mi-Sook Chung, Suk Kang, Jae-Ho Choi, et al., New multiresolution motion estimation for wavelet transform video coding, In: Proceedings of IEEE Asia Pacific Conference on Circuits and Systems, 1996: 10~13
    [50] Luo S., On the improvement of motion compensation in wavelet transform video coding, In: Proceedings of IEEE Region 10 Annual Conference on Speech and Image Technologies for Computing and Telecommunications, 1997, 2: 735~738
    [51] Kim Jong-Tae, Yang Chang-Mo, Lim Dong-Keun, et al., Multiresolution motion compensation in the wavelet domain for scalable video coding, In: Proceedings of SPIE -The International Society for Optical Engineering, 2002, 4671 II: 1103~1114
    [52] Young R., An introduction to nonlinear Fourier series, New York: Academic Press, 1980, 1~150
    [53] Morlet J., Wave propation and sampling theory and complex waves, Geophysics, 1982, 47(2): 222~236
    [54] Meyer, Wavelets: algorithms & applications, New York: SIAM, 1993
    [55] Daubechies I., Orthonormal bases of compactly supported wavelet, Communications on Pure and Applied Mathematics, 1988, 41(7): 909~996
    [56] Dauechies I., Ten Lectures on Wavelets, CBMX-NSF Regional Conf. Series in Appl. Math., Vol. 61. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.
    [57] 龙瑞麟,高维小波分析,北京:世界图书出版公司,1995
    [58] 赵松年,熊小芸,子波变换与子波分析,北京:电子工业出版社,1996
    [59] 赵凯,王宗花,小波变换及其在分析化学中的应用,北京:地质出版社,2000
    [60] 徐佩霞,孙功宪,小波分析与应用实例(第二版),合肥:中国科学技术大学出版社,1996
    [61] Martin Vetterli, Cornac Herley, Wavelets and filter banks: theory and design, IEEE Trans. Signal Proc., 1992, 40(9): 2207~2232
    [62] 赵文革,吉世印,孙光宇等,适宜图像编码的双正交小波基的选择,电视技术,2002,(11):9~12
    [63] 张烨,汪一鸣,图像压缩中小波基选择和评估的实用化方法,苏州大学学报(自然科学版),2003,19(1):54~58
    [64] 于超,王志军,冯坚,JPEG2000 中不同小波基的图像压缩性能分析,小型微型计算机系统,2003,24(7):1386~1389
    [65] 崔锦泰著,程正兴译,小波分析导论,西安:西安交通大学出版社,1995
    [66] Cohen A., Daubechies I., Feauveau J. G., Biorthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 1992, 45(3): 485~560
    [67] Olivier Rioul, Regular wavelets: a discrete-time approach, IEEE Trans. Signal Processing, 1993, 41(12): 3572~3579
    [68] E. A. B. da Silva, M. Ghanbari, On the performance of linear phase wavelet transforms in low bit-rate image coding, IEEE Trans. on Image Processing, 1996, 5(5): 689~704
    [69] J. Katto, Y. Yasuda, Performance evaluation of subband coding, In: Proc. 1991 Picture Coding Symp.—PCS91, Tokyo, Japan, Sept. 1991: 399~403
    [70] Antonini M, Barlaud M, Mathieu P, et al., Image coding using the wavelet transform, IEEE Trans. on Image Processing, 1992, (4): 205~220
    [71] Villasenor J, Belzer B, Liao J, Wavelet filter evaluation for image compression, IEEE Trans. on Image Processing, 1995, 4(8): 1053~1060
    [72] 杨福生,小波变换的工程分析与应用,北京:科学出版社,1999
    [73] Daubechies I., Orthonormal bases of compactly supported wavelet, Communications on Pure and Applied Mathematics, 1988, 41(7): 909~996
    [74] Wim Sweldens, The lifting scheme: a custom-design construction of biorthogonal wavelets, Applied and Computational Harmonic Analysis, 1996, 3(2): 186~200
    [75] W. Sweldens, P. Schroder, Building your own wavelets at home, Wavelets in Computer Graphics, 1996, ACM SIGGRAPH Course notes: 15~87
    [76] W. Sweldens, The lifting scheme: a construction of second generation wavelets, SIAM Journal on Mathematical Analysis, 1997, 29(2): 511~546
    [77] Ingrid Daubechies, Wim Sweldens, Factoring wavelet transforms into lifting steps, J. Fourier Anal. Appl., 1998, 4(3): 245~267
    [78] A. R. Calderbank, Ingrid Daubechies, Wim Sweldens, et al. Wavelet transforms that map integers to integers, Applied and Computational Harmonic Analysis, 1998, 5(3): 332~369
    [79] Lounsbery M., DeRose T. D., Warren J., Multiresolution surfaces of arbitrary topological type, ACM Trans. on Graphics, 1997, 16: 34~73
    [80] P. Schroder, W. Sweldens, Spherical wavelet: efficiently representing functions on the sphere, Computer Graphics, In: Proceedings of SIGGRAPH'95, 1995: 161~172
    [81] M. G. Bellanger, J. L. Daguet, TDM-FDM transmultiplexer: digital polyphase and FFT, IEEE Trans. Commun., 1974, 22(9): 1199~1204
    [82] A. A. M. L. Bruekens, A. W. M. van den Enden, New networks for perfect inversion and perfect reconstruction, IEEE Journal on Selected Areas in Communications, 1992, 10 (1): 129~137
    [83] T. A. C. M. Kalker, I. Shah, Ladder Structures for multidimensional linear phase perfect reconstruction filter banks and wavelets, In: Proceedings of the SPIE Conference on Visual Communications and Image Processing, Boston, 1992: 12~20
    [84] T. G. Marshall, U-L block-triangular matrix and ladder realizations of subband coders, In: Proc. IEEE ICASSP, 1993, III: 177~180
    [85] Cao Song, ROI Image Coding Methods in JPEG2000, TV Engineering, 2002, (5): 15~18
    [86] Zhang Li Bao, Zhao Ming, ROI Coding Research Based on Residual Image, Journal of Optoelectronics·Laser, 2003, 14(1): 75~78
    [87] Charilaos Christopoulos, Athanassios Skodras, Touradj Ebrahimi, The JPEG2000 Still Image Coding System: an Overview, IEEE Transactions on Consumer Electronics, 2000, 46(4): 1103~1127
    [88] Sun Shui Fa, Zhang Hua Xiong, Qiu Pei Liang, JPEG2000—The New Still Image Compression Standard, Journal of Computer-Aided Design & Computer Graphics, 2003, 15(11): 1339~1352
    [89] Zhou Wang, Serene Banerjee, Brian L. et al., Generalized Bitplane-by-Bitplane Shift Method for JPEG2000 ROI Coding, In: Proc. IEEE Int. Conf. Image Processing, 2002, 3: Ⅲ81~Ⅲ84
    [90] C. Christopoulos, J. Askelf, M. Larsson, Efficient Methods for Encoding Regions of Interest in The Upcoming JPEG2000 Still Image Coding Standard, IEEE Signal Processing Letters, 2000, 7(9): 247~249
    [91] C. Christopoulos, J. Askelf, M. Larsson, Efficient Regions of Interest Coding Techniques in The Upcoming JPEG2000 Still Image Coding Standard, In: Proc. IEEE Int. Conf. Image Processing, 2000, 2: 41~44
    [92] Jerome M. Shapiro, Embedded image coding using zerotrees of wavelet coefficients, IEEE Trans. on Signal Processing, 1993, 41(12): 3445~3462
    [93] A. Said, W. A. Pearlman, Image compression using the spatial-orientation tree, ISCAS '93, IEEE International Symposium on Circuits and Systems, 3-6 May 1993, 1993, 1: 279~282
    [94] A. Said, W. A. Pearlman, A new, fast and efficient image codec based on set partitioning in hierarchical trees, IEEE Trans. on Circuits and Systems Video Tech., 1996, 6(3): 243~250
    [95] 孙辉,赵红颖,熊经武等,基于光流模型的图像运动估计方法,光学 精密工程,2002,10(5):443~447
    [96] 何斌,郝志航,AC 预测改进图像编码计算机实时仿真,光学 精密工程,1999,7(6):104~107
    [97] F. Dufaux, F. Moscheni, Motion estimation techniques for digital TV: a review and a new contribution, In: Proc. IEEE, 1995, 83: 858~876
    [98] Fang-Hsuan Cheng, San-Nan Sun, New fast and efficient two-step search algorithm for block motion estimation, IEEE Transactions on Circuits and Systems for Video Technology, 1999, 9(7): 977~983
    [99] Yui-Lam Chan, Wan-Chi Siu, An efficient search strategy for block motion estimation using image features, IEEE Transactions on Image Processing, 2001, 10(8): 1223~1238
    [100] H. Gharavi, M. Mills, Block matching motion estimation algorithms-new results, IEEE Transactions on Circuits and Systems, 1990, 37(5): 649~651
    [101] M. J. Chen, L. G. Chen, T. D. Chiueh, One-dimensional full search motion estimation algorithm for video coding, IEEE Transactions on Circuits and Systems for Video Technology, 1994, 4(10): 378~385
    [102] T.Koga, K.Iinuma, A. Hirano, et al. Motion-compensated interframe coding for video conferencing, In: Proceedings of Nat. Telecommun. Conf., New Orleans, LA, 1981: G5.3.1~5.3.5
    [103] M.GHANBARI, The cross-search algorithm for motion estimation, IEEE Transactions on Communications, 1990, 38(7): 950~953
    [104] Jain J, Jain A, Displacement measurement and its application in interframe image coding, IEEE Transactions on Communications, 1981, 29(12): 1799~1808
    [105] Renxiang Li, Bing Zeng, Ming L. Liou, A new three-step search algorithm for block motion estimation, IEEE Transactions on Circuits and Systems for Video Technology, 1994, 4(4): 438~442
    [106] Lap-Pui Chau, Xuan Jing, Efficient three-step search algorithm for block motion estimation in video coding, IEEE ICASSP 2003: 421~424
    [107] Lai-Man Po, Wing-Chung Ma, A novel four-step search algorithm for fast block motion estimation, IEEE Transactions on Circuits and Systems for Video Technology, 1996, 6(3): 313~317
    [108] Lurng-Kuo Liu, Ephraim Feig, A block-based gradient descent search algorithm for block motion estimation in video coding, IEEE Transactions on Circuits and Systems for Video Technology, 1996, 6(4): 419~422
    [109] Jo Yew Tham, Surendra Ranganath, Maitreya Ranganath, et al. A novel unrestricted center-biased diamond search algorithm for block motion estimation, IEEE Transactions on Transactions on Circuits and Systems for Video Technology, 1998, 8(4): 369~377
    [110] Shan Zhu, Kai-Kuang Ma, A new diamond search algorithm for fast block-matching motion estimation, IEEE Transactions on Image Processing, 2000, 9(2): 287~290
    [111] Hongjun Jia, Li Zhang, Directional diamond search pattern for fast block motion estimation, Electronics Letters, 2003, 39(20)
    [112] Ce Zhu, Xiao Lin, Lap-Pui Chau, Hexagon-based search pattern for fast block motion estimation, IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(5): 349~355
    [113] Chun-Ho Cheung, Lai-Man Po, A novel cross-diamond search algorithm for fast block motion estimation, IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(12): 1168~1177
    [114] 李炜,周兵,李波,运动矢量场自适应搜索算法,计算机学报,2003,26(2):168~173
    [115] Weiguo Zheng, Ishfaq Ahmad, Ming Lei Liou, Adaptive motion search with elastic diamond for MPEG-4 video coding, In: Proceedings of International Conference on Image Processing, Thessaloniki Greece, 2001, 1: 377~380
    [116] M. Sharifi, M. Fathy, M.T. Mahmoudi, A classified and comparative study of edge detection algorithms, In: Proc. of the IEEE-ITCC, 2002: 117~120
    [117] D. Marr, E. C. Hildreth, Theory of edge detection, Proc. R. Soc. London, 1980, B 207: 187~217
    [118] T. Law, H. Itoh, H. Seki, Image filtering, edge detection, and edge tracing using fuzzy reasoning, IEEE Trans. Pattern Anal. Math. Intell., 1996, 18: 481~491
    [119] I. Pitas, A. N. Venetzanopulos, Edge detectors based on nonlinear filter, IEEE Trans. Pattern Anal. Math. Intell., 1986, 8: 538~550
    [120] R. Deriche, Using Canny's criteria to derive a recursively implemented optimal edge detection, Int. J. Comput. Vis., 1987: 167~187
    [121] Canny J, A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679~697
    [122] SUN Yi, WU Yan-dong, HU Jia-sheng, Multiscales Edges Detection Based on Spline Wavelet, J. of Optoelectronics·Laser, 2001, 12(5): 525~528
    [123] Lei Zhang, P. Bao, A wavelet-based edge detection method by scale multiplication, IEEE Pattern Recognition, 2002, 3: 501~504
    [124] Jiang Mingyan, Yuan Dongfeng, A multi-grade mean morphologic edge detection, IEEE-ICSP, 2002, 2: 1079~1082
    [125] Y. Uchiyama, M. Haseyama, H. Kitajima, Hopfield neural networks for edge detection, IEEE-ISCAS, 2001, 3: 608~611
    [126] A. S. Akbari, J. J. Soraghan, Fuzzy-based multiscale edge detection, Electron. Lett., 2003, 39(1): 30~32
    [127] C. Cafforio, E. Di Sciascio, C. Guaragnella, Edge enhancement for sub-band coded images, Opt. Eng., 2001, 40(5): 729~739
    [128] E. Di Sciascio, C. Guaragnella, Simple nonlinear dual-window operator for edge detection, Opt. Eng., 2002, 41(9): 2181~2185
    [129] Beckers A L D, Metingen Van Parameters voor Nitet-lineaire Object-grootte-filters in beelden, Holland: Delft University of Technology, 1986
    [130] Olson Clark F, Huttenlocher D P., Automatic target recognition by matching oriented edge pixels, IEEE Trans. on Image Processing, 1997, 6(1): 103~113
    [131] Paumard J., Robust comparison of binary images, Pattern Recognition Letters, 1997, 18(12): 1057~1063
    [132] D. W. Paglieroni, Distance transforms: Properties and machine vision applications, Comput. Vision Graphics Image Processing: Graphical Models Image Processing, 1992, 54(1): 56~74
    [133] Neri A, Colonnese S, Russo G et al., Automatic moving object and background separation, Signal Processing, 1998, 66(2): 219~232
    [134] Chuang G, Ming-chieh L, Semantic Video Object Tracking Using Region-based Classification, IEEE ICIP'98, Chicago, 1998: 643~647
    [135] Vigus S A, Bull D R, Canagarajah C N, et al., Video Object Tracking Using Region Split and Merge and A Kalman Filter Tracking Algorithm, Image Processing, 2001(1): 650~653
    [136] Meier Thomas, Ngan King N, Automatic Segmentation of Moving Objects for Video Object Plane Generation, IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8(5): 525~538
    [137] ZHANG Liang-guo, WU Jiang-qin, GAO Wen, et al., Hand Gesture Recognition Based on Hausdorff Distance, Journal of Image and Graphics, 2002, 7(A)(11): 1144~1150
    [138] HAN Jun, XIONG Zhang, SUN Wen-yan, et al., A Method for Implementation of Automatic Segmenting and Tracking of Video Moving Objects, Journal of Image and Graphics, 2001, 6(A)(8): 732~738
    [139] LIU Ke, ZHANG Xian-min, FU Yong-hui, Tracking Object Using Improved Hausdorff Measure, Journal of Shanghai Jiaotong University, 2001, 35(2): 223~227
    [140] Rucklidge W J, Efficient visual recognition using the Hausdorff distance, Lecture Notes in Computer Science, 1996: 1173
    [141] Kwon Oh-Kyu, Sim Dong-gyu, Park Rae-Hong, New Hausdorff distances based on robust statistics for comparing images, Proc. ICIP'96, 1996, 3: 21~24
    [142] Kwon Oh-Kyu, Sim Dong-Gyu, Park Rae-Hong, Robust Hausdorff distance matching algorithms using Pyramidal structures, Pattern Recognition, 2001, 34(7): 2005~2013
    [143] Huttenlocher D P, Klanderman G A, Rucklidge W J, Comparing Images Using the Hausdorff Distance, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 850~863
    [144] Dubuisson M P, Jain A K, A modified Hausdorff distance for object matching, In: Proceedings of 12th International Conference on Pattern Recognition, Jerusalem, Israel, 1994: 566~568
    [145] Sim D G, Kwon O K, Park R H, Object matching algorithm using robust Hausdorff distance measures, IEEE Transactions on Image Processing, 1999, 8(3): 425~429
    [146] Jerry D.Gibson, Toby Berger, Tom Lookabaugh 等著,李煜晖,朱山风,段上为译,多媒体数字压缩原理与标准,北京:电子工业出版社,2000
    [147] Prabhat K. Andleigh, Kiran Thakrar 著,徐光佑,史元春译,多媒体系统设计,北京:电子工业出版社,1998
    [148] 精英科技编著,视频压缩与音频编码技术,北京:中国电力出版社,2001
    [149] 沈兰荪,卓力,田栋等,视频编码与低速率传输,北京:电子工业出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700