用户名: 密码: 验证码:
噬藻体与其宿主蓝藻间的水平基因转移以及遗传多样性的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前全球海洋和淡水湖水体富营养化日益严重,导致蓝藻水华现象频繁发生,水域生态环境受到严重破坏。滇池是云贵高原最大的湖泊,水体富集营养化非常严重,近几年,政府对滇池投入大量资金进行治理、清除蓝藻,但还是频繁爆发蓝藻水华。作为特异性感染蓝藻的病毒,噬藻体在水生态系统中具有非常重要的作用,可作为蓝藻水华的控制因子,越来越多的研究针对噬藻体和蓝藻的遗传多样性以及它们之间的遗传关系。
     本研究以云南滇池为研究对象,每个月定时采取滇池的相同地点的水样,根据采样时的环境因素的检测以及水体的综合指数,初步研究滇池一年四个季节的蓝藻和噬藻体的遗传多样性,并研究滇池中蓝藻和其噬藻体的遗传关系以及它们之间的水平基因转移。
     每个月定时在滇池的相同地点采集水样,采集水样时检测水体的温度、pH值等环境指数,并结合滇池水体的综合指数,结果发现:滇池一年中的水体pH值变化不大,但一直维持在弱碱性;滇池的富集营养化主要是因为总氮含量超标,总磷有时也会超标,不同季节的滇池水华蓝藻现象有所不同。
     利用分子生物学方法对水样中的蓝藻和噬藻体进行实验研究,通过对滇池蓝藻的16S-23S rDNA ITS建立系统进化树来分析滇池蓝藻的遗传多样性,对滇池噬藻体的psbA基因序列分析,然后构建系统进化树研究分析滇池噬藻体的遗传多样性,结果发现:1、滇池蓝藻主要类型为微囊藻属,主要有铜绿微囊藻、水华微囊藻、惠氏微囊藻等,也含有少量的鱼腥藻和念珠藻,表明了滇池蓝藻丰富的遗传多样性,不同季节的蓝藻类型有所差异,可能由于温度等环境因素的变化导致,2、滇池噬藻体的序列分布在系统进化树的许多分支,显示了丰富的遗传多样性,噬藻体主要类型为铜绿微囊藻的噬藻体,也有少许的聚球藻的噬藻体,并且不同季节的噬藻体类型差异很大。
     分别扩增滇池蓝藻和噬藻体的psbA基因,然后对同一时间的蓝藻和噬藻体的psbA序列构建系统进化树,在进化树中分析蓝藻和噬藻体之间的遗传关系以及基因转移。结果发现:尽管系统进化树中确信值比较低,推测噬藻体的光合作用基因最初来源于宿主蓝藻中,噬藻体能介导不同蓝藻之间的光合作用基因的交换,滇池中的蓝藻与噬藻体频繁的进行着光合作用基因的水平基因转移。
     通过以上的研究,初步了解了滇池的蓝藻和噬藻体的主要种类以及遗传多样性,并初步分析了滇池中的噬藻体和其宿主蓝藻的光合作用基因的水平基因转移,能更好的研究蓝藻和噬藻体的进化史,也为进一步研究噬藻体在治理蓝藻提供了一定的理论证据。
At present the eutrophication of waterbodies worldwide becoming more and more serious. The incidence of cyanobacterial blooms is increasing, which pose serious risks for human and animal health, aquatic ecosystem sustainability. Dianchi Lake is the largest lake in the Yunnan-Guizhou Plateau, a lake of serious eutrophication. In recent years, the government invested the massive funds to improve the water quality, but cyanobacterial blooms still outbreaking frequently. As a specific infected viruse of cyanobacteria, cyanophage has a very important role in aquatic ecosystems and can be use as a controlling factor in cyanobacterial blooms, which was considered as a promising biological algicide. More and more research has been in the phylogenetic diversity of cyanophages and cyanobacteria and their genetic relationship.
     In this study we take the Dianchi Lake as our object, collecting water samples in the same place every month.According to environmental factors and composite index of water bodies,we have a preliminary study of genetic diversity and the genetic relationship and horizontal gene transfer between cyanobacteria and cyanophage.
     We collect water samples in Dianchi Lake at the same location every monthl and measure the water temperature and pH value and the other biochemical parameters. Combinaing the composite index of the Dianchi Lake, we found that:the pH value in Dianchi Lake changed little in a year, but has remained at a very high value; the entrophication in Dianchi Lake was mainly due to excessive total nitrogen content, andtotal phosphorus sometimes excessive; the cyanobacteria phenomenon in Dianchi Lake was different as season changing.
     We study the cyanobacteria and cyanophage in water samples in use of molecular biology, establishing the phylogenetic tree of16S-23SrRNA ITS to analyze the genetic diversity of the cyanobacteria, and combinaing the the phylogenetic tree of psbA to analyze the genetic diversity of cnanophage.we found that:1、the main type of cyanobacteria was Microcystis, included Microcystis aeruginosa, Bloom Microcystis, Microcystis wesenbergii, and a small amounts of Anabaena and Nostoc, indicating that the rich genetic diversity of cyanobacteria in Dianchi Lake. The temperature and other environmental factors changed in different seasons resulted in different type of cyanobacteria.2、The cyanophage sequences located in the many branches of the phylogenetic tree, showing the rich genetic diversity of cyanophage in Dianchi Lake, the main type of cyanophage was cyanophage of Microcystis aeruginosa snd little Synechococcus cyanophage and the type of cyanophage was great changed in different seasons.
     The cyanobacteria and cyanophage psbA gene was amplified and established the phylogenetic tree of cyanobacteria and cyanophage psbA at the same time.According to the phylogenetic tree, we analysised the genetic relationship and gene transfer between cyanobacteria and cyanophage. The result showed that:the psbA gene in the cyanophage was originated from the cyanobacteria as the convinced values in phylogenetic tree was relatively low, we concluded that the cyanophage can mediate the exchange of psbA in different cyanobacteria.The horizontal gene transfer of psbA in cyanobacteria and cyanophage occurred frequently.
     Through the above research, we have a preliminary understanding in the main types and the genetic diversity of cyanobacteria and cyanophage, and have a preliminary analysis of the horizontal gene transfer of psbA between cyanobacteria and cyanophage in the Dianchi Lake. The result in this study can make us have a better research on the evolutionary history of the cyanobacteria and cyanophage, and provide theory of evidence in the cyanophage governancing cyanobacteria.
引文
[1]杨永涛.国内淡水水体富营养化危害及其防治济宁学院学报[J].2009,30:21-25.
    [2]靳晓存.富营养化水体藻类危害及其生物学特性[J].科技资讯能源与环境.2010,26:146-148.
    [3]万能,宋立荣,王若南,等.滇池藻类生物量时空分布及其影响因子[J].水生生物学报.2008,2(32):184-187
    [4]杨翠云,刘苏静,周世伟,等.微囊藻毒素对微生物的生态毒理学效应研究进[J].生态毒理学报.2009,4(4):602-608.
    [5]谢平.微囊藻毒素对人类健康影响相关研究的回顾[J].湖泊科学.2009,21(5):603-613.
    [6]田娟,余博识James,等.养殖水体中藻毒素污染问题的研究进展[J].水生态学杂志.2009:99-102.
    [7]张荐华,马子红.云南省生态环境保护存在的问题与对策[J].经济问题探索.2005:82-85.
    [8]邱雷.蓝藻水华危害初探[J].今日科苑.2009:267.
    [9]金相灿.湖泊富营养化研究中的主要科学问题—代“湖泊富营养化研究”专栏序言[J].环境科学学报.2008:21-23.
    [10]刘建萍,张玉超,钱新,等.太湖蓝藻水华的遥感监测研究[J].环境污染与防治.2009,31(8):79-83.
    [11]虞功亮,樊庆春,余博识,等.利用滇池水华蓝藻提取生物燃料的方法比较[J].化学与生物工程.2009,26(4):67-69
    [12]董诗旭,董锦艳,宋洪川,等.滇池蓝藻发砖产沼气的研究[J].研究与实验.2006,2(26):16-18.
    [13]李智红,贺帅,高洪东,等.海藻饲料的研究现状[J].动物营养.2007,06:65-67.
    [14]沈银武,刘永定,吴国樵,等.富营养湖泊滇池水华蓝藻的机械清除[J].水生生物学报.2004,28(2):131-136.
    [15]梁印,梁止水.蓝藻治理方法概述[J].污染防治技术.2011,6(24):67-69.
    [16]高政权,孟春晓.淡水水体中蓝藻水华研究进展[J].安徽农业科学.2009,37(16):7597-7598.
    [17]田升平,东野脉心,周建明,等.滇池湖泊磷负荷及其对水环境的影响[J].化工矿 产地质.2002,24(1):11-16.
    [18]向安,刘丽,魏大巧,等.噬藻体的分子生物学研究进展[J].生物技术通报.2009:31-34.
    [19]赵以军,石正丽,蓝藻病毒(噬藻体)的研究进展[J].中国病毒学.1999,14(2):100105.
    [20]虞功亮,宋立荣,李仁辉.中国淡水微囊藻属常见种类的分类学讨论——以滇池为例[J].植物分类学报.2007,45(5):724-741.
    [21]吴忠兴.我国微囊藻多样性分析及其种群优势的生理学机制研究.中国科学院水生生物研究所博士学位论文,2007.
    [22]章群,李名利,韩博平,等.基于rpocI基因的微囊藻属分子系统学研究[J].生态环境学报.2009,18(6):2039-2043.
    [23]梁倩华.8株微囊藻gyrB和rpocI基因序列分析及其系统发育研究.暨南大学硕士学位论文.2006.
    [24]Woese CR. Bacterial evolution [J]. Microbiol Rev 51:221-271.
    [25]季健,孔繁翔,于洋,等.太湖越冬蓝藻空间分布的初步研究闭.湖泊科学.2009:490-494.
    [26]Tillett D,Parker DL,Neilan BA.Detection of Toxigenicity by a Probe for the Microcystin Synthetase A Gene(mcyA)of the Cyanobacterial Genus Microcystis: Comparison of Toxicities with 16S rRNA and Phycocyanin Operon(Phycocyanin Intergenic Spacer) Phylogenies[J]. Applied and Environmental Microbiology,2001, 67(6):2810-2818
    [27]Wilson KM,Schembri MA, Baker PD,etal.Molecular Characterization of the Toxic Cyanobacterium Cylindrospermopsis raciborskii and Design of a Species-Specific PCR [J]. Applied and Environmental Microbiology,2000, 66(1):332-338.
    [28]Youness Ouahid,Francisca Fernandez Campo. Typing of toxinogenic Microcystis from environmental samples by multiplex PCR [J]. Appl Microbiol Biotechnol,2009, 85:405-412.
    [29]陈月琴,何家苑,庄丽,等.二种淡水微囊藻rDNA16S-23S基因间隔区的序列测定与分析[J].水生生物学报.1999,23(1):41-45.
    [30]Ryuji Kondo,Akie Nakagawa,Lisa Mochizuku,etal.Dominant bacterioplankton populations in themeromictic Lake Suigetsu as determined by denaturing gradient gelelectrophoresis of the 16S Rrna gene frgments [J]. Limnology,2009,10:63-69.
    [31]Rodrigues JL,Silva-Stenico ME,Gomes JE,etal. Detection and Diversity Assessment of Xylella fastidiosa in Field-Collected Plant and Insect Samples byUsing 16S rRNA and gyrB Sequences [J].Applied and Environmental Microbiology,2003, 69(7):4249-1255.
    [32]Shigeto Otsuka, Shoichiro Suda, Renhui Li, etal. Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence [J]. Microbiology Letters.1999,172:15-21.
    [33]Shen FT,Lu HL,Lin JL,etal.Phylogenetic analysis of members of the metabolically diverse genus Gordonia based on proteins encoding the gyrB gene [J]. Research in Microbiology.2006,157:367-375.
    [34]Komarek J and Anagnostidis K. Modern approach to the classification system of cyanophyte [J].Arch Hydrobiol.1989,82:247-345.
    [35]Behrenfeld MJ, Boss E, Siegel DA, etal. Carbon-based ocean productivity and phytoplankton physiology from space [J]. Global Biogeochemical.2005,19:106-109.
    [36]Premanandh J, Priya B, Teneva I, etal. Molecular characterization of marine Cyanobacteria from the Indian subcontinent deduced from sequence analysis of the phycocyanin operon (cpcb-IGS-cpcA) and 16S-235 ITS region [J]. Microbiot. 2006,44(6):607-616.
    [37]Revetta RP, Pemberton A, Lamendella R, etal. Identification of bacterial populations in drinking water using 16S rRNA-based sequence analyses [J]. Water Res.2010,44(5):1353-1360.
    [38]Paepe, Taddei. Viruses'life history:towards a mechanistic basis of a trade-off between survival and reproduction among phages [J]. PLoS Biol.2006,4:193-196.
    [39]Mann, NH. Phages of the marine cyanobacterial picophytoplankton [J]. FEMS. 2003,27:17-34.
    [40]Gorjusin VA, Stenz E, Averkiev. AS-lL-a newly discovered strain of Cyanophage AS-1 in GDR [J]. ZAllg Mikrobiol.1982,22(3):205-209.
    [41]Tucker S, Pollard P. Identification of cyanophage Ma-LBP and infection of the cyanobacterium Microcystis aeruginosa from an Australian subtropical lake by the virus [J]. Appl Environ Microbiol.2005,71(2):629-635.
    [42]梁彦韬,汪岷,白晓歌,等.青岛近海水域夏季和冬季浮游病毒丰度的分析[J].海洋与湖沼.2008,39(4):411-418.
    [43]范良民.滇池蓝藻成份分析及利用途径探讨[J].云南环境科学.1999,18(2):45-47.
    [44]Chen F, and Suttle CA. Evolutionary relationships among large double-stranded DNA viruses that infect microalgae and other organisms as inferred from DNA polymerase genes [J]. Virology.2005,219:170-178.
    [45]Ginzberg D,Padan E,Shilo M.Metabolic aspects of LPP cyanophage replication in the cyanobacterium Plectonema boryanum [J]. Biochim BiophysActa.1976,423(3): 440-449.
    [46]Wilson WH, Fuller NJ, Joint, etal. Analysis of cyanophage diversity and population structure in a south-north transect of the Atlantic ocean [J]. Bull Inst Oceanogr.1999,19:209-216.
    [47]Chen F, Suttle CA. Short SM. Genetic diversity in marine algal virus communities as revealed by sequence analysis of DNA polymerase genes [J]. Appl. Environ Microbiol.2006.62:2869-2874.
    [48]王淼星,向安,魏大巧,等.噬藻体光合作用基因研究[J].生物技术通报.2010,11:14-18.
    [49]Chenard.Phylogenetic diversity of sequences of cyanophage photosynthetic gene psbA in marine and freshwaters [J].Applied and environmental microbilogy.2008, 23:5017-5024.
    [50]Sullivan MB, Lindell D, Lee JA, etal. Prevalence and evolution of core photosystem Ⅱ genes in marine cyanobacterial viruses and their hosts[J]. PLoS Biol. 2006,7:234-237.
    [51]Henn MR, Sullivan MB,Stange,etal.Analysis of high-throughput sequencing and annotation strategies for phage genomes.[J]. PLoS One.2010,5(2):9083-9086.
    [52]Fuller NJ, Wilson I, Joint, etal. Occurrence of a sequence in marine cyanophages similar to that of T4 g20 and its applicationto PCR-based detection and quantification techniques[J]. Appl. Environ.Microbiol.2005,64:2051-2060.
    [53]Nicholas H, Mann, etal. The genome of S-PM2, a "photosynthetic" T4-type bacteriophage that infects marine synechococcus strains [J]. Journal of bacteriology. 2005,5:3188-3200.
    [54]Steven W, Wilhelm, etal. Marine and Freshwater Cyanophages in a Laurentian Great Lake:Evidence from Infectivity Assays and Molecular Analyses of g20 Genes [J]. Environmental microbilogy,2006,7:4957-4963.
    [55]Lu J, Chen F, Hodson ER. Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus spp in river estuaries [J]. Appl Environ Microbiol.2006,67:3285-3290.
    [56]Marjolijn Tijdens. Population Dynamics and Diversity of Viruses, Bacteria and Phytoplankton in a Shallow Eutrophic Lake [J]. Microb Ecol,2008,7(1):29-42.
    [57]Miryam Gross, et al. MazG-a regulator of programmed cell death in Escherichia coli[J]. Molecular Microbiology.2006,59(2):590-601.
    [58]Wang K, Chen F, etal. Genetic diversity and population dynamics ofcyanophage communities in the Chesapeake Bay [J]. Microbial Ecology.2004,34:105-116.
    [59]Michael J, Bryan. Evidence for the intense exchange of MazG in marine cyanophages by horizontal gene transfer [J]. Plos One.2008,12:359-364.
    [60]Urbach E, Scanlan DL, Distel JB, etal. Rapid diversification of marine picoplankton with dissimilar light harvestingstructures inferred from sequences of Prochlorococcus and Synechococcus(cyanobacteria) [J]. Mol Evol.2005,46:188-201.
    [61]张瑞福,蒋建东,代先祝.环境中污染物降解基因的水平转移(HGT)及其在生物修复中的作用[J].遗传.2005,27(5):845-851.
    [62]Keeling PJ. Palmer JD. Horizontal transfer in eukaryotic evolution [J]. Nature Rev Genet.2008,9:605-618.
    [63]Clement Gilbert, Sarah Schaack, et al. A role for host-parasite interactions in the horizontal transfer of transposons across phyla [J]. Nature Vol.2010,4(64):23-29.
    [64]Loreto EL, Carareto CM, Capy P, etal. Revisiting horizontal transfer of transposable elements in Drosophila[J]. Heredity.2008,100:545-554.
    [65]Loy C, Haas W, et al. Prevalence of cercariae from Lymnaea stagnalis snails in a pond system in Southern Germany [J]. Parasitol Res.2001,87:878-882.
    [66]Thomas Cavalier-Smith, et al. Origin of the cell nucleus, mitosis and sex:roles of intracellular coevolution [J]. Biology Direct.2010:5-7.
    [67]Kunitada, Shimotohno, Takahashi, etal. Complete nucleotide sequence of an infectious clone of human T-cell leukemia virus type II:An open reading frame for the protease gene[J]. Proc Natl Acad Sci.2009,82:3101-3105.
    [68]周国庆.水平基因转移与物种演化[J].湖州师范学院学报.2003:3(25):66-69.
    [69]Lorenz MG, Wackernagel W. Bacterial gene transfer by natural genetic transformation in the environment [J]. Rev Microbiol.1994,58:564-583.
    [70]Weigele PR, Pope WH, Pedulla ML, et al. Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus [J]. Environ Microbiol.2007,9(7):1675-1695.
    [71]King Jordan. From the Cover:Evidence for the recent horizontal transfer of long terminal repeat retrotransposon [J]. Proc Natl Acad Sci USA,1999 October 26; 96(22):12621-12625.
    [72]Baur B, Hanselmann K, Sehlimme W, et al. Genetic transfor mation in freshw ater:Escherichia coli is able to develop natural competence [J]. Appl Environ Microbiol.1996,62:3673-3678.
    [73]Richards TA, Hirt RP, Williams BA, et al. Horizontal gene transfer and the evolution of parasitic protozoa [J]. Protist.2003,154:17-32.
    [74]Megumi Kondo, et al. Caloric Restriction Stimulates Revascularization in Response to Ischemia via Adiponectin-mediated Activation of Endothelial Nitric-oxide Synthase[J]. Biol Chem.2009,284(3):1718-1724.
    [75]Goericke R, Welschmeyer NA. The marine prochlorophyte Prochlorococcus contributes signi antly to phytoplankton biomassand primary production in the Sargasso Sea[J]. Deep Sea Res.2003,40:12-16.
    [76]Bailey S, Clokie MR, Millard AM, eal. Cyanophage infection and photoinhibition in marine cyanobacteria [J]. Research inMicrobiology.2007,155: 720-725.
    [77]Bertram J. Natural transfer of conjugative transposon Tn916 between Gram-positive and Gram-negative bacteria [J]. Bacteriol.2001,173:443-448.
    [78]Waterbury JB, Valois FW.Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophage abundant in seawater [J]. Appl Environ Microbiol.2008,59:3393-3399.
    [79]Lindell D, Sullivan MB, Johnson ZI, et al. Transfer of photosynthesis genes to and from Prochlorococcus viruses [J]. Proc Natl Acad Sci.2009,101:11013-11018.
    [80]Lindell D, Jaffe JD, Johnson ZI. Photosynthesis genes in marine viruses yield proteins during host infection[J]. Nature.2005,438:8689-8692.
    [81]Andrew Millard, Martha RJ. Clokie, etal. Genetic organization of the psbAD region in phagesinfecting marine Synechococcus strains [J]. Proc Natl Acad Sci.2004, 101:11007-11012
    [82]Itai Sharon, Ariella, Forest Rohwe, et al. Photosystem I gene cassettesare present in marine virus genomes [J].Nature Letters.2009,10(1038):258-262.
    [83]Debbie Lindell, Jacob D, Jaffe, et al. Photosynthesis genes in marine viruses yield proteins during host infection [J]. Nature Letters.2005,04111:86-89
    [84]Shaun Bailey, Martha RJ. Cyanophage infection and photoinhibition in marine cyanobacteria[J]. Elsevier.2004,06:720-725.
    [85]Bailey E. Thompson PJ, Nixon P, etal. A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem Ⅱ repair cycle in vivo [J]. Biol. Chem.2002,27:2006-2011.
    [86]Scanlan.Physiological diversity and niche adaptation in marine Synechococcus [J], Adv Microb Physiol.2003,47:1-64.
    [87]Garczarek L,Staay GW, Hess WR,etal.Expression and phytogeny of the multiple antenna genes of the low-light-adapted strain Prochlorococcus marinus SS120 Oxyphotobacteria[J]. Plant Mol. Biol.2001,46:683-693.
    [88]DuRand MD, Olson R.J,Chisholm SW. Phytoplankton population dynamics at the Bermuda Atlantic Time-series Station in the Sargasso Sea [J]. Deep Sea Res. 2001,23:1983-2003
    [89]莫美仙,张世涛,叶许春,等.云南高院湖泊滇池和星云湖PH值特征及影响因素分析[J].农业环境科学学报.2007,26(增刊):269-273.
    [90]吴为梁,林毅雄.滇池水体中主要藻种毒素研究[J].云南环境科学.1997,16(2):26-29.
    [91]刘丽萍.滇池水华特征及成因分析[J].环境科学研究.1999,12(5):36-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700