用户名: 密码: 验证码:
铜绿微囊藻与惠氏微囊藻间化感作用的初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蓝藻水华已经成为我国面临的重大环境问题之一。其形成过程中经常伴随着不同藻类的更替,探究不同蓝藻间的化感作用及其在竞争更替过程中的贡献,分析潜在的化感物质,可以揭示水华蓝藻优势种的成因,并为蓝藻水华形成机制提供理论依据。
     本文以我国富营养化浅水湖泊中两种常见的水华蓝藻,铜绿微囊藻(Microcystis aeruginosa)和惠氏微囊藻(Microcystis wesenbergii)为研究对象。在实验室条件下,通过混合培养和过滤液培养两种方式探讨微囊藻种间的化感作用。铜绿微囊藻和惠氏微囊藻混合培养时,两者存在相互抑制作用。其中铜绿微囊藻对惠氏微囊藻有强烈的抑制作用,且主要是化感作用,而惠氏微囊藻对铜绿微囊藻的抑制作用则较弱。当两者藻密度为0.5×106个·mL-1以上时,培养9d后惠氏微囊藻的抑制率在80%以上。处于对数期的铜绿微囊藻过滤液能够抑制惠氏微囊藻的生长,当惠氏微囊藻初始藻密度为0.5×106个·mL-1以下时,连续滴加对数期的铜绿微囊藻过滤液后,惠氏微囊藻的生长受到了极显著抑制(p<0.01)。与之相反,对数期的惠氏微囊藻过滤液则显著地促进铜绿微囊藻的生长。
     用HLB-SPE小柱富集对数生长期的铜绿微囊藻过滤液,依次用正己烷、二氯甲烷和甲醇洗脱,所得的萃取物分别进行抑藻实验和定性分析。三种萃取物对惠氏微囊藻的抑藻活性随着洗脱溶剂极性的增强而增加,其中甲醇萃取物的抑藻活性最强。通过液质联用(LC-MS)在甲醇萃取物中检出的微囊藻毒素LR(microcystin-LR, MC-LR)是潜在的化感物质。同时,在二氯甲烷萃取物中检出分子量为678.5的潜在化感物质,但其具体结构尚需进一步确定。
Cyanobacteria bloom has been becoming one of the most serious environmental problems in China. The formation of cyanobacteria bloom is often accompanied by the succession of different algae. Studing the allelopathic effect among different cyanobacteria and its contribution in competition process and identifying potential allelochemicals can provide important theoretical basis on the mechanism of the succession of dominant cyanobacteria species and cyanobacteria bloom-forming.
     Microcystis aeruginosa and Microcystis wesenbergii are two common cyanobacteria species in the eutrophic shallow lakes in China. In laboratory, allelopathic effect between the two cyanobacteria was studied by co-cultivation and cultivation with cell-free filtrates. The co-cultivation experiment showed that the mutual inhibition effect took place between them. M. wesenbergii was inhibited strongly due to the allelopathic effect from M. aeruginosa, and M. aeruginosa was also stressed slightly. When the initial cell density of both algae was more than0.5x106cells-mL-1, the inhibition rate of M. wesenbergii was more than80%after9days cultivation. Meantime, the growth of M. wesenbergii was also inhibited by adding cell-free filtrates from M. aeruginosa in exponential phase. M. wesenbergii was restrained significantly (p<0.01) when the initial cell density of M. wesenbergii was less than0.5x106cells-mL-1and the filtrates were added continuously into the culture solution. On the contrary, the growth of M. aeruginosa was promoted by adding cell-free filtrates from M. wesenbergii.
     The cell-free filtrate of M. aeruginosa was extracted by HLB-SPE column. The different extracts were obtained by eluting with n-hexane, dichloromethane and methanol in turn. The extracts were used for algicidal bioassay with M. wesenbergii and qualitative analysis with GC-MS and LC-MS. The results showed that the higher polarity the eluting solvents were, the stronger allelopathic effect of the extracts were, and the methanol extract had the strongest inhibtion activity to M. wesenbergii. Microcystin-LR, a potential allelochemical, was identified by HPLC and LC-MS in the methanol extract. Another potential allelochemical, was detected in the extract of dichloromethane, its molecular weight was678.5, but its chemical structure needed further research.
引文
[1]黎明,刘德启,沈颂东,等.国内富营养化湖泊生态修复技术研究进展.水土保持研究,2007,14(5):374-376.
    [2]栗越妍.铜绿微囊藻和四尾栅藻的生长和竞争吸附研究.北京:中国环境科学研究院硕士论文.2009:2.
    [3]2010年中国环境状况公报.北京:国家环保部.2011.
    [4]刘培桐,薛纪渝,王华东.环境学概论.北京:高等教育出版社,1995.
    [5]周云龙,于明.水华的发生、危害和防治.生物学通报,2004,39(6):11-14.
    [6]Tang DL, Kester DR, Ni IH, et al. In situ and satellite observations of a harmful algal bloom and water condition at the Pearl River estuary in late autumn1998. Harmful Algae,2003,2: 89-99.
    [7]周云龙.植物生态学.北京:高等教育出版社,1999.
    [8]吴凯.太湖水华蓝藻上浮特征及其机理研究.南京:南京大学硕士论文.2011:3.
    [9]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考.生态学报,2005,25(3):589-595.
    [10]Konopka A and Brock TD. Effect of temperature on blue-green algae(cyanobacteria) in lake Mendota. Applled andEnbironment Microbiology,1978,36:572-576.
    [11]Nalewajko C and Murphy TP. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan:an experimental approach. Limnology,2001,2(1):45-48.
    [12]Chen YW and Gao XY. Study on variations in spatial and temporal distribution of Microcystis in Northwest Taihu Lake and its relations with light and temperature. China Meteorological Press,1998.
    [13]Hua JB and Zong ZX. Experimental research on formation of algae bloom in Yanghe reservoir. Universitatis Pekinensis (Acta Scientiarum Naturalium),1994,30:476-484.
    [14]Oliver RL and Ganf GG. Freshwater blooms The Ecology of Cyanobacteria, The Netherlands, Kluwer Academic Publishers,2000:149-194.
    [15]李小龙,耿亚红,李夜光.从光合作用特性看铜绿微囊藻(Microcystis aeruginosa)的竞争优势.武汉植物学研究,2006,24(3):225-230.
    [16]Topinka JA and Jon VR. Effects of nitrate and ammonium enrichment on growth and nitrogen physiology in Fucus spiralis. Limnology and Oceanography,1976,21(5):659-664.
    [17]Zhao P, Sun GC, Peng SL. Ecophysiological research on nitrogen nutrition of plant. Ecologie Seience,1998,17:37-42.
    [18]Yamaguchi M, Shigeru I, Takuji U. Nutrition and growth kinetics in nitrogen-or phosphorus-limited cultures of the'novel red tide'dinoflagellate Heterocapsa circularisquama (Dinophyceae). Phycologia,2001,40(3):313-318.
    [19]Sommer U. Comparison between steady state and non-steady state competition:experiments with natural phytoplankton. Limnology and Oceanography,1985,30(2):335-346.
    [20]Fujimoto N, Sudo R, Sugiura N, et al. Nutrient-limited growth of Microcystis aeruginosa and Phormidium tenue and competition under various N:P supply ratios and temperatures. Limnology and Oceanography,1997,42(2):250-256.
    [21]Steinberg CEW and Hartmann HM. Planktonic bloom-forming Cyanobacteria and the eutrophication of lakes and rivers. Freshwater Biology,1988,20(2):279-287.
    [22]Ganf GG and Oliver RL. Vertical separation of light and available nutrients as a factor causing replacement of green algae by blue-green algae in the plankton of a stratified lake. Journal of Ecology,1982,70(3):829-844.
    [23]Reynolds CS. Phytoplankton periodicity:the interactions of form, function and environmental variability. Freshwater Biology,1984,14(2):111-142.
    [24]Skulberg OM, Codd GA, Carmichael WW. Toxic blue-green algae blooms in Europe:a growing problem. Ambio,1984,13:244-247.
    [25]肖兴富,李文,刘娜.富营养化水体中蓝藻毒素的危害及其控制.中国水利水电科学研究院学报,2005,3(2):116-123.
    [26]Yamamoto Y and Nakahara H. Seasonal variations in the morphology of bloom-forming cyanobacteria in a eutrophic pond. Limnology,2009,10:185-193.
    [27]Homma T, Komatsu N, Negishi M, et al. Influence of dissolved inorganic nitrogen and phosphorus concentrations on the horizontal and temporal changes of Microcystis Population in Lake Kitaura. The 12th World Lake Conference, Jaipur,2008:1423-1429.
    [28]Rice EL. Allelopathy, NewYork, Academic Press,1974:166-179.
    [29]Rice EL. Allelopathy(Second Edition), Orlando, Florida, Academic Press,1984.
    [30]赵福庚,何龙飞,罗庆云.植物逆境生理生态学.北京:化学工业出版社,2004.
    [31]Chen BM, Peng SL, Ni GY, et al. Effects of the invasive plant Mikania micrantha H.B.K. on soil nitrogen availability through allelopathy in South China. Biological Invasions,2009,11: 1291-1299.
    [32]Pollock JL, Callaway RM, Thelen GC, et al. Catechin-metal interactions as a mechanism for conditional allelopathy by the invasive plant Centaurea maculosa. Journal of Ecology,2009, 97:1234-1242.
    [33]Gross EM. Allelopathy of Aquatic Autotrophs. Critical Reviews in Plant Sciences,2003,22(3): 313-339.
    [34]鲜啟鸣,陈海东,邹惠仙.淡水水生植物化感作用研究进展.生态学杂志,2005,24(6):664-669.
    [35]Mulderij G. Chemical warfare in freshwater-Allelopathic effetcs of macrophytes on phytoplankton. Netherlands Institute of Ecology. Ph.D.2006.
    [36]Erhard D and Gross EM. Allelopathic activity of Elodea canadensis and Elodea nuttallii against epiphytes and phytoplankton. Aquatic Botany,2006,85:203-211.
    [37]庄源益,赵凡,戴树桂.高等水生植物对藻类生长的克制效应.环境科学进展,1995,6(3):44-49.
    [38]李锋民,胡洪营.植物化感作用控制天然水体中有害藻类的机理与应用.给水排水,2004,30(2):1-4.
    [39]张维昊,周连凤,吴小刚,等.菖蒲对铜绿微囊藻的化感作用.中国环境科学,2008,26(3):355-358.
    [40]丁惠君,张维昊,王超,等.菖蒲对几种常见藻类的化感作用研究.环境科学与技术,2007,30(6):20-23.
    [41]Mulderij G, Mau B, De Senerpont Domis LN, et al. Interaction between the macrophyte Stratiotes aloides and filamentous algae:does it indicate allelopathy?. Aquatic Ecology,2009, 43:305-312.
    [42]Hargraves PE. Allelopathy at the land/sea interface:Microalgae and Brazilian pepper. Marine Environmental Research,2008,66:553-555.
    [43]胡洪营,门玉洁,李锋民.植物化感作用抑制藻类生长的研究进展.生态环境,2006,15(1):153-157.
    [44]Schagerl M, Unterrieder I, Angeler DG. Allelopathy among cyanoprokaryota and other algae originating from lake Neusiedlersee(Austria). International Review of Hydrobiology,2002, 87(4):365-374.
    [45]Suikkanen S, Fistarol GO, Graneli E. Allelopathic effects of the Baltic cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. Journal of Experimental Marine Biology and Ecology,2004,308:85-101.
    [46]Oberhaus L, Briand JF, Humbert JF. Allelopathic growth inhibition by the toxic, bloom-forming cyanobacterium Planktothrix rubescens. FEMS Microbiol Ecology,2008,66: 243-250.
    [47]Yin J, Xie J, Yang WD, et al. Effect of Alexandrium tamarense on three bloom-forming algae. Chinese Journal of Oceanology and Limnology,2010,28(4):940-944.
    [48]Liu JS, Van Rijssel M, Yang WD, et al. Negative effects of Phaeocystis globosa on microalgae. Chinese Journal ofOceanology and Limnology,2010,28:911-916.
    [49]Gantar M, Berry JP, Thomas S, et al. Allelopathic activity among Cyanobacteria and microalgae isolated from Florida freshwater habitats. Microbiol Ecology,2008,64:55-64.
    [50]Leao PN, Pereira AR, Liu WT, et al. Synergistic allelochemicals from a freshwater cyanobacterium. Proceedings of the National Academy of Sciences,2010,107(25): 11183-11188.
    [51]Fergola P, Cerasuolo M, Pollio A, et al. Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata:Experiments and mathematical model. Ecological Modelling,2006,208:205-214.
    [52]Leflaive J and Ten-Hage L. Algal and cyanobacterial secondary metabolites in freshwaters:a comparison of allelopathic compounds and toxins. Freshwater Biology,2007,52(2):199-214.
    [53]Legrand C, Rengefors K, Fistaro GO, et al. Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects. Phycologia,2003,42(4):406-419.
    [54]Rengefors K and Legrand C. Toxicity in Peridinium aciculiferum-An adaptive strategy to outcompete other winter phytoplankton?. Limnology and Oceanography,2001,46(8): 1990-1997.
    [55]Sharp JH, Underhill PA, Hughes DJ. Interaction(allelopathy) between marine diatoms-Thalassiosira pseudonana and Phaeodactylum tricornutum. Journal of Phycology 1979,15: 353-362.
    [56]Irfanullah Md H and Moss B. Allelopathy of filamentous green algae. Hydrobiologia,2005, 543:169-179.
    [57]Carey CC and Rengefors K. The cyanobacterium Gloeotrichia echinulata stimulates the growth of other phytoplankton. Journal of plankton research,2010,32(9):1349-1354.
    [58]Kulik MM. The potential for using cyanobacteria(blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi. European Journal of Plant Pathology,1995, 101(6):585-599.
    [59]Moore RE, Corbett TH, Paterson GML, et al. The search for new anti tumour drugs from blue-green algae. Current Pharmaceutical Design,1996,2:317-330.
    [60]Sugg LM and Van Dolan FM. No evidence for an allelopathic role of okadaic acid among ciguatera-associated dinofagellates. Joural ofPhycology,1999,35:93-103.
    [61]Igarashi T, Satake M, Yasumoto T. Prymnesin-2:a potent ichthyotoxic and hemolytic glycoside isolated from the red tide alga Prymnesium parvum. Journal of the American Chemical Society,1996,118:479-480.
    [62]Perez E, Martin DF, Padilla M. Rate of production of APONINs by Nannochloris oculata. Biomedical Letters,1999,59:83-91.
    [63]Lydon J. The molecular genetics of bacterial phytotoxins. Plant Growth Regulation Society of America Quarterly,1996,24:111-139.
    [64]Wendel T and Juttner F. Lipoxygenase-mediated formation of hydrocarbons and unsaturated aldehydes in freshwater diatoms. Phytochemistry,1996,41(6):1445-1449.
    [65]Hansen E, Even Y, Geneviere AM. The α,β,γ,?-unsaturated aldehyde 2-trans-4-trans-decadienal disturbs DNA replication and mitotic events in Early Sea urchin embryos. Toxicological Sciences,2004,81(1):190-197.
    [66]Romano G, Russo GL, Buttino I, et al. A marine diatom-derived aldehyde induces apoptosis in copepod and seaurchin embryos. Journal of Experimental Biology,2003,206:3487-3494.
    [67]Leflaive J and Ten-Hage L. Chemical interactions in diatoms:role of polyunsaturated aldehydes and precursors. New Phytologist,2009,184(4):794-805.
    [68]Park HD, Watanabe MF, Harada KI, et al. Hepatotoxin (microcystin) and neurotoxin (anatoxin-a) contained in natural blooms and strains of cyanobacteria from Japanese freshwaters. Natural Toxins,1993,1(6):353-360.
    [69]Carmichael WW. The toxins of cyanobacteria. Scientific American,1994,270:78-86.
    [70]Briand JF, Jacquet S, Bernard C, et al. Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Veterinary Research,2003,34(4):361-377.
    [71]张敬平,肖付刚,赵晓联.微囊藻毒素分析检测技术.北京:化学工业出版社,2010.
    [72]Carmichael W W. The cyanotoxins. Advances in Botanical Research,1997,27:211-256.
    [73]Hu ZQ, Liu YD, Li DH, et al. Growth and antioxidant system of the cyanobacterium Synechococcus elongatus in response to microcystin-RR. Hydrobiologia,2005,534(1):23-29.
    [74]Vardi A, Ilana BF, Taly R, et al. Programmed cell death of the dinoflagellate Peridinium gatunense is mediated by CO2 limitation and oxidative stress. Current biology,1999,9(18): 1061-1064.
    [75]Smith GD and Thanh ND. Cyanobacterial metabolites with bioactivity against photosynthesis in cyanobacteria, algae and higher plants. Journal of Applied Phycology,1999,11(4): 337-344.
    [76]Gleason FK and Baxa CA. Activity of the natural algicide, cyanobacterin, on eukaryotic microorganisms. FEMS Microbiology Letters,1986,33:85-88.
    [77]Von Elert E and Juttner F. Phosphorus limitation and not light controls the extracellular release of allelopathic compounds by Trichormus doliolum. Limnology and Oceanography,1997,42: 1796-1802.
    [78]Gross EM, Wolk CP, Juttner F. Fischerellin, a new allelochemical from the freshwater cyanobacterium fischerellamuscicola. Journal of Phycology,1991,27(6):686-692.
    [79]Graneli E and Hansen PJ. Allelopathy in harmful algae:a mechanism to compete for resources?. Ecology of Harmful Algae,2006,189:198-201.
    [80]Juttner F and Wu JT. Evidence of allelochemical activity in subtropical cyanobacterial biofilms of Taiwan. Archivfur Hydrobiologie,2000,147:505-517.
    [81]Yasumoto T. and Murata M. Polyether toxins involved in seafood poisoning. Marine Toxins, American Chemical Society.1990,418:120-132.
    [82]吴晓辉,张兵之,邓平,等.马来眼子菜化感作用对斜生栅藻同工酶的影响.武汉植物学研究,2007,25(5):479-483.
    [83]Kearns KD and Hunter MD. Toxin-producing Anabaena flos-aquae induces settling of Chlamydomonas reinhardtii,a competing motile alga. Microbial Ecology,2001,42:80-86.
    [84]Schmidt LE and Hansen PJ. Allelopathy in the prymnesiophyte Chrysochromulina polylepis: effect of cell concentration, growth phase and pH. Marine Ecology Progress Series,2001,216: 67-81.
    [85]Uchida T, Yamaguchi M, Matsuyama Y, et al. The red-tide dinoflagellate Heterocapsa sp. kills Gyrodinium instriatum by cell contact. Marine Ecology Progress Series,1995,118:301-303.
    [86]Thanh DN, Rickards RW, Rothschild JM, et al. Allelopathic actions of the alkaloid 12-epi-hapalindole E isonitrile and calothrixin A from cyanobacteria of the genera Fischerella and Calothrix. Journal of Applied Phycology,2000,12:409-416.
    [87]Shao J, Wu Z, Yu GL, et al. Allelopathic mechanism of pyrogallol to Microcystis aeruginosa PCC 7806 (Cyanobacteria):From views of gene expression and antioxidant system. Chemosphere,2009,75(7):924-928.
    [88]Hirata KS, Yoshitomi S, Dwi S, et al. Bioactivities of nostocine a produced by a freshwater cyanobacterium Nostoc spongiaeforme TISTR 8169. Journal of Bioscience and Bioengineering,2003,95(5):512-517.
    [89]Hirata KS, Yoshitomi S, Dwi S, et al. Generation of reactive oxygen species undergoing redox cycle of nostocine A:acytotoxic violet pigment produced by freshwater cyanobacterium Nostoc spongiaeforme. Journal of Biotechnology,2004,110:29-35.
    [90]Sukenik A, Eshkol R, Livne A, et al. Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp.(cyanobacteria):A novel allelopathic mechanism. Limnology and Oceanography,2002,47(6):1656-1663
    [91]Van Donk E and Van de Bund WJ. Impact of submerged macrophytes including charophytes on phyto-and zooplankton communities:allelopathy versus other mechanisms. Aquatic Botany,2002,72:261-274.
    [92]徐洁,李小路,陈海东,等.金鱼藻中抑藻化感物质的研究.环境污染与防治,2008,30(1):28-32.
    [93]Hoeger SJ, Schmid D, Blom, JF, et al. Analytical and functional characterization of microcystins [Asp3] MC-RR and [Asp3, Dhb7] MC-RR:Consequences for Risk Assessment?. Environmental Science& Technology,2007,41(7):2609-2616.
    [94]Zhang LF, Ping XF, Yang ZG. Determination of microcystin-LR in surface water using high-performance liquid chromatography/tandem electrospray ionization mass detector. Talanta,2004,62(1):191-198.
    [95]Wolfe JM and Rice EL. Allelopathic interactions among algae. Journal of Chemical Ecology, 1979,5(4):533-542.
    [96]Anderson DM and Garrison OJ. The ecology and oceanography of harmful algal blooms. Limnology and Oceanography,1997,42:1009-1035.
    [97]Chen YW, Qin BQ, Teubner K, et al. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. Journal of Plankton Research,2003,25:445-453.
    [98]杨桂军,秦伯强,高光,等.角突网纹溞在太湖微囊藻群体形成中的作用.湖泊科学,2009,21(4):495-501.
    [99]Imai H, Chang KH, Kusaba M, et al. Temperature-dependent dominance of Microcystis (Cyanophyceae) species:M. aeruginosa and M. wesenbergii. Journal of plankton research, 2009,31(2):171-178.
    [100]林志芬,曹志民,郭小菊,等.赤潮异湾藻与三角褐指藻的竞争及其化感作用初探.环境科学与技术,2010,33(10):5-9.
    [101]顾宗濂.中国富营养化湖泊的生物修复.农村生态环境,2002,18(1):42-45.
    [102]鲜啟鸣,陈海东,邹惠仙.四种沉水植物的克藻效应.湖泊科学,2005,17(1):75-80.
    [103]吴程,常学秀,董红娟,等.粉绿狐尾藻(Myriophyllum aquaticum)对铜绿微囊藻(Microcystis aeruginosaa)的化感抑制效应及其生理机制.生态学报,2008,28(6):2595-2603.
    [104]Inderjit I and Moral del R. Is separating resource competition from allelopathy realistic?. The Botanical Review,1997,63(3):221-230.
    [105]Keating KI. Allelopathic influence on blue-green bloom sequence in a eutrophic lake. Science,1977,196:885-887.
    [106]Wolfe GV. The chemical defense ecology of marine unicellular plankton:constraints, mechanisms, and impacts. The Biological Bulletin,2000,198(2):225-244.
    [107]Subba Rao DY, Pan Y, Smith SJ, et al. Allelopathy between Rhizosolenia alata (Brightwell) and the toxigenic seudonitzschia pungens f. multiseries (Hasle), Harmful marine algal blooms, Paris, France, Lavoisier Intercept Ltd,1995:681-686.
    [108]Mohamed ZA. Allelopathic activity of Spirogyra sp.:stimulating bloom formation and toxin production by Oscillatoria agardhii in some irrigation canals, Egypt. Journal of plankton research,2002,24(2):137-141.
    [109]Fistarol GO, Legrand C, Graneli E. Allelopathic effect of Prymnesium parvum on a natural plankton community. Marine Ecology Progress Series,2003,255:115-125.
    [110]Ikawa M, Sasner JJ, Haney JF. Activity of cyanobacterial and algal odor compounds found in lake waters on green alga Chlorella pyrenoidosa growth. Hydrobiologia,2001,443(1): 19-22.
    [111]Rohrlack T, Dittmann E, Henning M,et al. Role of Microcystins in poisoning and food ingestion inhibition of Daphnia galeata Caused by the Cyanobacterium Microcystis aeruginosa. Applied and Environmental Microbiology,1999,65(2):737-739.
    [112]Oudra B, Loudiki M, Sbiyyaaa B, et al. Isolation, characterization and quantification of microcystins(heptapeptides hepatotoxins) in Microcystis aeruginosa dominated bloom of Lalla Takerkoust lake-reservoir(Morocco). Toxicon,2001,39:1375-1381.
    [113]Cuvin-Aralara ML, Fastnerb J, Fockenc U, et al. Microcystins in natural blooms and laboratory cultured Microcystis aeruginosa from Laguna de Bay, Philippines. Systematic and Applied Microbiology,2002,25:179-182.
    [114]Namikoshi M, Rinehart KL, Sakai R. Identification of 12 hepatotoxins from a Homer lake bloom of the cyanobacteria Microcystis aeruginosa, Microcystis viridis, and Microcystis wesenbergii:nine new Microcystins. Journal of Organic Chemistry,1992,57,866-872.
    [115]Xu Y, Wu ZX, Yu BS, et al. Non-microcystin producing Microcystis wesenbergii(Komarek) Komarek(Cyanobacteria) representing a main waterbloom-forming species in Chinese waters. Environmental Pollution,2008,156:162-167.
    [116]Yen HK, Lin TF, Liao, PC et al. Simultaneous detection of nine cyanotoxins in drinking water using dual solid-phase extraction and liquid chromatography-mass spectrometry. Toxicon,2011,58(2):209-218.
    [117]Zhang DW, Xie P, Liu YQ, et al. Spatial and temporal variations of microcystins in hepatopancreas of a freshwater snail from Lake Taihu. Ecotoxicology and Environmental Safety,2009,72(2):466-472.
    [118]James SV, Valenti TW, Roelke DL, et al. Probabilistic ecological hazard assessment of microcystin-LR allelopathy to Prymnesium parvum. Journal of Plankton Research,2011, 33(2):319-332.
    [119]Singh DP, Tyagi MB, Kumar A, et al. Antialgal activity of a hepatotoxin-producing cyanobacterium, Microcystis aeruginosa. World Journal of Microbiology and Biotechnology, 2001,17(1):15-22.
    [120]Bartova K, Hilscherova K, Babica P, et al.. Extract of Microcystis water bloom affects cellular differentiation in filamentous cyanobacterium Trichormus variabilis (Nostocales, Cyanobacteria). Journal of Applied Phycology,2011,23(6):967-973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700