用户名: 密码: 验证码:
太湖贡湖湾水源地微囊藻毒素和含硫衍生污染物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富营养化日益严重的太湖贡湖湾水源地,面临有毒蓝藻的代谢产物微囊藻毒素和蓝藻腐烂分解或次生代谢含硫衍生物的污染威胁。微囊藻毒素是肝癌和肠癌的促发剂,通过生物累积或食物链从肝癌、肠癌高发到生育畸形等多方面对人类健康构成威胁。蓝藻腐烂分解含硫衍生污染物引起水源地水质恶化,使感官水质下降。为保障水源地供水安全,论文依托国家科技支撑计划课题“水源地取水口蓝藻水华削减与水质改善技术研究及示范”专题“水源地取水口蓝藻毒素以及衍生污染物监测”,以太湖贡湖湾水源地及其蓝藻应急消减工程示范区为研究区域,基于卫星遥感影像数据进行太湖蓝藻水华的暴发动态监测;基于酶联免疫吸附测试技术建立快速、简洁的微囊藻毒素检测方法,监测蓝藻应急消减工程示范区实施物理、生物控藻措施后,围格内、外水柱中微囊藻毒素的差异,为水源地水华蓝藻应急消减提供理论基础;基于青海弧菌Q67建立水源地水质急性毒性快速诊断方法,为水源地微囊藻毒素快速、应急监测提供技术支持;建立抽提-固相萃取预浓缩-高效液相色谱检测方法测试水源地生态系统各环境介质中累积的微囊藻毒素;以蓝藻粗提液研究微囊藻毒素对水稻种子萌发和梨形环棱螺的生物毒性;通过实验室内模拟蓝藻腐烂分解过程,建立SPME-GC/MS方法定性检测蓝藻腐烂分解产生的异味物质,定量研究蓝藻腐烂分解的含硫衍生污染物释放规律。主要研究结果如下:
     (1)应用卫星遥感影像数据监测太湖贡湖湾历年的蓝藻水华暴发动态,监测到2005年以来,以前很少发生蓝藻水华的贡湖湾,每年开始有大面积蓝藻水华覆盖,2007年以后发生水华的频率明显增加。2009年7、8月在贡湖湾发生大面积蓝藻水华。从太湖贡湖湾的历史水质数据发现,1987年-2003年太湖贡湖湾水质指标平稳波动(TP最高0.1mg·L-1),NH3-N缓慢上升。2005年贡湖水质迅速恶化,NH3-N最高达1.42mg·L-1,TP最高达0.25mg·L-1,Ch1-a最高达47.6μg·L-1。2009年在研究区域内测得TP最高达0.269mg·L-1,水华暴发时Ch1-a最高达703.04μg·L-1。
     (2) 2009年3月至2010年2月水源地水柱中溶解态微囊藻毒素浓度范围为ND-0.554μg·L-1。围格外各样点水柱中溶解态MCs 3、4月,7、8月和12月浓度较高。围格外各样点水柱中总MCs自水华暴发后明显增加,10月出现下降趋势。空白对照围格5水样中溶解态MCs低于其它围格,可能是由于生物控藻措施的生态胁迫效应和浮水植物的聚藻效应增加了围格内溶解态微囊藻毒素的释放。围格内各样点水柱中总MCs在蓝藻水华暴发后明显增加。除围格1总MCs低于空白对照围格5外,围格2、3、4总MCs均高于空白对照围格5。由此推断围格1采取的鲢鳙鱼控藻效果优于其它生物控藻工程措施。
     (3)围格内溶解态MCs由于生态胁迫效应高于同时期围格外水柱中溶解态MCs,水动力条件较好的围格外采样点9和10溶解态MCs含量较低,但受外源MCs污染的风险也较大。水柱中总MCs除围格1外,围格内总MCs平均浓度高于围格外水柱中总MCs,围格和浮水植物减弱了水动力条件,营造了蓝藻水华原地暴发的环境条件,因此利用围格等物理控藻工程阻挡外源水华蓝藻污染是可行的,但不适用于消减局部水域蓝藻。浮水植物在工程示范区内控藻效果较差,容易促使微囊藻聚集,并有可能因为生态胁迫效应加剧溶解态MCs污染。
     (4)基于淡水发光菌青海弧菌Q67建立了水源地水质的急性毒性快速诊断方法。确定了pH值5.0-9.0、起始菌密度10万-20万和测试时间20-30min为青海弧菌Q67急性毒性测试体系的最佳测试条件。微囊藻毒素MC-LR单一污染物发光细菌Q67半数发光抑制浓度(EC50)为1.96mg·L-1。
     (5)将青海弧菌用于检测微囊藻毒素的毒性时,Q67急性毒性效应不同于对重金属、有机污染等毒性物质的毒性效应,测试微囊藻毒素导致的微毒水体时,毒性效应不仅表现为轻微抑制发光,更多情况下表现为刺激发光。太湖贡湖湾水源地蓝藻应急消减工程区围格内各样点水质Q67急性毒性测试结果变化比较一致,3、4月水质急性毒性效应为刺激发光,6、7、8月为轻微抑制发光,9、10月为强刺激发光。不同时段各样点水柱溶解态MCs的平均浓度和Q67样点平均急性毒性效应之间相关性较明显,相关系数为0.643。考虑到微囊藻毒素对青海弧菌Q67急性毒性效应的独特性,水样Q67急性毒性相对发光率低于80%或刺激发光相对发光率高于120%,可作为水质急性毒性综合评价无毒趋向微毒的参考指标。
     (6) 2009年贡湖湾蓝藻水华以惠氏微囊藻为主,藻浆产毒能力9月初的藻类最大(174.27μgMC-LR·g-1DW、162.69μg MC-RR·g-1DW)。富集在野生茭白、四角野菱和红菱三种植物各器官内的微囊藻毒素以茭白叶内富集量最高(10.44μg MCs·g-1 DW),四角野菱幼果中微囊藻毒素的富集量为1.97μMC-LR·g-1DW、0.69μg MC-RR·g-1DW,高于四角野菱根的生物富集量。梨形环棱螺体内富集的MC含量与2005年在太湖梅梁湾和2006年在巢湖螺类测得的富集量相当(环棱螺(整体动物)的MCs最大值为4.66μg·g-1DW)。野生白鲢肠和肝脏中MC-LR的最大富集量分别为7.22μg·g-1 DW和7.63μg·g-1 DW,MC-RR的最大富集量分别为5.51μg·g-1 DW、3.75μg·g-1 DW。白鲢鱼肉中MC的富集量(3.69μg·g-1DW)与2006年在太湖梅梁湾采集的白鲢(1.65μg·g-1DW)相比稍有增加。太湖贡湖湾水源地采集的底泥样品中测得MC最大值为1.18μgMC-LR.g-1 DW和O.72μg MC-RR·g-1DW。4组样品共测试12个样品,只有1个样品中未检出MC-LR.(7)不同浓度梯度的微囊藻毒素对水稻种子萌发的生理学指标如吸水率、发芽率、根系活力TTC、叶绿素含量以及叶绿素a与叶绿素b的比值等均表现出高浓度微囊藻毒素的抑制效应较强。梨形环棱螺对微囊藻毒素的蓄积作用明显,蓄积系数为1.86。梨形环棱螺的MC-LR半致死剂量约为15.49 - 28.79μg·L-1。外推向人群时,人类的MC-LR安全限量参考浓度为0.025μg MC-LR eq·kg-1 BW(0.015-0.029μg MC-LR eq·kg-1 BW).(8)蓝藻腐烂分解时微囊藻毒素的最大释放量出现在第3或第4天,最大释放量MC-LR和MC-RR分别是本底值的60倍和64倍,最大浓度分别为8.32μg MC-LR·L-1、14.04μg MC-RR·L-1,换算成蓝藻的产毒能力分别为2.46μg MC-LR·g-1 FW和4.31μgMC-RR·g-1FW.(9)建立了固相微萃取-气质联用技术(SPME-GC/MS)检测含硫衍生污染物的方法。在水源地水样、蓝藻腐烂水样和腐烂藻样中以SCAN扫描方式均检测出β-环柠檬醛、吲哚、苯酚、甲基苯酚和硫醇硫醚类等蓝藻代谢产物或次生代谢产物。蓝藻腐烂产物异味物质的组份分析证实2007年5月底贡湖湾的污水团是大量蓝藻堆积腐烂所致。(10)蓝藻腐烂水样中二甲基三硫的最大释放量出现在第7天或第8天,最大释放量达本底值的383倍。腐烂藻样释放的二甲基三硫10天内分别在第3天和第9天出现峰值;腐烂水样中二甲基二硫的释放过程平缓,持续时间较长;蓝藻腐烂水样二甲基硫在第8天或第9天出现最大释放量,其释放过程缓慢,释放量波动范围较大。基于上述研究结果,太湖贡湖湾水源地正经受着水华蓝藻代谢产物和含硫衍生物的污染威胁,建立完善的蓝藻水华预警体系和采取有效的蓝藻消减工程措施是水源地取水安全的重要保障。由于青海弧菌应用在微囊藻毒素污染的水体测试时生物急性毒性效应的独特性,应用青海弧菌Q67快速诊断蓝藻水华水质变化的快速诊断技术还需进一步完善;SPME-GC/MS定性地检测出蓝藻腐烂分解释放的含硫衍生异味物质,但由于从水样中萃取挥发性含硫有机物的回收率和重现性都较低,有待继续摸索和选择更有效的样品预处理方法进行精确定量以及分析蓝藻腐烂分解产物的释放规律。
Mass growth of cyanobacteria (blue-green algae), leading to the production of blooms, accretion of pollutions occurs in eutrophic waterbodies of Gonghu Bay in Lake Taihu. The water source area planed for Wuxi city. Microcystins and derivative volatile organic surfocompound, the metabolites of harmful blue-green algae and decompound or secondary metabolites of algae, is primary pollutant. Microcystin is inducer of liver and intestinal cancer, which also could threat other aspects of human health through food chain or bioaccumulation such as liver cancer and intestinal cancer to the high incidence of birth deformities and volatile organic surfocompound derived from algae decompose pollutants cause deterioration of water quality water source, so that sensory deterioration of water quality. To protect the supply security from water sources, the paper subsidized by the national science and technology supporting project "The technical and demonstrative research of the cyanobacteria bloom subduction and water quality improvement at water intake in water sources area.", "The project of monitoring on cyanobacterial toxins and derivative volatile organic surfocompound in the water source".The area of cyanobacteria bloom subduction exemplars and water sources in Gonghu Bay in Lake Taihu was the Survey region, Based on ELISA, we built the fast and handy method to detect microcystins.and to monitor demonstration project in the region which was implemented the physical, biological algae control measures, both inside and outside the water column around barricading and provid technical support for emergency monitoring microcystins in water sources area. Based on luminous bacteria Vibrio qinghaiensis sp-Q67, we construct the acute toxicity diagnostic monitoring system on water quality in water sources area. Base on extraction and solid phase extraction method, we use HPLC to detect microcystions accumulated in ambient medium (eg. Substrate sludge and aquatic plant) in aquatic ecosystem. We study the MCs biotoxicity on the process of Hybrid rice seed germination and Bellamya purificata using the crude extract from cyanobacteria bloom. Through the simulation of the cyanobacteria decompose process, we construct SPME-GC/MS methods to detect the odor substances decomposed and to trace the release laws of derviative volatile organic sulfocompound from decayed cyanobacteria. The results are as follows:
     (1) Monitor the cyanobacteria blooms in Lake Taihu through application of satellite remote sensing data. There were cyanobacteria blooms occurring at Gonghu Bay since 2005, and it occurred more frequently after 2007. The water quality in Gonghu Bay had smooth fluctuations from 1987 to 2003 concluded from the historical data. The maximum TP was 0.1 mg-L-1 and total Nitrogen increased slowly. The pollution loading increased sharply in Gonghu Bay since 2005. The maximun total Phosphorus reached up to 0.25 mg·L-1 and NH3-N reached up to 1.42 mg·L-1. The maximum Chlorophyll a was 47.6μg·L-1. The Chlorophyll a in water blooms up to 703.04μg·L-1 and total Phosphorus reached up to 0.269 mg·L-1 in survey region in 2009.
     (2) The concentration range of MCs dissolved in water column of Gonghu Bay was between no detected and 0.554μg MC-LR eq·L-1 from Mar.2009 to Feb.2010. Dissolved MCs in all barricadings water column variated a higher concentration in March, April, July, August and December. The total MCs significantly increased after cyanobacterial bloom, downward trend in October. Around the barricading 5, dissolved MCs in water column more than dissolved MCs in other barricading, may be due to biological control measures of ecological stress effects of algae and floating plants, and the effect of increasing into a algae polymer, so as to cause release of microcystins. Various points around inside the total MCs in the water column after the outbreak of algal blooms increased significantly. In addition to the total MCs around barricading 1 than control barricading 5, barricading 2,3,4 were higher than the total MCs around the barricading 5. We conclude that Carps taken control cyanobacteria in barricading 1 works better than other biological measures.
     (3) Dissolved MCs of the waer column inside of barricading may be due to effects of ecological stress was higher than the same period, particularly around the water column dissolved MCs, hydrodynamic conditions is particularly good around September and October sampling points lower content of dissolved MCs, but the pollution risk is higher from external sources. In addition to the total MCs in the water column around a barricading, the barricading around the average concentration of total MCs especially around the water column above the total MCs, The barricading and floating plants around the hydrodynamic conditions weakened, creating an outbreak of cyanobacteria blooms in situ environmental conditions, so use around the physical control of cell blocks of exogenous cyanobacteria works cyanobacteria contamination is possible, but not to reduce the local water cyanobacteria, floating plants in the demonstration area of less effective control of cyanobacteria, Microcystins easy to promote aggregation, and possibly because Ecological effects of increasing stress dissolved MCs pollution.
     (4) Based on freshwater luminous bacteria Vibrio qinghaiensis sp Q67, we established a rapid diagnostic method of acute toxicity test. The Vibrio qinghaiensis sp Q67 acute toxicity best test conditions is determined as pH value of 5.0-9.0, the initial bacterial density of 0.1-0.2 million and the test time 20 - 30 min. The median effect concentration (EC50) of MC-LR on Vibrio qinghaiensis sp Q67 was 1.96 mg·L-1.
     (5) The acute toxic effects of Vibrio qinghaiensis sp Q67 is different from the toxic effect by heavy metals and organic pollutants when Vibrio qinghaiensis sp Q67 used to detected the toxicity of microcystin.Detecting the toxic water result in microcystin, the toxic effects not only appearing a slightly inhibitory action,but also stimulatory effect. The detect results of Vibrio qinghaiensis sp Q67 acute toxic effects in different sampling sites in the cyanobacteria subduction exemplars of Gonghu Bay are identical. Water acute toxic effects appearances stimulatory effect in Mar and April, slight inhibitory action in Aug and strong stimulatory effect in Sept and Oct. In different period of time, the correlation of average concentration of dissolved MCs and the mean acute toxic effects of Vibrio qinghaiensis sp Q67 is obvious in each sampling sites, and the correlation coefficient is 0.643. The acute toxic effects of Vibrio qinghaiensis sp Q67 is particular when detected by microcystin. When relative luminous efficiency of Q67 acute toxic effects is less than 80% or the stimulatory ratio is more than 120%, the non-toxic water transformed into toxic, which can be used as a reference for water acute toxic assessment.
     (6) Cyanobacteria blooms occurred in Gonghu Bay in Lake Taihu, Microcystis wesenbergii was primary algae in summer 2009. The maximum microcystins producted by cyanobacteria appear early in September (174.27μg MC-LR·g-1 DW and 162.69μg MC-RR·g-1 DW). microcystin accumulated in various organs of Zizania aquatica, Trapa quadrispinosa Roxb and Trapa bispinosa Osbeck, concentration in leaves of Zizania aquatic is highest (10.44μg MCs·g-1 DW), The amount of microcystin concentration in putkin of Trapa quadrispinosa Roxb are 1.97μg MC-LR·g-1DW and 0.69μg MC-RR·g-1 DW, higher than bioaccumulation in root of Trapa quadrispinosa Roxb. Bioaccumlation of microcystin was the same concentration in Bellamya purificata collected from Meiliang Bay in Lake Taihu 2005 and Lake Caohu 2006 (maximum concentration is 4.66μg·g-1DW). The maximum concentration of MC-LR in Silver carp intestine and liver was 7.22μg·g-1 DW and 7.63μg·g-1 DW, the maximum concentration of MC-RR was 5.51μg·g-1 DW and 3.75μg·g-1 DW. Bioaccumulation of MCs in muscle of silver carp collected in Gonghu Bay 2009 is 3.69μg·g-1DW and Bioaccumlation of MCs in muscle of silver carp collected from Meiliang Bay in 2006 is 1.65μg·g-1 DW. There was a little increase. The maximum microcystin accumulated in sediment collected from Ginghu Bay is 1.18μg MC-LR·g-1 DW and 0.72μg MC-RR·g-1DW. The detected samples were 12, but MC-LR was not detecte only in one sample.
     (7) Different concentrations of microcystins on seed germination in physiological indicators such as water absorption, germination rate, root activity TTC, chlorophyll content and chlorophyll a and chlorophyll b ratio of Hybrid Rice showed high concentrations of the inhibitory effect of microcystin more serious. Bellamya purificata is the role of microcystins accumulation significantly, the storage coefficient is 1.86. semi-lethal dose of MC-LR on Bellamya purificata is about 15.49-28.79μg·L-1. To analogize, the human MC-LR safety limit reference concentration maybe 0.025μg MC-LR eq·kg-1 BW (0.015-0.029μg MC-LR eq·kg-1 BW).
     (8) On the third or the fourth day of cyanobacterial decomposing, microcystins has the biggest release emission, the release emission of MC-LR and MC-RR is 60 and 64 times higher than the background value, respectively. The maximum concentration was 8.32μg MC-LR·L-1, 14.04μg MC-RR·L-1, converted into a algae toxin production capacity were 2.46μg MC-LR·g-1 FW and 4.31μg MC-RR·g-1FW.
     (9) In this study, a new method, (SPME-GC/MS) was built to detect the derivative volatile organic surfocompound. The primary or secondary metabolites by Cyanobacteria in the kinds of water samples, such asβ-cyclocitral, indol, methylphenol, mercaptan and thioether were detected with SCAN. With the analyzes of the components of the odour substances, which is the production of the putrefactive Cyanobacteria, we can proved that the polluted water in the Gonghu Bay in May,2007 is as a result of the bulk decayed Cyanobacteria.
     (10) The maximum emission of Dimethyl trisulfide in water samples of decaying blue-green algae was appeared on the first 7 days or 8 days, which is amounted to 383 times of the background value. The peaks of the Dimethyl trisulfide emission in the decaying algae samples was appeared on the third day or the ninth day during ten days; dimethyl disulfide released gently in rot water samples, and lasted a long time; The maximum emission of dimethyl sulfide was appeared on the eighth day or the ninth day in blue-green algae decompose water. In water source samples, the maximum detected concentration of Dimethyl trisulfide is 2344.79 ng·L-1.
     Based on these above-mentioned results, the water source of Gonghu Bay is suffering the cyanobacteria metabolites and sulfur derivatives the pollution threat, cyanobacterial blooms in the establishment of comprehensive early warning system and to take effective measures algae abatement project is to get water safety important safeguard. We established a rapid toxicity diagnostic technique for Vibrio qinghaiensis sp. Q67. The technique needs to be further improved; SPME-GC/MS accurately detect the release of algae decompose odor of sulfur derivative materials, but extracted from water samples of volatile organic sulfur recovery and reproducibility are low, yet continue to explore and select the sample preparation method for accurate quantitative analysis of the release law of the sulfur in the decaying cyanobacteria.
引文
Abe T., Lawson T., Weyers J. D. and Codd G. A.,1996. Microcystin-LR inhibits photosynthesis of phaseolus vulgaris primary leaves: implications for current spray irrigation practice, New Phytologist 133:651-658
    Amoore J, E, Hautala E.1983. Odor as an aid to chemical safety:odor thresholds compared with threshold limit values and volatilities for 214 industrial chemicals in air and water dilution. J Appl Toxicol.3(6):272-290.
    Amorim A., Vasconcelos V.,1999. Dynamics of microcystins in the mussel Mytilus galloprovincialis. Toxicon 37:1041-1052. J
    ASMT,1997. Standard Test Method for D-5660-96,Assessing the Microbial Detoxification of Chemically Contaminated Water and Soil Using a Toxicity Test With a Luminescent Marine Bacterium.West Conshohocken,PA:American Society for Testing and Materials
    Azevedo S. M., Carmichael W. W., Jochimsen E.M., Rinehart K. L., Lau S., Shaw G. R., Eaglesham G. K.2002. Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology 181:441-446
    Bauman P. et al.,1980. Reevaluation of the taxonomy of Vibrio,Beneckea,and photobacterium: abolition of the genus Beneckea. Curr.Microbiol.,1980,4:127-132
    Bauman, P. et al.,1977. Biology of the marine enterobacteria:Geneckea Beneckea and photobacterium. Ann. Rev. Microbiol.,1977,31:39-61
    Bauman P. et al.,1983. Evolutionary relationships in Vibrio and photobacterium:a basis for a natural classification.Ann.Rev.Microbiol.,1983,37:369-398
    Beattie K A, Ressler J, Wiegand C, et al.2003.Comparative effects and metabolism of two microcystins and nodularin in the brine shrimp Artemia salina[J]. Aquatic Toxicology, 62(3):219-226.
    Bickel H, Lyck S, Utkilen H.1998. Dose the energetic state of microcystis cells affect the microcystin content? Compilation of abstracts.4th International Conference on Toxic Cyanobacteria,39
    Bojan S,Gorazd K,Jana B B,et al.1998.The role of microcystinsin heavy cyanobacterial bloom formation[J]. J Plankton Research,20(6):691-708.
    Borner T 1998. Microcystins Synthetase:Gene and Enzyme
    Botha N, Michelle M, Tim G, et al.2004. The role of microsystin-LR in induced of apoptosis and oxidative stress in CaCO2 cells. Toxicon,43:85-92
    Bozeman J.,Koopman B.et al.,1989. Toxicity testing using immobilized algae. Aquatic Toxicology,14(4):345-352
    Brian M. Gulledge, James B. Aggen, Hugo Eng, Khuloud Sweimeh, A. Richard Chamberlin,2003. Microcystin analogues comprised only of adda and a single additional amino acid retain moderate activity as PP1/PP2A inhibitors, Bioorganic & Medicinal Chemistry Letters,13(17): 2907-2911. DOI:10.1016/S0960-894X(03)00588-2.
    Bulich A.A. and Isenberg D.L.1981. Use of luminescent bacteria for the rapid assessment of aquatic toxicity,ISA Trandactions,20(1):29-32
    Bulich A. A., Marking L. L. and Kimerle R. A.,1979. Use of luminescent bacteria for determining toxicity in aquatic environments. Aquatic Toxicology American Society for Testing and Materials STP.667:98-106
    Bury N. R., Newlands A. D., Eddy F. B., Codd G A.1998. In vivo and vitro intestinal transport of 3H-microcystin-LR, a cyanobacterial toxin, in rainbow trout (Oncorhynchus mykiss). Aquat Tox 42:139-148
    Cairns J., Pratt J. R.,1989. The Scientific Basis of Bioassays, Hydrobiologia,188/189:5-20
    Carmichael W. W.1996. Liver failure and human deaths at a hemodialysis center in Brazil: microcystins as a major contributing factor. Harmful Algae News 15:11
    Carmichael W. W.1996. Toxic microcystis and the environment [M].Watanabe M F(Eds) Toxic Microcystis.New York:CRC Press,:1-12.
    Carmichael W.W., Azevedo S.M.F.O, An J. S.,. Molica R. J., Jochimsen E. M., Lau S.,. Rinehart K. L. Shaw G. R. and. Eaglesham G K.,2001. Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins, Environ. Health Perspect.109.663-668.
    Chen J., Xie P., Zhang D. W., Ke Z. X., Yang H.2006. In situ studies on the bioaccumulation of microcystins in the phytoplanktivorous silver carp (Hypophthalmichthys molitrix) stocked in Lake Taihu with dense toxic Microcystis blooms. Aquaculture.261:1026-1038
    Chen J. and Xie P.,2007. Microcystin Accumulation in Freshwater Bivalves from Lake Taihu, China and the Potential Risk to Human Consumption, Environ. Toxicol. Chem.,26, 1066-1073
    Chen J., Xie P., Guo L., Zheng L., and Ni L., 2005. Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and -RR in a freshwater snail (Bellamya aeruginosa) from a large shallow, eutrophic lake of the subtropical China, Environmental Pollution,134(3), 423-430.
    Chen J.Z., Song L.R., Dai J., Gan N.Q. and Liu Z.L.,2004. Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.), Toxicon 43:393-400
    Chen Y.W., Qin B.Q., Teubner K. & Dokulil M.2003. Long-term dynamics of phytoplankton assemblages: Microcystis domination in Lake Taihu, a large shallow lake in China. Journal of Plankton Research,25:445-453.
    Chorus I,Bartram J.,1999. Toxic cyanobacteria in water;a quide to their public health consequences, monitoring and management. London. E & FN Spon,on behalf of WHO.416
    Chu, F. S., Huang, X. and Wei, R. D.,1990. Enzyme-linked immunosorbent assay for microcystins in blue-green algal blooms. J. Assoc. Off. Anal. Chem.73, pp.451-456
    Codd G A., Poon G K.1988. Cyanobacterial toxins. Proc. Phytochem. Soc. Eur.28:283-296.
    Codd, G.A, Morrison L F. and. Metcalf J S.2004.Cyanobacterial toxins: risk management for health protection. Toxicology and Applied Pharmacology.203,(3):264-272
    Codd, G.A., Bell, S.G., Kaya, K., Ward, C.J., Beattie, K.A. and Metcalf, J.S.,1999. Cyanobacterial toxins, exposure routes and human health. Eur.J.Phycol. 34, pp.405-415.
    Cousins, I.T., Bealing, D.J., James, H.A., Sutton, A.,1996. Biodegrada-tion of microcystin-LR by indigenous mixed bacterial populations. Water Res.30,481-485.
    David J.Monk,David R.Walt,2004.Optical fiber-based biosensors[J].Anal Bioanal Chem, 379:931-945.
    Dawson, R. M.1998. The toxicology of microcystins. Toxicon 36(7):953-962.
    de Figueiredo D.R.,Azeiteiro U.M.,Esteves S.M.,et al.2004. Microcystin producing blooms a serious global public health issue[J]. Ecotoxicol Environ Safety,59:151-163
    Dejene A.,Rachel Rosen,Rami Pedazur,et al.2006. Freeze-drying of sol-gel encapsulated recombinant bioluminescent E.coli by using lyoprotectants [J].Sensors and Actuators B, 113:768-773.
    Dekker AG. 2001.Imaging spectrometry of water. In: Meer FD, Jong SM eds. Imaging spectrometry: Basic principles and prospective applications. Kluwer Academic,307-359.
    DeMaagd, P.G., Hendriks, A.J., Seinen, W., Sijm, D.T.H.M.,1999. pH-Dependent hydrophobicity of the cyanobacteria toxin microcystin-LR [J]. Water Res.33,677-680.
    Dietrich D,Ioeger S.2004. Guidance values for microcystins in water and cyanobacterial supplement-products (blue green algal supplements):a reasonable or misguided approach?[J]. Toxicol Appl Pharmacol,203 (3):273-289.
    Duy T.N., Lam P.K.S., Shaw G.R.,2000. Toxicology and risk assessment of fresh water cyanobacterial (blue-green Algae) toxins in water. Rev. Environ. Contam. Toxicol.163, 113-186. J
    English W. R., Schwedler T. E. and Dick L. A.,1993. Aphanizomenon flos-aquae, a toxic blue-green alga in commercial channel catfish Ictalurus punctatus ponds: a case history.J. Appl.Aquacult.3 1/2, pp.195-209
    Eriksson, J.E., Gronberg, L., Nygard, S., Slotte, J.P. and Meriluoto, J.A.O.,1990., Hepatocellular uptake of 3H-dihydromicrocystin-LR, a cyclic peptide toxin. Biochim. Biophys. Acta 1025, pp. 60-66
    Falconer I. R .1991. Tumor promotion and liver injury caused by oral consumption of cyanobacteria. Environmental toxicology and water quality,6:177-184.
    Falconer I. R.2001. Toxic cyanobacterial bloom problem in Australia waters risks and impacts on human health. Phycologia,40(3):228-233
    Feitz A.J., Waite T.D., Jones G.J., Boyden B.H., Orr P.T.,1999, Photocatalytic degradation of the blue-green algal toxin microcystin-LR in a natural organic-aqueous matrix, Environm.S ci. Technol.,33,243-249.
    Fischer W.J. and Dietrich D.R.,2000. Pathological and biochemical characterization of microcystin-induced hepatopancreas and kidney damage in carp (Cyprinus carpio), Toxicol. Appl. Pharmacol.164:73-81
    Fitzgerald, D.J.,2001. Cyanotoxins and human health-overview. In:Chorus, I., Editor,,2001. Cyanotoxins-Occurrence, Causes, Consequences, Springer, Berlin, pp.179-190.
    Fladmark K E, Serres M H, Larsen N Letal.1998. Sensitive detection of apoptogenic toxins in suspension cultures of rat and salmon hepatocytes[J]. Toxicon,36:1101-1114.
    Fladmark KE,Brustugun OT,Mellgren G,et al.2002. Ca2+ / cahnodulin dependent protein kinase Ⅱ is required for microcystin induced apoptosis[J]. Biol Chem,277(4):2804-2811.
    Fromme H., Koehler A., Krause R.and Fuehrling D.,2000. Occurrence of cyanobacterial toxins-microcystins and anatoxin-a-in Berlin water bodies with implications to human health and regulations, Environ. Toxicol.15,:120-130.
    George I. et al.,2007. Benthic Cyanobacteria that produce microsytin-LR, isolated from four reservoirs in Southern California. Water research 41 (2007) 492-498
    Gorham,P.R,Carmichael,W.W.1988. Hazards of freshwater blue-greens(cyanobacteria) Cambridge University Press,Oxford403-431.A
    Greene J.,1985. A comparison of three microbial assay procedures for measuring toxicity of chemical residues.Arch.Environ.Contam.Toxicol.,14:659-667
    Hankenson K. and Schaeffer J.,1991. Microtox Assay of Trinitrotoluene, Diaminonitrotoluene, and Dinitromethy laniline Mixtrues, Bull. Environ. Contam.Toxicol,46:550-553
    Harada, K., Murata, H., Qiang, Z., Suzuki, M., Kondo, F.,1996. Mass spectrometric screening method for microcystins in cyanobacteria. Toxicon 34,701-710.
    Hilborn E.D., Carmichael W.W., Yuan M., Azevedo S.M.FO.2005. A simple colorimetric method to detect biological evidence of human exposure to microcystins. Toxicon.46:218-221
    Hindman S., Favero M., Carson L., Petersen N., Schonberger L. and Solano J.,1975. Pyrogenic reactions during hemodialysis caused by extramural endotoxin, Lancet 2:732-734
    Honig,R.A.et al.,1980. Toxicity tests of aquatic pollutants paramecium Ehrenberg (Flagellata) populatens. Bull.Environ. Contam.Toxicol,25:169-175
    Ito E, Kondo F, Harada K,2000. First report on the distribution of orally administered microcystin-LR in mouse tissue using an immunostaining method. Toxicon,38:37-48
    Ito-E, Taka F, Masui H, et al.,2002. Comparison of protein phosphatase inhibitory activity and apparent toxicity of microcystins and related compounds. Toxicon,40(7):1017-1025
    Joakim Bjerketorp,Sebastian Hikansson,Shimshon Belkin,et al.,2006. Advances in preservation methods:keeping biosensor microorganisms alive and active[J]. Current Opinion in Biotechnology,17:43-49.
    Jochimsen EM, Carmichael WW, An JS, Cardo DM, Cookson ST, Holmes CE, Antunes MB, de Melo Filho DA, Lyra TM, Barreto VS, Azevedo SM, Jarvis WR.1998. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N. Engl. J. Med.,338:873.
    Jones and Orr 1994 Jones G J, Orr P T.1994. Release and degradation of microcystin following algicide treatment of a Microcystins aeruginos bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay[J]. Wat Res,28:871-876
    Juntter F,1984. Dynamics of the volatile organic substances associated with cyanobacteria and algae in a eutrophic shallow lake [J]. Applied and Environmental Microbiology, 12(2):824-820
    Khiari D, Barrett S E, Suffet I H.1997. Sensory GC analysis of decaying vegetation and sep tic odors [J]. Journal AWWA,89 (4):150-161
    Kondo F.1992.Formation,characterization and toxicity of the glutathione and cysteine conjugates of toxic heptapeptide microcystins[J].Chemical Research Toxiciology,5(5):591-596.
    Kos P., Gorzo G., Suranyi G and Borbely G.,1995. Simple and efficient method for isolation and measurement of cyanobacterial hepatotoxins by plant tests (Sinapis alba L.), Anal. Biochem. 225:49-53.
    Kurki-Helasmo K.and Meriluoto J.,1998.Microcystin uptake inhibits growth and protein phosphatase activity in mustard (Sinapis alba L.) seedlings.Toxicon.36(12):1921-1926
    Lawrence J.F.and Menard C.,2001. Determination of microcystins in blue-green algae, fish and water using liquid chromatography with ultraviolet detection after sample clean-up employing immunoaffinity chromatography, J. Chromatogr. A 922 (2001), pp.111-117
    Lawton L A, Edwards C, Codd G A.1994. Extraction and high performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst,,119:1525-1530.
    Lee H S, Jeong C K, Lee H M, et al.,1999. On-line trace enrichment for the simultaneous determination of microcystins in aqueous samples using high performance liquid chromatography with diode array detection. J. of Chromatography A,848:179-184.
    Lee, T. H. and H. N. Chou,2000, Isolation and identification of seven microcystins from a cultured M.TN-2 strain of Microcystis aeruginosa. Bot. Bull. Acad. Sin.41:197-202
    Li, X.Y. Chung I.K., Kim J.I. and. Lee J.A,.2004. Subchronic oral toxicity of microcystin in common carp (Cyprinus carpio L.) exposed to Microcystis under laboratory conditions, Toxicon.44 (8), pp.821-827.
    Liu Y. Q., Xie P., Zhang D. W. & Wen Z. R,2008. Seasonal Dynamics of Microcystins with Associated Biotic and Abiotic Parameters in Two Bays of Lake Taihu, the Third Largest Freshwater Lake in China, B. Environ. Contam. Tox.,80:24-29
    Lukae M. and Aegerter R.1993. Influence of trace metals on growth and toxin production of Microcystis aeruginosa.Toxicon,31:293-305
    Magalhaes V.F., Marinhao M.M., Domingos P, et al.2003. Microcystins (cyanobacterial hepatotoxins) bioaccumulation in fish and crustaceans from Sepetiba Bay (Brazil,RJ) [J]. Toxicon,42:289-295
    ManBock Gu,Geun Cheol Gil.2001. A multi-channel continuous toxicity monitoring system using recombinant bioluminescent bacteria for classification of toxicity [J]. Biosensors & Bioelectronics,16:661-666.
    Marczak M.Wolska L.Chrzanowski W.2006. Microanalysis of volatile organic compounds (VOCs) in water samples-methods and instruments 155(3-4):331-348
    Marinella Farre,Elena Martinez,M.-D.Hernando,et al.2006. European ring exercise on water toxicity using different bioluminescence inhibition tests based on Vibrio fischeri,in support to the implementation of the water framework directive [J]. Talanta,69:323-333.
    Marta M, Csaba, Erika M,et al.2003.Microcystin-LR alters the growth, anthocyanin content and single-stranded DNase enyme activities in sinapis alba L. Seedlings [J]. Aquatic toxicology. 62:1-9
    McDermott C.M.,Feola R.,Plude J.1995. Detection of cyanobacterial toxins(microcystins) in waters of northeastern Wisconsin by a new immunoassay technique Toxicon,1995, 33:1433-1442.
    McElhiney J, Lawton L. A, Leifert C. 2001. Investigations into the inhibitory effects of microcystins on plant growth, and the toxicity of plant tissues following exposure [J]. Toxicon. 39:1411-1420
    Medsker L L, Jerkins D, Thomas J F,1968. Odorous compounds in natural waters. An earthy-smelling compound associated with blue-green alga and actinomycetes [J]. Environment Science and Technology,2:461-464
    Meiβner K,Dittmann E,Borner T.1996. Toxic and non-toxic strains of the cyanobacterium Microcystis aeruginosa contain sequences homologous to synthetase genes.FEMS Microbiology Letters,135:295-303
    Milutinovic A, Zivin M, Zorc2Pleskovic R, et al.,2003. Nephrotoxic. effect of chronic administration of microcystins-LR and YR. Toxicon,42:281-288
    Moollan R W, Rae B, Verbeek A.1996. Some comments on the determination of microcystin toxins in waters by high-performance liquid chromatography. Analyst,121:233-238.
    Murata, N. & Wada, H. (1995). Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J 308,1-8.
    Nagata, S., Soutome, H., Tsutsumi, T., Hasegawa, A., Sekijima, M., Sugamata, M., Harada, K.-I., Suganuma, M. and Ueno, Y.,1995. Novel monoclonal antibodies against microcystin and their protective activity for hepatotoxicity. Natural Toxins 3, pp.78-86
    Nagata, S., Tsutsumi, T., Yoshida, F. and Ueno, Y.,1999. A new type sandwich immunoassay for microcystin: production of monoclonal antibodies specific to the immune complex formed by microcystin and an anti-microcystin monoclonal antibody. Nat. Toxins 72, pp.49-55
    Nishiwaki-Matsushima R., Ohta T., Nishiwaki S., Suganuma M., Kohyama K., Ishikawa T., Carmichael W.W. and Fujiki H.,1992. Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR, J. Cancer Res. Clin. Oncol. 118:420-424.
    Nobre A. C., Coelho G. R., Coutinho M. C. et al.,2001.The role of phospholipase A2 and cyclooxygenase in renal toxicity induced by microcystin-LR. Toxicon,39:721-724
    Orr P. T. and Jones G. J.1998. Relationship between microcystin production and cell division rates in nitrogen limited Microcystis aeruginosa cultures. Limnol. Oceanoger.,43 (7):1604-1614.
    Orr P. T., Jones G. T., Hunter R. A. et al.,2001. Ingestion of toxic Microcystis aeruginosa by daily cattle and the implications for microcystin contamination of milk. Toxicon, 39:1847-1854。
    Otsuka S., Suda S., Li R., Watanabe M., Oyauu H., MatSllinoto S, Watanabe M. M.1999. Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence.FEMS Microbiology Letters,172:15-21
    Pathmalal M. Manage, Christine Edwards, Brajesh K. Singh, and Linda A. Lawton.2009. Isolation and identification of novel microcystin degrading bacteria Appl. Environ. Microbiol.doi:10.1128/AEM.01928-09
    Penaloza R.1990.Toxicity of a soluble peptide from Microcystis sp.to zooplankton and fish [J]. Freshwater Biol,24:233-240.
    Persoone G.,1991. Cyst-based toxicity test: Ⅰ, A promising new tool for rapid and cost effective toxicity screening of chemicals and effluents. Z Angew. Zool,78:235-241
    Pflugmacher S., Codd G.A., Steinberg C.E.W.,1999: Effects of the cyanobacterial toxin microcystin-LR on detoxication enzymes in aquatic plants ENVIRONMENTAL TOXICOLOGY,14 (1):111-115
    Pflugmacher S., Wiegand C., Oberemm A., Beattie K.A., Krause E., Codd G.A. and Steinberg C., 1998. Identification of an enzymatically-formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR. The first step of detoxification, Biochem. Biophys. Acta 1425, pp.527-533.
    Pflugmacher, S., Wiegand, C., Beattie, K.A., Krause, E., Steinberg, C.E.W., Codd, G.A.2001: Uptake, effects, and metabolism of cyanobacterial toxins in the emergent reed plant Phragmites australis (cav.) trin. exsteud. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 20 (4):846-852
    Pflugmacher, S.,2002. Possible allelopathic effects of cyanotoxins, with reference to Microcystin LR, in aquatic ecosystems Wiley Period,Inc. Environ.Toxicol 407-413.
    Pichardo S, Jos A, Zurita JL, Salguero M, Camean AM, Repetto G. 2007. Acute and subacute toxic effects produced by microcystin-YR on the fish cell lines RTG-2 and PLHC-1. Toxicology, 21(8):1460-1467.
    Qiu T, Xie P., Liu Y. et al.2009. The profound effects of microcystin on cardiac antioxidant enzymes, mitochondrial function and cardiac toxicity in rat. Toxicology,257:86-94.
    Rapala J, Lahti K, Sivonen K et al.1994. Biodegradability and adsorption on lake sediments of cyanobacterial hepatotoxins and anatoxin-a. Lett Appl Microbiol,19:423-428.
    Richard A H.2001.Mussels as biomonitors of lake water microcystin:a final report for the summer 2000 microcystin monitoring study[J].Center for freshwater biology,5:1-15.
    Robertson R.F., Jauncey K. Beveridge M. C. M. et al.2005. Depumtion rates and the sensory threshold concentration of geosmin responsible for earthy-musty taint in rainbow trout, Onchorhynchus mykiss. Aquaculture,245(1-4):89-99
    Rodger H.D., Turnbull, T. Edwards C. and Codd G. A.,1994. Cyanobacterial (blue-green-algal) bloom associated-pathology in brown trout Salmo trutta L. in Loch Leven, Scotland J. Fish. Dis.17, pp.177-181
    Saqrane S, Ouahid Y, El Ghazali I, Oudra B, Bouarab L, del Campo FF. 2009. Physiological changes in Triticum durum, Zea mays, Pisum sativum and Lens esculenta cultivars, caused by irrigation with water contaminated with microcystins:a laboratory experimental approach.Toxicon.53(7-8):786-96.
    Shahid Parvez,Chandra Venkataraman,Suparna Mukherji.2006. A review on advantages of implementing luminescence inhibition test(Vibrio fischeri)for acute toxicity prediction of chemicals (J).Environment International,32:265-268.
    Shen D, Zhang X, Liu Y, et al.,2004. Analysis of immunomodulating nitric oxide,iNOS and cytokines mRNA in mouse macrophages induced by microcystin-LR. Toxicology,197:67-77
    Shen P.P., Shi Q.,.Hua Z.C.,2003. Analysis of Microcystins in cyanobacteria blooms and surface water samples from Meiliang Bay, Taihu lake, China. Environmemt International,29:641-647.
    Singh D.P., Tyagi MB, Kumar A., Thakur J.K.,2001.Antialgal activity of a hepatotoxin-producing cyanobacterium, Microcystis aeruginosa. World J Microbiol Biotechnol 17:15-22
    Slater, G P. and Block, V. C.1983. Volatile compounds of the cyanophyceae-a review. Water. Sci. Tech.15:181-190
    Song L. R., Chen W., Peng L., Wan N., Gan N. Q. and Zhang X. M.2007. Distribution and bioaccumulation of microcystins in water columns: A systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu, Water Research.41(13):2853-2864.
    Song, L., Sano, T., Li, R., Watanabe, M. M., Liu, Y. and Kaya, K.1998. Microcystin production of toxic Microcystis viridis (Cyanobacteria) under different culture conditions. Phycological Research. Suppl.46:19-23.
    Soria,D.S.and Ochavillo,D.,1990. Comparative toxicity of trace metals on embryos of the giant clam,Tridacna derasa.Asian Marine Biology,7(0):161-166
    Suffet I H,1999. The drinking water taste and odor wheel for the millennium: beyond Geosmin and 2-methylisoborneol [J]. Water Science and Technology,40(6):1-13
    Susan Watson,1999. Biologically produced taste, odour and toxic compounds in drinking water. Environment, Canada,
    Svenson A. and Zhang L.L.,1995. Acute aquatic toxicity of protolyzing substances studied as the Microtox effect.Ecotoxicol Environ Saf.,30:283-288
    Teixeira da Gloria Lima Crux M, Da Conceicao Nascimento Costa M, Lucia Pires de Carvalho V, Dos Santos Pereira M, Hage E.1993. Gastroenteritis epidemic in the area of the Itaparica dam, Bahia Brazil. Bull Pan-Am Health Org.27:244-253.
    Tencalla, F. and Dietrich, D.,1997. Biochemical characterization of microcystin toxicity in rainbow trout (Oncorhynehus mykiss). Toxicon,35,583-595.
    Tillett D, Dittmann E, Erhard M, et al.2000. Structural organization of microcystin biosynthesis in Microcystis aeruginosa-PCC7806: an integrated peptide polyketide synthetase system. Chem. &Biology,7(10),753-764.
    Tsuji K, Masui H, Uemura H et al.2001. Analysis of microcystins in sediments using MMPB method. Toxicon,39:687-692
    Tsuji K.,Setsuda S.,Watanuki T.,Kondo F.,Nakazawa H.,Suzuki M.,Harada K.1996. Microcystin levels during 1992-1995 for Lakes Sagami and Tsukui-Japan.Nat Toxins.4(4):189-94.
    Tsuji, K., Masui, H., Uemura, H., Mori, Y., Harada, K.,2001. Analysis of microcystins in sediments using MMPB method. Toxicon 39,687-692.
    Ueno Y, Nagata S, Tsutsumi T, Hasegawa A, Watanabe MF.1996. Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis 17:1317-1321
    Utkilen H and Gjolme N.,1998. Emerge the dominating controlling factor for microcystin production in Microcystis aeruginosa? Compilation of abstracts,4th International Conference on Toxic Cyanobacteria,63
    Utkilen, H., Gjalme, N.,1992. Toxin production by Microcystis aeruginosa as a function of light in continuous cultures and its ecological significance. Appl. Environ. Microbiol.58, 1321-1325.
    Valeria F M, Raquel M S.,2001.Microcystin contamination in fish from the Jacarepagua'Lagoon (Rio de Janeiro,Brazil):ecological implication and human health risk[J]. Toxicon,39: 1077-1085.
    Vasconcelos V M.,1995.Uptake and depuration of the heptapeptide toxin microcystin-LR in Mytilus galloprovincialis[J].Aquatic Toxicology.32:227-237.
    Vasconcelos V. M., Sivonen K., Evans W. R., Carmichael W. W., Namikoshi M.,1996. Hepatotoxic microcystin diversity in cyanobacterial blooms collected in Portuguese freshwaters. Wat.Res.30(10):2377-2384.
    Victor L.K. Jennings, Michael H., Rayner-Brandes, David J. Bird.2001. Assessing chemical toxicity with the bioluminescent Photobacterium(Vibrio fischeri):a comparison of three commercial systems[J]. Wat.,Res.,35(14):3448-3456.
    Wajon J E, Kavanagh B V, Kagi R I, et al.1988. Controlling swampy odors in drinking water [J]. Journal AWWA,80 (6):77-83
    Wang C. X., Yediler A., Lienert D., Wang Z. J.,Kettrup A.,2002. Toxicity evaluation of reactive dyestuffs,auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri,CHEMOSPHERE,46(2):339-344
    Wang X.L., Lu Y.L., He G.Z., Han Jingyi, Wang T.Y.2007. Exploration of relationships between phytoplankton biomass and related environmental variables using multivariate statistic analysis in a eutrophic shallow lake:A 5-year study. J. Environ. Sci.19:920-927
    Watanabe M. F, Ho-Dong Park, Fumio Kondo, Ken-ichi Harada, Hidetake Hayashi, Tokio Okino. 1997. Identification and estimation of microcystins in freshwater mussels. Natural Toxins 5: 31-35
    Watanabe M. F., Oishi S.1985. Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions. Appl. Environ. Microbiol.49:1342-1344
    Welker M., Steinberg Ch.,1999, Indirect photolysis of cyanotoxins: one possible mechanism for their lowp ersistence, Water Res.,33 (5),1159-1164.
    Wiedner, C., Visser, P.M., Fastner, J., Metcalf, J.S., Codd, G.A., Mur, L.R.,2003. Effects of light on the microcystin content of Microcystis strain PCC 7806. Appl. Environ. Microbiol.69, 1475-1481.
    Williams DE, Craig M, Dawe SC, Kent ML, Andersen RJ, Holmes CFB.1997.14C-labeled microcystin-LR administered to Atlantic salmon via intraperitoneal injection provides in vivo evidence for covalent binding of microcystin-LR in salmon livers. Toxicon 35:985-989
    Winter P., Duckman S. C. 2000. Analaysisi of volatile odour compounds in digested sewage slundge and sewage sludge cake[J]. Waer Sci Technol,41(6):73-80.
    Xie L.Q., Xie P., Ozawa K., Honma T., Yokoyama A. and Park H.D.,2004. Dynamics of microcystins-LR and -RR in the phytoplanktivorous silver carp in a sub-chronic toxicity experiment, Environmental Pollution 127, pp.431-439
    Xie P. and Liu K.2001 Practical success of biomanipulation using filter-feeding fish to control cyanobacteria blooms: a synthesis of decades of research and application in a subtropical hypereutrophic lake. The Scientific World 1:337-356
    Yang, Min; Yu, Jianwei; Li, Zonglai; Guo, Zhaohai; Burch, Michael; Lin, Tsair-Fuh.2008. Taihu Lake not to blame for Wuxi's woes. SCIENCE,319(5860):158-158
    Yin Liyan, Jiaquan Huang, Dunhai Li, Yongding Liu.2005. Microcystin-RR Uptake and Its Effects on the Growth of Submerged Macrophyte Vallisneria natans (lour.) Hara. Environmental Toxicology,20(3):308-313
    Young C C, Suffet IH, Crozes G, et al.1999. Identification of a woody hay odor causing compound in a drinking water supp ly [J]. Wat Sci Technol,40 (6):273-278
    Yousef S.El-Alawi,Brendan J.McConkey,D.George Dixon,et al.2002. Measurement of Short-and Long-Term Toxcity of Polycyclic Aromatic Hydrocarbons Using Luminescent Bacteria[J].Ecotoxicology and Environmental Safety,2002,51:12-21.
    Zhang D, Xie P, Liu Y et al.2009. Spatial and temporal variations of microcystins in hepatopancreas of a freshwater snail from Lake Taihu. Ecotoxicol Environ Safety,72: 466-472.
    Zimba, P.V., L. Khoo, P.S. Gaunt, S. Brittain and W.W. Carmichael.2001. Confirmation of catfish, Ictalurus punctatus (Rafinesque), mortality from Microcystis toxins. J. Fish Dis.24:41-47
    班海群,庄东刚,朱静媛等.2006.西流湖水体藻类污染现状和产毒蓝藻的全细胞PCR检测[J].卫生研究,35(2):165-168
    陈刚,俞顺章,卫国荣等.1996.肝癌高发区不同饮用水类型中微囊藻毒素含量调查.中国预防医学杂志,30:6-9.
    陈洪达,方榕乐,王耕南,曾昭琪,陶家玉,张立.1965.5水生生物.中国科学院南京地理研究所.太湖综合调查初步报告.北京:科学出版社.43-75.
    陈华,孙昌盛,胡志坚,等.2002.饮水微囊藻毒素在大鼠肝癌发生期间对细胞增殖与凋亡的影响[J].癌变·畸变·突变,14(4):214-217
    陈建中,孙庆俊,刘志礼,郭佳兰,张海.2007.湖泊或水库富营养化后产生的藻毒素影响果树生长的实验室证据[J].中国南方果树.36(3):58-60
    陈艳,俞顺章,林玉娣,等,2002.太湖流域水中微囊藻毒素含量调查[J].中国公共卫生,18(12):1455-1456.;
    陈宇炜,高锡芸,Dokulil M.1998.太湖梅梁湾浮游植物动态及其初级生产力周年变化的研究。见:蔡启铭.太湖环境生态研究(一).北京:气象出版社.98-108
    成芳,凌去非,徐海军,林建华,吴林坤,贾文方.2010.太湖水质现状与主要污染物分析[J].上海海洋大学学报.19(1):105-110
    段洪涛,张寿选,张渊智.2008.太湖蓝藻水华遥感监测方法[J].湖泊科学,20(2):145-152
    樊洁,邓南圣,刘碧波,肖邦定2005,滇池沉积物中微囊藻毒素的HPLC检测,云南环境科学,24(3),18-20.
    范成新,季江,张文华,吴庆龙,陈开宁,陈宇炜.1997.贡湖水质富营养化综合评价及初步预测,海洋湖沼通报,3:18-24
    高继军,张力平,马梅.2003.应用淡水发光菌研究二元重金属混合物的联合毒性[J].上海环境科学,22(11):772-775.
    顾岗.1996.太湖蓝藻暴发成因及其富营养化控制[J].环境监测管理与技术,8(6):17-19.
    关英红.2007.一株溶藻菌株和一株聚藻菌株的分离鉴定及除藻特性研究.哈尔滨工业大学,博士学位论文.
    韩志国,武宝玕,郑解生,谢隆初.2001.淡水水体中的蓝藻毒素研究进展(综述)[J];暨南大学学报(自然科学与医学版);3:129-135
    何家菀,何振荣,郭琼林.1997.有毒铜绿微囊藻对鱼和溞的毒性[J].湖泊科学,9:49-56.
    何振荣,俞敏娟,何家菀,1993.铜绿微囊藻毒株M.8641的毒素[J].生物化学杂志,9(2):168-172
    胡智泉,李敦海,刘永定,何光.,2006.微囊藻毒素对水生生物的生态毒理学研究进展.自然科学进展,2006(01):p.854-858
    胡智泉,刘永定.2005.微囊藻毒素在细长聚球藻中的积累及其毒性效应[J].中国环境科学,25(1):23-27
    黄湫淇,2005.微囊藻毒素的细胞毒性.预防医学情报杂志,21(3):304-306.
    惠秀娟,2003.环境毒理学,化学工业出版社.
    蒋海涛,韩润平,高廷耀,2002.LFSA-GC技术测定水体臭气[[J].江苏环境科技,2002,15(1):12
    金丽娜,张维昊,郑利等.2002.滇池水环境中微囊藻毒素的生物降解[J].中国环境科学,22(2):189-192.
    金相灿,刘树坤,章宗涉等.1995.中国湖泊环境(第二册).北京:海洋出版社,pp:108-149
    金相灿,颜昌宙,许秋瑾.2007.太湖北岸湖滨带观测场水生植物群落特征及其影响[J].湖泊科学,19(2):151-157
    李仁辉,俞敏.1993.铜绿微囊藻的某些生长特性及毒性的研究[J].水生生物学报,17(1):90-92
    李旭文.2009. Lansat-7 SLC-OFF ETM遥感数据下载及在太湖蓝藻水华监测中的应用[J].环境监测管理技术,21(3):54-57
    李艳波,史怀,苑宝玲,陈彩云2008,假单胞菌m-6菌株对微囊藻毒素mc-Lr的降解机理初探,环境保护科学,34(5),4-6.
    李祝,郭向前,赵以军,杨劭 2005,水环境中微囊藻毒素的生物降解,生态科学,24(1),90-95.
    连民,刘颖,俞顺章等,2000.饮水中微囊藻毒素对人群健康影响的横断面研究.中华流行病学杂志,21(6):437-440
    林毅雄,刘秀芬,阎海,刘丽萍.2001.滇池铜绿微囊藻毒素及其在水体中的变化.环境污染治理技术与设备.2(5):12-15
    刘保奇,葛会林,刘树深,2006.测定环境污染物对青海弧菌发光强度抑制的微板发光法研究[J].生态毒理学报,1(2):186-191.
    刘伟龙,胡维平,陈永根,等.2007.西太湖水生植物时空变化[J].生态学报,2007,27(1):159-170
    吕锡武,稻森悠平,丁国际.1999.有毒蓝藻及藻毒素生物降解的初步研究[J].中国环境科学,19(2):138-140.
    马梅,童中华等,1998.新型淡水发光菌(Vibrio qinghaiensis sp.-Q67)应用于环境样品毒性测试的初步研究。环境科学学报,18(1):86-91
    马荣华.孔繁翔.段洪涛.张寿选.孔维娟.郝景燕.2008.基于卫星遥感的太湖蓝藻水华时空分布规律认识[J].湖泊科学,20(6):687-694.
    马晓雁,高乃云,李青松,刘成.顾国芬.2008.上海市饮用水中痕量土臭素和二甲基异冰片年变化规律及来源研究[J].环境科学,2008,29(4):902-908.
    马晓雁,高乃云,李青松等.2006.饮用水中异嗅物质--土臭素及二甲基异冰片的测定方法[J].环境污染与防治,28(8):631-635.
    莫凌云,刘海玲,刘树深,等.2006.5种取代酚化合物对淡水发光菌的联合毒性[J].生态毒理学报,1(3):259-264.
    欧丹云,宋立荣,甘南琴.2003.微囊藻毒素Mc-LR对棕鞭藻(Ochromonas sp.)的毒理学初步分析[A].中国海洋湖沼学会藻类学分会第六届会员暨第十二次学术讨论会—论文摘要集[c].苏州:苏州大学生命科学学院,154.
    钱益春,何平.2009.1998-2006年太湖水质变化分析,江西农业大学学报.31(2):370-374
    饶钦止.1961.五里湖1951年湖泊学调查:三、浮游植物.水生生物学集刊,1:74-92
    上海师范学院等.1983.太湖水环境质量调查.上海师范学院学报(自然科学版),华宁保护专辑.50-69
    沈国华,杨金艳.2002.苏州市区自来水厂取水口水质现状评价[J].江苏水利,(10):23-23,25.
    沈强,刘永定,何家苑.2003.白鲢和罗非鱼对微囊藻毒素MC-LR解毒机制的研究[A].中国海洋湖沼学会藻类学分会第六届会员暨第十二次学术讨论会-论文摘要集[C].苏州:苏州大学生命科学学院.139.
    盛建武,何苗,施汉昌等.2005.微囊藻毒素免疫检测技术研究进展.免疫学杂志,21(3):9-12.
    施玮、牛军峰、余刚,2004.水中五氯酚对发光细菌毒性测定的影响因素,环境科学,25(3):46-49
    宋立荣,李林,陈伟等.2004.水体异味及其藻源次生代谢产物研究进展[J].水生生物学报,28(4):434-439
    苏正淑张宪政.1985.几种测定植物叶绿素含量的方法比较[J].植物生理学通讯,5:77-78
    孙露,沈萍萍,周莹等.2002.太湖水华微囊藻毒素对小鼠免疫功能的影响.中国药理学与毒理学杂志,16(3):226-230
    孙顺才和黄漪平,1993.太湖[M].北京:海洋出版社
    孙小静,张战平,朱广伟,秦伯强.2006.太湖水体中胶体磷含量初探[J].湖泊科学,18(3):231-237
    王安平,朱文杰,郑幼霞.1993.东方弧菌荧光酶的分离纯化和性质研究.发光学报,14(3):292-295.
    王静,庞晓露,刘铮铮,等.2006.超高效液相色谱/串联质谱法分析水中的微囊藻毒素[J].色谱.24(4):335-338.
    王雷,杨震,张建法.1999.含硫化合物的气相色谱检测响应特性研究[J].上海环境科学,18(5):233-235.
    王苏民,窦鸿身.1998.中国湖泊志.北京:科学出版社,pp:261-268
    卫国荣,张占英,连民等.2002.微囊藻毒素LR对SD孕鼠胎盘的损伤作用.中国公共卫生,18(8):921-922
    吴和岩,郑力行,苏瑾等。2005.上海市供水系统微囊藻毒素LR含量调查.34(21):152-154
    徐盈,黎雯,吴文忠,1999.东湖富营养水体中藻菌异味性次生代谢产物的研究[[J].生态学报,19(2):212-216
    许秋瑾,高光,陈伟民.2005.太湖微囊藻毒素年变化及其与浮游生物的关系[J].中国环境科学.25(1):28-31.
    尹黎燕,黄家权.2004.微囊藻毒素对沉水植物苦草生长发育的影响.水生生物学报28(2):147-150.
    尹黎燕,黄家权,沈强,李敦海,刘永定.2004.微囊藻毒素在沉水植物苦草中的积累。水生生物学报2004,28(2):151-154.
    俞顺章,赵宁,资晓林等.2001.饮水中微囊藻毒素与我国原发性肝癌关系的研究.中国肿瘤杂志,23:96-99.
    虞锐鹏,陶冠军,秦方等.2003.液相色谱-电喷雾电离质谱法测定水中的微囊藻毒素[J].分析化学研究简报.31(12):1462-1464.
    张维昊,宋立荣,徐小清,刘永定,张锡辉.2004.天然水体中微囊藻毒素归宿的初步研究[J].长江流域资源与环境,13(1):84-88
    张维昊,徐晓清,丘昌强.2001. Advance in study on microcystins in aquatic environment. Research of Environmental Sciences (in Chinese)(环境科学研究),14(2):57-61.
    张晓健,张悦,王欢等.2007.无锡自来水事件的城市供水应急除臭处理技术[J].给水排水,33(9):7-12.
    张甬云,徐立红,周炳升等.1995.鱼体中谷胱甘肽对微囊藻毒素的解毒作用的初步研究[J].水生生物学报,20(3):284-286.
    张占英,连民,刘颖等.2002.微囊藻毒素LR对胎鼠的致畸和损伤作用.中华医学杂志,82(5):345-347
    张占英,俞顺章,陈传炜.2001.微囊藻毒素LR对DNA和自然杀伤细胞的损伤效应研究.中华预防医学杂志,35(2):75-78
    张占英,俞顺章,卫国荣等.2002.微囊藻毒素-LR在动物体内整体水平及细胞分布水平.卫生毒理学杂志,16(1):5-8
    赵华清,殷浩文,陈晓倩等.2000.发光细菌法检测环境污染中的基因毒性[J].应用与环境生物学报,6(6):577-580.
    郑光华.1986.种子活力的原理及其应用[M].植物生理生化进展(Ⅳ).北京:科学出版社,154
    中国科学院南京地理所.1965.太湖综合调查初步报告.北京.科学出版社,1-83
    中国科学院南京地理与湖泊研究所.2007.太湖梅梁湾2007年蓝藻水华形成及取水口污水团成因分析与应急措施建议[J].湖泊科学,19(4):357-358.
    中华共和国国家标准1995.水质急性毒性的测定发光细菌法,国家环保局,国家技术监督局发布,GB/T 15441-1995
    周勤,孙伟.2004.给水中的致味物质及其检测方法[J].工业水处理,24(1):5-7.
    朱广伟.2008.太湖富营养化现状及原因分析[J].湖泊科学,20(1):21-26.
    朱文杰,汪杰,陈晓耘等.1994.发光细菌一新种—青海孤菌[J].海洋与湖沼,25(3):273-279.
    邹雯雯等.2008.XAD-2树脂富集-高效液相色谱法检测水体中微囊藻毒素.化学与生物工程.25(8):73-76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700