用户名: 密码: 验证码:
溶藻细菌对水华与赤潮微藻的抑制效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于淡水与海洋水体富营养化程度的日益加剧,有害藻类暴发日趋频繁,严重影响了水域生态系统的安全以及附近居民的生活健康,因此探索行之有效的抑制藻华暴发的途径是极为迫切的。在利用物理、化学和其它生物方法处理不甚理想的情况下,利用溶藻细菌除藻成为目前生物控藻的研究热点,具有广阔的应用前景。
     溶藻细菌一般从发生富营养化的水体中直接分离,具有一定的针对性,且控藻效果非常好,尤其是在藻华发生初期使用,短期内即可达到控制藻类生物量或阻止藻类大量增殖的效果。本文从江苏太湖水样和山东胶州湾海底沉积物中分别分离得到3株和2株高效溶藻细菌,在对这5株菌株进行生理生化和分子鉴定的基础上,分别研究了其对水华与赤潮常见有害藻类---铜绿微囊藻(Microcystis aeruginosa)与中肋骨条藻(Skeletonema costatum)的溶解特性和作用机理,并结合生物化学手段对细菌的溶藻活性成分进行分析,推进了溶藻细菌对藻类的抑制效应研究。
     1、铜绿微囊藻溶藻菌株的筛选、鉴定
     1)从太湖水样中共分离出24株细菌,其中3株细菌表现出较强的溶藻效果,将其编号TL1, TL2、TL3,并以这三株细菌作为试验材料进行下一步研究。
     2)对3株溶藻细菌的16Sr DNA进行测序,采用BLAST程序将测序结果与GenBank中的已知序列进行相似性分析,结合生理生化鉴定,结果表明:细菌TLl、TL2和TL3分别属于无色杆菌属(Achromobacter sp.)、寡养单胞菌属(Stenotrophomonas sp.)和芽孢杆菌属(Bacillus sp.)。
     2、铜绿微囊藻溶藻细菌的溶藻特性及溶藻方式
     1)试验发现,细菌TL1、TL2、TL3都能够强烈抑制铜绿微囊藻、斜生栅藻和小球藻的生长,导致其叶绿素α含量显著下降,且尤以TLl菌株的溶解效果最好。
     2)在细菌TL1、TL2与TL3培养液的处理下,铜绿微囊藻的叶绿素荧光动力学参数:PSⅡ的最大光能转化效率(Fv/Fm). PSⅡ的实际光能转化效率(Yield)和最大相对电子传递速率(Pm即rETRmax),随着时间的增加而持续下降。细菌TL1、TL2、TL3的溶藻机理是破坏铜绿微囊藻的光合系统,强烈地抑制铜绿微囊藻的光合活性,从而抑制铜绿微囊藻的生长。
     3)对细菌TL1, TL2, TL3的溶藻作用机理进行探究,发现这三株细菌的溶藻因子不是细菌菌体,而是各自的胞外分泌物。细菌TL1、TL2、TL3均是通过分泌胞外活性物质进行间接溶藻。
     3、铜绿微囊藻溶藻细菌发酵的优化及溶藻活性物质性质的研究
     1)通过单因子试验的研究,探索了溶藻细菌TL1、TL2、TL3的最佳发酵条件,结果发现:当细菌TL1的培养温度为35℃,pH为8.0,培养时间为96h时,所分泌的溶藻物质的溶藻效果最明显;当细菌TL2的培养温度为30℃,pH为7.0,培养时间为60h时,所分泌的溶藻物质的溶藻效果最明显;当细菌TL3的培养温度为30℃,pH为7.0,培养时间为72h时,所分泌的溶藻物质的溶藻效果最明显。
     2)蛋白酶K处理后的三株溶藻细菌的胞外分泌物都丧失溶藻活性,说明细菌TL1、TL2、TL3的溶藻因子—胞外分泌物都不是蛋白类。
     3)细菌TL1、TL2、TL3的胞外分泌物中也没有检出磷的存在,表明这三株溶藻细菌的胞外分泌物不是核酸。
     4)细菌TL1、TL2的α-萘酚反应呈阴性,细菌TL1、TL2的溶藻活性物质不属于糖类,可能是具有耐热性的其它小分子物质;TL3菌株的胞外溶藻活性成分可能是一种水溶性糖。
     4、中肋骨条藻溶藻细菌的筛选鉴定
     1)从胶州湾海底沉积物中共分离出2株对中肋骨条藻有较强溶解作用的溶藻细菌,将其编号为JZ1、JZ2、并以这两株细菌作为试验材料进行一下研究。
     2)鉴定结果表明,菌株JZ1及JZ2分别属于交替单胞菌属(Alteromonas sp.)和列文虎克属(Maribacter sp.)。
     5、中肋骨条藻溶藻细菌的溶藻特性及溶藻方式
     1)按照10%的体积比向中肋骨条藻藻液中加入菌株JZ1、JZ2培养液,10d后,中肋骨条藻藻细胞全部死亡。细菌JZ1、JZ2具有较强的溶藻效果。
     2)根据荧光显微镜的观察,经过菌株JZ1培养液后的中肋骨条藻藻细胞的膜内物质首先开始变得浑浊,接着藻细胞膜出现破裂,胞内物质外漏。因此细菌JZ1、JZ2的溶藻机理是能够破坏中肋骨条藻细胞的完整性,使藻细胞程序性死亡。
     3)中肋骨条藻的生长阶段对菌株JZ1、JZ2溶藻效果均有影响,不同生长阶段的中肋骨条藻对细菌JZ1溶藻效果的敏感度可认为:稳定期>对数生长期>迟缓期;而菌株JZ2在中肋骨条藻的整个生长期内均对藻细胞的生长产生抑制作用.
     4)细菌JZ1对供试的球等鞭金藻有较强的溶解作用,对杜氏盐藻的生长影响较小,但对周氏扁藻、鲁兹帕夫藻、微绿球藻、司西扁藻、假微型海链藻的生长却没有任何影响。
     5)细菌JZ2对供试的鲁兹帕夫藻和球等鞭金藻有明显的溶解作用,但对周氏扁藻、杜氏盐藻、微绿球藻、司西扁藻、假微型海链藻的生长却没有任何影响
     6)细菌JZ1、JZ2的溶藻因子不是细菌茵体,同细菌TL1、TL2、TL3一样,也是细菌的胞外分泌物,细菌JZ1、JZ2也是通过间接溶藻的方式进行溶藻活动。
     6、中肋骨条藻溶藻细菌活性物质的分离提纯
     1)细菌JZ1的溶藻活性物质具有一定的耐酸性,但在碱性和高温条件下失活;而细菌JZ2的溶藻活性物质具有耐酸、耐碱和耐高温性。
     2)经过分子筛过滤、离子交换树脂筛选、高效液相色谱分离,得到纯化的细菌JZ1的溶藻活性物质。
     3)根据基质辅助激光解吸质谱及高效液相色谱-电喷雾质谱联用仪分析,得知细菌JZ1的溶藻活性物质一种是分子量为1267Da的多肽。
     综上所述,细菌TL1、TL2、TL3分泌的胞外溶藻活性物质阻碍了铜绿微囊藻的光合作用,间接抑制了铜绿微囊藻的生长;细菌JZ1、JZ2分泌的胞外溶藻活性物质破坏了中肋骨条藻藻细胞膜的完整性,继而抑制了中肋骨条藻的生长。另外,通过对5株溶藻细菌的溶藻特性、溶藻方式的分析,以及溶藻活性物质的性质研究,我们认为将溶藻细菌所分泌的胞外溶藻活性物质做为生物除藻剂可成为控制藻华的一种可能途径。
Nowdays, eutrophication and massive accumulations of planktonic microalgae as algal blooms in waterbodies have caused serious environmental problems and done harm to the health of people around. So it is important to find out an effective method for controlling the growth of the blooming-forming algae. Measures for controlling such kind of algae include physical, chemical and biological means, but the former two may damage the aquatic environment and require high-energy inputs. The alternative approach for the elimination of nuisance algae involves the application of algae-lysing bacteria. Algae-lysing bacteria as the biology of removing algae have attracted more attention and has broad application prospect.
     The alage-lysing bacteria are able to restrain the biomass or multiplication of the bloom-forming algae in a short time, especially in the initial stages of the water blooms. Three algae-lysing bacteria named TL1、TL2、TL3 and two algae-lysing bacteria named JZ1 and JZ2 were isolated from water collected in Tai Lake and seafloor sediment collected in Jiaozhou Bay, respectively, and these bacterial strains were identified by physiologically and biochemically. We investigated the lytic abilities and mechanisms of TL1、TL2、TL3 strains and JZ1、JZ2 on the growthes of Microcystis aeruginosa and Skeletonema costatum, respectively. Moreover, we studied the characteristics of extracellular algae-lysing components from bacterial strains.
     1. Isolation and identification of the bacteria against Microcystis aeruginosa
     1) Among 24 bacterial strains isolated from water sample of Tai Lake, three bacterial strains, named as TL1、TL2、TL3, showed strong lytic activities. Thus, they were selected to be as research materials.
     2) The bacterial strains were identified by the sequence analysis of 16SrDNA, and the DNA sequence similarity analysis with the obtained sequences in Genbank. According to the morphological and physiological-biochemical characteristics, strains TL1、TL2、TL3 belong to Achromobacter sp., Slenotrophomonas sp. and Bacillus sp., respectively.
     2. The lytic abilities and mechanisms of strain TL1、TL2、TL3
     1) Strains TL1、TL2、TL3 were able to restrain the growth of Microcystis aeruginosa、Chlorophyta and Chlorella strongly, and contents of chlorophyll-a and phycocyanin in the algae decreased remarkable, and strain TL1 had the best algicidal activity.
     2) Comparing to control, the maximal photochemical efficiency of PSⅡ(Fv/Fm), the actual photochemical efficiency of PS II in the light (Yield), the maximal relative electron transport rate (Pm) reduced sharply. The photosynthesis of M. aeruginosa was greatly promoted by three bacterial strains and the growth of M. aeruginosa was inhibited, this was the algicidal mechanisms of strains TL1、TL2、TL3.
     3) The algae-lysing factors in strains TL1、TL2、TL3 were not the bacterium themselves, but a kind of extracellular products from them. Three bacterial strains had algicidal effects on M. aeruginosa by indirect attack.
     3. The optimization of fermenting conditions of bacteria and study on the characteristics of algicidal substances
     1) When incubation temperature was 35℃, pH condition was 8.0 and the incubation time was 96h, the algicidal substance excreted by strain TL1 had the best algicidal effect on M. aeruginosa; and when incubation temperature was 30℃, pH was 7.0, the incubation time was 60h, the algicidal substance excreted by strains TL2 had the best algaicidal effect; the algicidal substance produced by strain TL3 showed the best algicidal effects when incubation temperature was 30℃, pH was 7.0, the incubation time was 72h.
     2) The algicidal substances excreted by strains TL1, TL2, TL3 lost the algicidal activities under the treatment of Proteinase K, it suggested that the algicidal substances excreted by stain TL1, TL2, TL3 were not protein.
     3) There were not phosphorous in the algicidal substances, the algicidal substances excteted by strain TL1, TL2, TL3 were not nucleic acid.
     4) The molish of strain TL1 and TL3 were negative, so the algicidal substances excreted by strain TL1 and TL2 were not sugar, they may be other substances; the algicidal substance of strain TL3 was water-soluble sugar.
     4. Isolation and identification of bacteria against Skeletonema costatum
     1) Two bacterial strain which showed lytic effects on Skeletonema costatum were isolated from seafloor sediment that collected in Jiaozhou Bay. And they were named provisionally as JZ1 and JZ2.
     2) Strains TL1 and TL2 belong to Alteromonas sp. and Maribacter sp., respectively, on the basis of morphological and physiological-biochemical characteristics.
     5. The lytic abilities and mechanisms of strain JZ1、JZ2
     1) When the volume ratio of medium to algae solution was 10%, the cells of S.costatum died absolutely after 10 days.
     2) After addtion of strain JZ1, cellular morphology changes with time. Condensation of the cells and chloroplasts was clearly visible as was the formation and release of membrane blebs. So the algicidal mechanisms of strain JZ1、JZ2 are because the strains could break the cells of S. costatum, and this is indicative of programmed cell death.
     3) The antialgal efficiencies of JZ1 and JZ2 were different to the various growth phages of algae. For strain JZ1, the removal rate of S. costatum in stable phrase was the highest, and the next was log growth phase. However, strain JZ2 showed obvious algicidal effect in all growth phases of S. costatum.
     4) The algae-lysing factors in strain JZ1, JZ2 were not the bacterium themselves, but a kind of extracellular products from them as stain TL1, TL2, TL3. The two bacterial strains had algicidal effects on S. costatum by indirect attack.
     5) Species of Isochrysis galbana, Dunaliella salina were susceptible to bacterium JZ1,while the lytic effects of this bacterium on Tetraselmis chui, Pavlova lutheri, Nannochloropsis salina, Tetraselmis suecica, Thalassiosira pseudonana were feeble.
     6) Strain JZ2 had effects on the growth of Pavlova lutheri and Isochrysis galbana, but didn't show effects on Tetraselmis chui, Dunaliella salina, Nannochloropsis salina, Tetraselmis suecica, Thalassiosira pseudonana.
     6. Isolation and purification of algicidal substance from strain JZ1
     1) The algicidal substance of strain JZ1 showed a little bit effect on the growth of S. costatum with acid treatment, but that of strain JZl lost the algicidal activity under stresses with alkali or high temperature; Strain JZ2 had acid tolerance and showed obvious effect on the growth of S. costatum.
     2) The pure algicidal substance of strain JZ1 was got, with the isolation and purification of resins and HPLC.
     3) Depend on the analysis of LC-ESI-MS and MALDI-MS, the algicidal component of strain JZ2 was a peptide with 1267kDa molecular weight.
     As above, the excretes produced by strains TL1、TL2、TL3 inhibit the growth of Microcystis aeruginosa by hindering the photosynthesis of M. aeruginosa; the excretes procuced by strains JZ1、JZ2 inhibit the growth of Skeletonema costatum by destroying the cells of S. costatum. The biological algaecide that made from the algicidal substances produced by algae-lysing bacteria have broad application prospect, based on the analysis of algicidal characteristics and algicidal mode of 5 strains of algae-lysing bacteria and the study characteristics of algicidal substances.
引文
1. Agrawal A A. Algal defense, grazers, and their interactions in aquatic trophic cascades. Acta Oecologica,1998,19(4):331-337.
    2. Baker K H, Herson D S. Interactions between the diatom Thallasiosira Pseudonana and an associated Pseudomonad in a mariculture system. Applied and Environmental Microbiology,1978, 35(6):791-796.
    3. Ball A S, Williams M, Vincent D, et al. Algal Growth Control by a Barley Straw Extract. Bioresource Technology,2001,77:177-181.
    4. Banin E, Israely T, Kushmaro A, et al. Penetration of the coral-bleaching bacterium Vibrio shiloi into Oculina patagonica. Applied and Environmental Microbiology,2000,66(7):3031-3036.
    5. Berland B R, Bonin D J, Maestrini S Y. Are some bacteria toxic for marinealgae? Marine Biology, 1972.,12:189-193.
    6. Caiola M G, Pellegrini S.Lysis of Microcysis Aeruginosa by Bdellovibrio-like Bacteria. Journal of Applied Phycology,1984,20(1):471-475.
    7. Canter H M, Heaney S I, Lund J W G. The ecological significance grazing on planktonic populations of cyanobacteria by the ciliate Nassula. New Phytologist,1990,144:247-263.
    8. Carmichael W W. Cyanobacteria secondary metabolites-the cyanotoxins. Applied Biochemistry and Microbiology,1992,72:445-459.
    9. Carrick H J, Fahnenstiel G L and Taylor W D. Growth and Production of Planktonic Protozoa in Lake Michigan:Insitu versus in vitro Companions and Importance to Food Web Dynamics. Limnology Oceanogr,1992,37:1221-1235.
    10. Choi H L, Kim B H, Kim J D. Streptomyces Neyagawaensis as a Control forthe Hazardous Biomass of Microcystis Aeruginosa (Cyanobacteria) in Eutrophic Freshwaters. Biological Control, 2005,33:335-343.
    11. Chours I, Bartram J. Toxic cyanobacteria in Water:a guide to their public health consequences, monitoring and management. London, E and FN Spon,1999,15-40.
    12. Christopher G P, Tom L D. Infection, growth, and community-level consequences of a diatom pathogen in a sonoran desert stream, Journal of Applied Phycology,1993,29(4):442-452.
    13. Costerton J W, Cheng K J, Geesey G G, et al. Bacterial biofilms in nature and disease. Annual Review Microbiology,1987,41:435-464.
    14. Dakhama A, Noue J D.Lavoie M.C.Isolation and Identification of Anti-algal Substances Produced by Pseudomonas Aeruginosa. Journal of Applied Phycology,1993,5(9):297-306.
    15. Datta S, Jana B B. Control of Bloom in a Tropical Lake:Grazing Efficiency of Some Herbivorous Fishes. Journal of Fish Biology.1998,53:12-24.
    16. Delgado M, Alcaraz M. Interactions between red tide microalgal and herbivorous zooplankton:the noxious effects of Gyrodinium corsicum (D inophyceae) on Acartiagrani (Copepoda:Calanoida), Journal of Plankton Research,1999,21(12):2361-2371.
    17. Dongxia Li, Cong W, Cai Z, et al, Response of growth and photosynthesis of marine red tide alga Heterosigma akashiwo to iron and iron stress condition. Biotechnology Letters,2002,24:743-747.
    18. Doucette G J, Harrison P J. Aspects of iron and nitrogen nutrition.in the red tide dinoflagellate Gymnodinium sanguineum. Marine Biology,1991,110(2):165-173.
    19. Drenner R W, Day D J, Basham S J, et al. Ecological Water treatment system for removal of phosphorus and nitrogen from Polluted water. Biological Application,1997,7(2):381-391.
    20. Dryden R C, Wright S J. Predation of cyanobacteria by protozoa. Canadian Journal of Microbiology,1987,33:471-482.
    21. Duy T N, Lamp K S, Shaw G R, et al. Toxicology and risk assessment of freshwater cyanobacterial (blue-green algae) toxins in water. Review in Environmental Contamination Toxicology,2000, 16(3):113-186.
    22. Egan S, James S, Holmstrom C, et al. Inhibition of Algal Spore Germination by the Marine Bacterium Pseudoalteromonas Tunicate. Microbiology Ecology,2001,35:67-73.
    23. Elander R P, Stauffer J F, Backus M P. Antibiotic production by various species and varieties of Emericelllopsis and Cephalosporium. Antimicrobial Agents Annual,1960,1:91-102.
    24. Fan C, Glibert P M, Burkholder J M. Environmental relationships for Prorocentrum minimum in natural blooms and laboratory cultures. Harmful algal,2003,2:283-299.
    25. Fuhrman J A, Eppley R W, Hagstrom A, et al. Variations in Bacterioplankton and Related Parameters in the Southern California Bight. Marine Ecological,1985,27:9-20.
    26. Gavin K, Maria L, Chan D K O. Environmental and nutritional factors which regulate population dynamics and toxin production in the dinoflagellate Alexandrium catenella. Hydrobiologia,1997, 352:117-140.
    27. Geider R J, La R J. The role of iron in phytoplankton photosynthesis and the potential for iron-limitation of primary productivity in the sea. Photosynthesis Research,1994,39(3):275-301.
    28. Hallegraeff G M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993,32:79-99.
    29. Hartwell A D. Hydrographic factors affecting the distribution and movement of toxic dinoflagellates in the Western Gulf of Marine. In: Toxic dinoflagellate blooms.1975,47-68.
    30. Hayashida S, Tanaka S, Teramoto Y, et al. Isolation of Anti-Algal Pseudomonas Strains and Their Lethal Activity for Chattonella antiqua. Agricultural and Biological Chemistry,1991,55(3): 787-790.
    31. Hodgkiss I J, Ho K C. Are changes in N:P ratios in coastal waters the key to increased red tide blooms. Hydrobiologia,1997,352:141-147.
    32. Hogetsu K, Okanishi Y, Sugawara H. Studies on the antagonistic relationship between phytoplankton and rooted aquatic plants. Japanese Journal of Limnology,1960,21:124-130.
    33. Hu Y M, Ju L K. Purification of Lactonic Sophorolipids by Crystallization. Journal of Biotechnology,2001,87(3):263-272.
    34. Huang X, Huang L, Yue W. The characteristics of nutrients and eutrophication in the Pearl River estuary, South China. Marine Pollution Bulletin,2003,47:30-36.
    35. Imai I, Ishida Y, Sakagiichi K, et al. Algicidal marine bacteria isolated from northern Hiroshima Bay. Fisheries Science,1995,61(1):628-636.
    36. Imai I, Ishida Y, Hata Y. Killing of marine phytoplankton by algiding bacterium Cytophaga sp. isolated from the coastal sea of Japan. Marine Biology,1993,16(2):527-532.
    37. Imamura N, Motoike 1, Noda N, et al. Argimicin A, a novel anti-cyanobacterial compound produced by an algae-lysing bacterium. Journal of Antibiotics,2000,53(11):1317-1319.
    38. Imamura N, I Motoike, N Shi, et al. An efficient screening approach for anti-Microcystis compounds based on knowledge of aquatic microbial ecosyste. Journal of Antibiotics,2001,54(6): 582-587.
    39. Jeong J H, Jin J H, Sohn C H, et al. Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. Journal of Applied Phycology,2000,12:37-43.
    40. Jin Q, Dong S L. Comparative Studies on the Allelopathic Effects of Two Different Strains of Ulva Pertusa on Heterosigma Akashiwo and Alexandrium Tamarense. Journal of Experimental Marine Biology and Ecology,2003,293:41-55.
    41. Kang Y H, Kim J D, Kim B H, et al. Isolation and characterization of a bio-agent antagonistic to diatom, Stephanodiscus hantschii. Journal of Applied Microbiology,2005,98:1030-1038.
    42. Kawano Y, Nagawa Y, Nakanishi H, et al. Production of thiotropocin by a marine bacterium, Caulobacter sp. and its anti-microalgal activities. Journal of Marine Biotechnology,1997,5: 225-229.
    43. Kodani S, Imoto A, Mitsulani A., et al. Isolation and Identification of the antialgal compound, Harmane (1-methyi-β-carboline), Produced by the Algicidal Bacterium, Pseudomonas sp.K44-1. Journal of Applied Phycology,2002,14:109-114.
    44. Kumar H D. Streptomycin and penicillin-induced inhibition of growth and pigment production in blue-green algae and production of strains of Anacystis nidulans resistant to these antibiotics. Journal of Experimental Botany,1964,15:232-250.
    45. Kuvhmaro A, Loya Y, et al. Bacterial infection and coral bleaching. Nature,1996,380:392-396.
    46. Lambert T W, Holmes C F B, Hrudey S E. Microecystin class of toxins: health effects and safety of drinking water supplies. Environmental Review,1994, (2):167-186.
    47. Langdon C. On the causes of interspecific differences in the growth-irrdiance relationship for phytoplankton. Part I. A comparative study of the growth-irradiance relationship of three marine phytoplankton species: Skeletonema costatum, Olisthodiscus luteus and Gonyaulax tamarensis. Journal of Plankton Research,1987,9(3):459-482.
    48. Lee S, Kato J, Takiguchi N, et al. Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strainA28. Applied and Environmental Microbiology, 2000,66(1):4334-4339.
    49. Lee S J, Kim Y, Kim HG,et al. Alga-lytic activity of a-mannosidase on harmful marine microalgae. Journal of Applied Phycology,2000,12:191-193.
    50. Lovejoy C, Bowman J P, Hallegraeff G M. Algicidal effects of a novel marine Pseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful Algal bloom species of the Genera Chattonella, Gymnodinium, and Heterosigma. Applied and Environmental Microbiology,1998, 64(8):2806-2813.
    51. Manage P M, Kawabata Z, Nakano S. Dynamics of Cyanophage-like Particles and Algicidal Bacteria Causing Microcystis Aeruginosa. Mortality Limnology,2001,2(2):73-78.
    52. Martin J H, Fitzwater S E. Iron deficiency limits phytoplankton growth in the north-east subarctic Pacific. Nature,1988,331(6154):341-343.
    53. Matsunaga K. Chemical forms of iron assimilated by phytoplankton. Mizu Shori Gijutsu,1990, 31(3):135-138.
    54. Middleboe M, Sondergard M, Letarte Y, et al. Attached and free-living bacteria: Production and polymer hydrolysis during a diatom bloom. Microbial Ecology,1995,29:231-248.
    55. Miller P K, Krohn K, Miihlrad P F. Effects of Pyocyanine, a Phenazine Dye from Pseudomonas Aeruginosa, on Oxidative Burst and Bacterial Killing in Human Neutrophils. International Immunology,1989,57:2591-2596.
    56. Mitsutani A, Yamasaki I, Kitaguchi H, et al. Analysis of algicidal proteins of a diatom-lytic marine bacterium Pseudoalteromonas sp. strain A25 by two-dimensional electrophoresis. Phycologia,2001, 40(3):286-291.
    57. Nagasaki K, Yam aguchi M, Imai I. Algicidal activity of a killer bacterium against the harmful red tide dinoflagellate Heterocapsa circularisquama isolated from Ago Bay, Japan Nippon Suisan Gakkaishi,2000,66(4):666-673.
    58. Nagsaki K, Tarutani K, Yamaguchi M. Growth characteristics of Heterosigma akashiwo virus and its possible use as a microbiological agent for red tide control. Applied and Environmental Microbiology,1999,65:898-902.
    59. Nakashima T, Miyazaki Y, Matsuyama Y, et al. Producing Mechanism of an algicidal compound against Red Tide Phytoplankton in a Marine Bacterium y-Proteobacterium. Applied Microbiology and Biotechnology,2006,73:684-690.
    60. Ogata T, Ishimaru T, Kodama M. Effects of water temperature and light intensity on growth rate and toxicity changes in Protogonyaulax tamarensis. Marine Biology,1987a,95:217-220.
    61. Parkhill J P, Cembella A D. Effects of salinity, light and inorganic nitrogen on growth and toxigenicity of the marine dinoflagellate Alexandrium tamarense from northeastern Canada. Journal Plankton Research,1999,21(5):939-955.
    62. Paul S B, Jinnque R, Haim B G. Bacterial suppression of Qhlorella by hydrozylamine production. Water Research,1979,13(1):267-273.
    63. Proctor L M, Fuhrman J A. Viral mortality of marine bacteria and cyanobacteria. Nature,1990,343: 60-62.
    64. Redhead K, Wright S J. Isolation and properties of fungi that lyse blue-green algae. Applied and Environmental Microbiology,1978(35):962-969.
    65. Sengco M R, Li A, Henry M S, et al. Preliminary mesocosm studies of clay dispersal in Sarasota Bay, Florida (USA):proceedings of the evaluation on the mitigation capability of clay and yellow loess at the HABs and their impacts on marine ecosystem.1st Interstate Symp Pusan, Korea,2000: 53-59.
    66. Shilo M. Lysis of Blue-green Algae by Myxobacter. Journal of Bacteriology,1970,104(1): 453-461.
    67. Spratt B G. The mechanism of action penicillin. Journal of Antimicrobial Chemotherapy,1977,3: 13-19.
    68. Sullivan M B, Waterbury J B, Chisholm S W, Cyanophage Infecting the Oceanic Cyanobacterium Prochlorococcus. Nature,2003,424:1047-1051.
    69. Sun X X, Choi J K, Kim E K. A Preliminary Study on the Mechanism of Harmful Algal Bloom Mitigation by Use of Sophorolipid Treatment. Journal of Experimental Marine Biology Ecology, 2004,304:35-49.
    70. Sunda W G. Low iron requirement for growth in oceanic phytoplankton. Nature,1991,351(6321): 55-57.
    71. Sutte C A, Chan A M, Cottrell M T. Infection of phytoplankton by viruses and reduction of primary productivity. Nature,1990,347:467-469.
    72. Suzuki Y, Takabayashi T, Kawaguchi T, et al. Isolation of an allelopathic substance from the crustose coralline algae, Lothophyllum spp. and its effect on the brown alga, Laminaria religiosa Miyabe (Phaeophyta). Journal of Experimental Marine Biology Ecology,1998,225:69-77.
    73. Trown P W, Abraham E P, Newton G G F, et al. Incorporation of acetate into cephalosporin. Biochemical Journal,1962,84(1):157-166.
    74. Van Donk E, Ringelherg J. The effect of fungal parasitism on the succession of diatoms in Lake Maarsseceen I (The Netherlands). Freshwater Biology,1983(13):241-51.
    75. Villarino M L. Evidence of insitudiel vertical migration of a red-tide micro plankton species in Rlade Bigo (N W Spain). Marine Biology,1995,123(3):607-617.
    76. White A W, Maranda L. Paralytic shellfish toxins in the dinoflagellate Gonyaulax excavata and in shellfish. Journal of Fish Research, Canada,1978,14:475-479.
    77. Wrangstadh M, Szewzyk U, Ostling J, et al. Starvation-specific formation of a peripheral exopolysaccharide by a marine Pseudomonas sp, strain S9. Applied and Environmental Microbiology,1990,56(7):2065-2072.
    78. Wright S J, Redhead L K. Acanthamoeba castellanii, a predator of cyanobacteria. Journal of General Microbiology,1981,125:293-300.
    79. Yamamoto Y, Suzuki K. Light and electron microscope observations and prey specificities of an algophorous amoeba from Japanese freshwater. Journal of General and Microbiology,1984,30: 411-417.
    80. Yamamoto Y, Kouchiwa Y, Hodoki Y, et al. Distribution and identification of actinomycetes lysing cyanobacteria in a eutrophic lake. Journal of Applied Phycology,1998,10(2):391-397.
    81. Yamamoto Y. Observation on the occurrence of microbial agents which cause lysis of blue green algae in Lake Kasumigaura. Japanese Journal of Limnology,1981,42:20-27.
    82. YamamotoY, Suzuki K D. Ultrastructural studies on lysis of blue-green algae by a bacterium. Journal of General and Microbiology,1977,23(3):285-295.
    83. Yin K, Harrison P J, Chen J, et al. Red tides during spring in Hong Kong:Is El Nino responsible?. Marine Ecology,1999,187:289-294.
    84. Yoshikawa K, Adachi K, Nishijima M, et al. β-Cyanoalanine production by marine bacteria on cyanide-free medium and its specific inhibitory activity toward cyanobacter. Applied and Environmental Microbiology,2000,66(2):718-722.
    85. Zhao Y J, Liu Y D. Possible microbial control on the adverse impacts of algae-current information about the relationship between algae. Acta Hydrobiologica Sinica,1996,20(7):173-180.
    86. Zou L, Zhang J, Pan W, Zhan Y. In situ nutrient enrichment experiment in the Bo hai and Yellow Sea. Journal of Plankton Research,2001,23(10):1111-1119.
    87.毕永红,胡征宇.水色及其与藻类的关系.生态科学,2005,24(1):66-68.
    88.陈宇炜,高锡云,陈伟民等.太湖微囊藻的生长特征及其分离纯培养的初步研究.湖泊科学,1999,11(4):351-356.
    89.韩博平.广东省大中型水库富营养化现状与防治对策研究.北京:科学出版社,2003,210-216.
    90.何家苑,何振荣,俞家禄等.东湖铜绿微囊藻毒素的分离和鉴定.海洋与湖泊,1988,19(5):424-430.
    91.何家苑,李络平,俞家禄等.我国产毒微囊藻的新发现-惠氏微囊藻及其毒性的初步研究.水生生物学报,1996,20(2):192-194.
    92.胡智泉,刘永定.微囊藻毒素对细长聚球藻生长及生理生化特性的影响.水生生物学报,2003,28(2):155-158.
    93.黄邦钦,徐鹏,胡海忠等.单种及混合培养条件下Fe、Mn对赤潮生物塔玛亚利山大藻Alexandrium tamarense生长的影响.环境科学学报,2000,20(5):537-541.
    94.晋利.一株溶藻细菌的分离鉴定及其对铜绿微囊藻的溶解作用.南京:南京农业大学,2009.
    95.李建宏,邵子厚.Cu2+对蓝藻Spirulina maxima光合作用的抑制机理.植物生理学报,1997,23(1):77-82.
    96.李勤生,黎尚豪.溶解固氮蓝藻的细菌.水生生物学集刊,1981,7(3):377-384.
    97.李十虎,吴建新,李庭古等.赤潮的危害、成因及对策.水利渔业,2003,23(6):38-39.
    98.李雪梅,杨中艺,简曙光等.有效微生物群控制富营养化湖泊蓝藻的效应.中山大学学报(自然科学版),2000,39(1):81-85.
    99.梁松等.中国沿海的赤潮问题.南中国海红潮的预防和管理论文集.2000.
    100.林元烧,曹文清,Sammer T等.厦门西港甲藻胞囊种类和数量分布特征,海洋与湖泊,2002.33(4):407-414.
    101.刘建康,谢平.揭开武汉东湖蓝藻水华消失之谜.长江流域资源与环境,1999,8(3):312-318.
    102.刘梅,胡征宇,谢作明.电子灭藻机除藻效果实验.中国给水排水,1999,15(3):59-60.
    103.刘天齐,黄小林等.区域环境规划方法.北京:化学工业出版社,2000.
    104.刘新尧,石苗,廖永红等.食藻原生动物及其在治理蓝藻水华中的应用前景.水生生物学报, 2005,29(14):456-461.
    105.陆开宏,金春华,王扬才.罗非鱼对蓝藻的摄食消化及对富营养化水体水华的控制.水产 学报,2005,29(6):811-818.
    106.牛丹丹.溶藻细菌YZ对铜绿微囊藻的溶藻机制及其溶藻物质特性的研究.南京:南京农业大学,2011
    107.牛晓君.富营养化发生机理及水华暴发研究进展.四川环境,2006,25(3):73-76.
    108.裴海燕,胡文容,曲音波等.一株溶藻细菌的分离鉴定及其溶藻特性.环境利学学报.2005,25(6):796-802.
    109.彭超,吴刚,席宇等.三株溶藻细菌的分离鉴定及其溶藻效应.环境科学研究,2003,16(1):37-40.
    110.秦保平.面向二十一世纪的水质管理战略.城市环境与城市生态,1998,(11):1-3.
    111.沈竑,洪君超,张开富等.中肋骨条藻(Sheletonema Costatum)赤潮发生过程中微量因素Fe、Mn作用的研究.暨南大学学报,1995,16(1):131-136.
    112.史顺玉.溶藻细菌对藻类的生理生态效应及作用机理研究.武汉:中国科学院水生生物研究所,2006:66-77.
    113.宋碧玉,曹宏.原生动物及其研究方法.生物学通报,2000,35(1):14-16.
    114.孙慧群,朱琳,高文宝.淡水湖泊中微囊藻水华的成因分析.生物学通报,2005,40(8):23-24.
    115.孙军,史屹峰.单细胞原生生物动物的生存策略.生物学通,2001,35(9):20-22.
    116.孙冷,黄朝迎.赤潮及其影响.灾害学,1999,14(2):51-54.
    117.王家玲,李顺鹏,黄正.环境微生物学.北京:高等教育出版社,2003.
    118.王进.我们只有一个地球.北京:中国青年出版社,1999.
    119.王俊,张义兵.化学污染物与生态效应.第一版.北京:中国环境科学出版社,1993.
    120.王淑芳.水体富营养化及其防治.环境科学与管理,2005,30(6):63-65.
    121.王洋才,陆开宏.蓝藻水华的危害及治理动态.水产杂志,2004,17(1):90-94
    122.吴刚,席宇,赵以军.溶藻细菌研究的最新进展.环境科学研究,2002,15(5):43-46.
    123.吴萍,俞志明.有机改性粘土对赤潮藻絮凝沉降的动力学研究.环境科学,2007(7):1518-1523.
    124.项翔.产褐藻酸酶菌株的筛选及发酵条件优化和酶学性质研究.青岛:中国海洋大学,2006
    125.徐宁,陈菊芳,王朝晖等.广东大亚湾藻类水华的动力学分析一藻类水华的生消过程及其与环境因子的关系.海洋环境科学,2001,20(2):2-6.
    126.许珂,吴刚,余文平等.溶藻细菌W5培养条件优化及发酵培养.环境科学与技术,2009,32(2):12-15.
    127.颜天,周名江,邹景忠等.香港及珠江口海域有害赤潮发生机制初步探讨.生态学报,2001, 21(10):1634-1641.
    128.余国忠,刘军,王古生.藻细胞特性对净水工艺的影响研究.环境科学研究.2000,13(6):56-59.
    129.俞志明,邹景忠,马锡年等.治理赤潮的化学方法.海洋与湖沼,1993,24(3):314-318.
    130.张荣先.一种溶藻细菌特性及发酵条件的优.成都:四川大学,2007.
    131.张永山,吴玉霖,邹景忠等.胶州湾浮动弯角藻赤潮生消过程.海洋与湖沼,2002,33(1):55-61.
    132.张勇,席宇,吴刚.溶藻细菌杀藻物质的研究进展.微生物学通报,2004,31(1):127-131.
    133.赵以军,刘永定.有害藻类及其微生物防治的基础—藻菌关系的研究动态.水生生物学报,1996,20(2):173-181.
    134.郑建军,钟成华,邓春广.试论水华的定义.水资源保护,2006,22(5):45-48.
    135.周名江,朱明远,张经.中国赤潮的发生趋势和研究进展.生命科学,2001,13(2):54-59.
    136.朱惠刚,施玮,吴静.水体藻类污染与健康.净水技术,2000,18(2):13-16.
    137.邹华,潘纲,陈灏.壳聚糖改性粘土对水华优势藻铜绿微囊藻的絮凝去除.环境科学,2004,25(6):40-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700