用户名: 密码: 验证码:
气升式三相环流生物反应器脱臭性能和优化模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶臭废气作为大气污染的主要因素,引起世界各国的重视,对其排放有明确规定。生物法因成本低,无二次污染,已成为恶臭废气脱臭技术的热点之一。本文研究鼓泡塔和气升式环流生物反应器恶臭假单胞菌净化恶臭废气中的甲苯废气动态行为并进行CFD模拟,在生物法处理恶臭废气工业应用领域具有指导意义,在三相复杂生物反应过程模型化方面也具有重要的学术研究价值。
     首先研究鼓泡塔游离菌净化甲苯废气,使出口气体达标排放并优化操作条件。对上述过程进行CFD模拟研究:建立了3D瞬态气-液两相流CFD模型,以MUSIG模型描述气泡尺寸分布,耦合流动、传质和生化反应,以液相速度、甲苯去除率、液相溶氧及甲苯浓度的实验值验证模型,实验值与模拟结果吻合很好;通过该模型预测鼓泡塔内局部流体力学特性和组分浓度场的时空分布,并定量研究传质与反应间的关系,讨论限速步骤。
     其次研究气升式环流反应器游离菌净化甲苯废气,使出口气体达标排放并优化操作条件。对上述过程进行CFD模拟研究:建立了3D瞬态气-液两相流CFD模型,采用MUSIG模型描述气泡尺寸分布,耦合流动、传质与生化反应,以液相速度、甲苯去除率和液相甲苯浓度的实验值验证模型,可靠性良好;利用该模型预测IALR内局部流体力学特性和组分浓度场的时空分布,并定量研究传质与反应间的关系,讨论限速步骤。
     第三,研究鼓泡塔固定化菌体净化甲苯废气,使出口气体达标排放并优化操作条件。对上述过程进行CFD模拟研究:建立了3D瞬态气-液-固三相流CFD模型,以MUSIG模型描述气泡尺寸分布,耦合流动、传质与反应,以液相速度、甲苯去除率和液相甲苯浓度的实验值验证模型,吻合良好;用该模型预测鼓泡塔三相生物反应器内局部流体力学参数和组分浓度场的时空分布,并定量研究传质与反应间的关系,讨论限速步骤并进行优化模拟。
     最后研究气升式环流反应器固定化菌体净化甲苯废气,使出口气体达标排放并优化操作条件。对上述过程进行CFD模拟研究:建立了3D瞬态气-液-固三相流CFD模型,采用MUSIG模型描述气泡尺寸分布,耦合流动、传质与反应,以液相速度、甲苯去除率和液相甲苯浓度验证模型的可靠性;以该模型预测IALR内局部流体力学参数和组分浓度场的时空分布,并定量研究传质与反应间的关系,讨论限速步骤并进行优化模拟。
Odorous waste gas as a main factor for air pollution has drawn great attentions of many countries worldwide and the emission standard has been set up strictly. Biopurification has become a hot spot for deodorization with the advantages of non-secondary pollution and low cost. Toluene is used as the target agent for odorous gas in this thesis and experiments and transient CFD modeling of toluene waste gas biodegradation by Pseudomonas putida WQ-03 in bubble column and airlift loop bioreactor have been carried out.
     First, toluene emissions are purified by suspended Pseudomonas putida WQ-03 in a gas-liquid two-phase bubble column and the operational conditions are optimized to meet the Chinese toluene emission standard of 40 mg/m3. A three-dimensional (3D) transient computational fluid dynamic (CFD) model is established to simulate the transient performance of the biodegradation, with the MUSIG model to describe the bubble size distribution, and with mass transfer equations and biomass intrinsic kinetics. The simulation results agree well with the experimental data, such as liquid velocities, toluene removal efficiency and the liquid phase oxygen and toluene concentration. The developed model is used to predict the hydrodynamic properties and the concentrations of the components of each phase, as well as the discussion of the rate-limiting step for the biodegradation process.
     Secondly, toluene waste gas is treated by suspended P. WQ-03 in a two-phase internal airlift loop reactor and a 3D transient CFD model is established to simulate the dynamic performance of the biopurification, with the MUSIG model, mass transfer equations and biomass intrinsic kinetics. The model has been verified by the experimental data of liquid velocities, toluene removal efficiency and the liquid phase toluene concentration. The developed model can be used to predict the hydrodynamic properties and the concentrations of the components of each phase. The rate-limiting step in the biopurification is also discussed.
     Thirdly, toluene waste gas is purified by immobilized P. WQ-03 in a three-phase bubble column reactor and a 3D transient CFD model is established to simulate the dynamic performance of the biopurification, with the MUSIG model, mass transfer equations and biomass intrinsic kinetics. The model has been verified by the experimental data of liquid velocities, toluene removal efficiency and the liquid phase toluene concentration. The developed model can be used to predict the hydrodynamic properties and the component concentrations of each phase, as well as the rate-limiting step which is the optimized simulation based on.
     Finally, toluene waste gas is purified by immoblized P. WQ-03 in a three-phase internal airlift loop reactor and a 3D transient CFD model is established to simulate the dynamic performance of the bio-purification, with the MUSIG model, mass transfer equations and biomass intrinsic kinetics. The model has been verified by the experimental data of liquid velocities, toluene removal efficiency and the liquid phase toluene concentration. The developed model can be used to predict the hydrodynamic properties and the component concentrations of each phase. The rate-limiting step is also discussed based on which optimized simulation is carried out.
引文
[1]徐晓军,宫磊,杨虹.恶臭气体生物净化理论与技术[M].北京:化学工业出版社,2004
    [2]何永纪,炼油厂恶臭污染物治理技术研究:[硕士学位论文],浙江;浙江工业大学,2005
    [3]张甜甜,低浓度大风量恶臭气体的生物净化及生物膜研究:[硕士学位论文],广东;广东工业大学,2007
    [4]田森林,宁平,有机废气治理技术及其进展.环境科学动态,2000,(1),23-28
    [5]黄立维,高压脉冲电晕法治理有机废气实验研究,环境污染与防治,1998, 20(1),4-7
    [6]李国锋,吴彦,脉冲电晕等离子体化学(PPCP)处理有害气体反应器的研究,环境科学进展,1999,7(4),54-60
    [7]孙宇阳,生物法净化甲苯废气的过程及影响因素研究:[硕士学位论文],重庆;重庆大学,2007
    [8]毛国柱,闻建平,生物法净化有机废气研究进展.现代化工,2002,22(增): 70-7
    [9]张书景,李坚,李依丽等,恶臭假单胞菌生物滴滤塔净化甲苯废气的研究,环境科学,2007,28(8):1866-1872
    [10]李建军,陈进林,岑英华等,处理甲苯废气的生物滴滤池中微生物生态学研究,微生物学报,2007,34 (4):638-641
    [11] Christian K, Frederic T. Waste Gas Biotreatment Technology. J Chem Technol Biotechnol, 1998,72(4):303-319
    [12] Hartmans S, Leenen EJTM, Voskuilen GTH. Membrane bioreactor with porous hydrophobic membranes for waste gas tratment: Biotechniques for air pollution abatement and odour control policies. Amsterdaml: Elsevier Science Publishers BV ,1992
    [13]李章良,孙佩石,甲苯废气的生物净化性能与动力学模拟研究,贵州环保科技,2006,12:1-5
    [14] Burgess JE, Parsons SA, et al. Developments in odour control and waste gas treatment biotechnology;a review. Biotechnol Advances, 2001,19:35-63
    [15] Ranau R, Kleeberg KK, Schlegelmilch M, et al. Analytical determination of the suitability of different processes for the treatment of odorous waste gas. Waste Management, 2005, 25(9): 908-916
    [16] Kim KH, Shon ZH, Kim MY, et al. Major aromatic VOC in the ambient air in the proximity of an urban landfill facility. J Hazard Mater, 2008, 150, (3):754-764
    [17]任振华,甲苯对小鼠神经毒性的行为学与形态学研究:[硕士学位论文],安徽;安徽医科大学,2005
    [18]中华人民共和国国家环境保护总局,GB16297-1996,中华人民共和国国家标准,北京:中国标准出版社,1996-11-01
    [19]王建龙,生物固定化技术与水污染控制,北京:科学出版社,2002.79-86
    [20]熊宗贵,生物技术制药,北京:高等教育出版社,1999.225-236.
    [21]吕微,伍季,付有利,固定化细胞技术及其在食品工业中的应用,江西农业学报,2008,20(2) :76-78.
    [22]郭勇,酶工程,北京:中国轻工业出版社,1994.15-155.
    [23]姚汝华,微生物工程工艺原理,广州:华南理工大学出版社,1989,368-369.
    [24]陈敏,罗启芳,聚乙烯酸包埋活性炭与微生物的固定化技术及对水胺硫磷降解的研究,环境科学,1993,15(3):11-14.
    [25]赵永金,吴海燕,微胶囊技术应用进展,兵团教育学院学报,2000,10(3):42-44
    [26] Fukui T, Kawamoto T, Tanaka A. Enzymatic preparation of optically active silylmethanol derivatives having a stereogenic siliconactom by hydrolase- catalyzed enantioselective esterification. Tecrabedron Asymmetry, 1994, 5(1):73-82.
    [27]王新,李培军,固定化细胞技术的研究与进展,农业环境保护,2001,20:120-122.
    [28] Thorat BN, Joshi JB. Regime transition in bubble columns: experimental and predictions. Exp. Therm. Fluid Sci., 2004, 28: 423~30.
    [29] Boyer C, Duquenne AM, Wild G. Measuring techniques in gas-liquid and gas-liquid-solid reactors. Chem. Eng. Sci., 2002, 57(16): 3185~3215
    [30] Sakai N, Onozaki M, Saegusa H, et al. Fluid dynamics in coal liquefaction reactors using neutron absorption tracer technique. AIChE J, 2000, 46(8): 1688~1693
    [31] Rammohan AR, Dudukovic MP, Ranade VV. Eulerian flow field estimation from particle rajectories: numerical experiments for stirred tank type flows, Ind. Eng. Chem. Res., 2003, 42(12): 2589~2601
    [32] Khopkar AR, Rammohan AR, Ranade VV, et al. Gas-liquid flow generated by a Rushton turbine in stirred vessel: CARPT/CT measurements and CFD simulations. Chem Eng Sci, 2005, 60(8-9): 2215~2229
    [33] Chaouki J, Larachi F, Dudukovic MP. Noninvasive tomographic and velocimetric monitoring of multiphase flows. Ind. Eng. Chem. Res., 1997, 36(11): 4476~4503
    [34] Reese J, Mudde RF, Lee DJ, et al. Analysis of multiphase systems through particle image velocimetry. American Institute of Chemical Engineers Symposium Series, 1996, 92(310): 161~167
    [35] Northrup MA, Kulp TJ, Angel SM, et al. Direct measurement of interstitial velocity field variations in a porous medium using fluorescent-particle image velocimetry. Chem. Eng. Sci., 1993, 48(1): 13~21
    [36] Delnoij E, Kuipers JAM, van Swaaij WPM, et al. Measurement of gas–liquid two-phase flow in bubble columns using ensemble correlation PIV. Chem. Eng. Sci., 2000, 55(17): 3385~3395
    [37] Gladden LF, Nuclear magnetic resonance in chemical engineering: Principles and applications. Chem. Eng. Sci., 1994, 49(20): 3339~3408
    [38] Sederman AJ, Johns ML, Bramley AS, et al. Magnetic resonance imaging of liquid flow and pore structure within packed beds. Chem. Eng. Sci., 1997, 52(14): 2239~2250
    [39] Sederman AJ, Johns ML, Alexander P, et al. Structure-flow correlations in packed beds. Chem. Eng. Sci., 1998, 53(12): 2117~2128
    [40] Sharma S, Mantle MD, Gladden LF, et al. Determination of bed voidage using water substitution and 3D magnetic resonance imaging, bed density and pressure drop in packed-bed reactors. Chem. Eng. Sci., 2001, 56(2): 587~593
    [41] Mudde RF, Groen JS, van den Akker HEA. Liquid velocity field in a bubble column: LDA experiments. Chem. Eng. Sci., 1997, 52(21-22): 4217~4224
    [42] Becker S, De Bie H, Sweeney J, Study on the flow structure in an aerated flat apparatus using Laser Doppler Anemometry, Chem Eng Technol, 2000, 23(3): 222~226
    [43] Vial C, LainLe R, Poncin S, et al. Influence of gas distribution and regime transition on liquid velocity and turbulence in a 3-D bubble column. Chem. Eng. Sci., 2001, 56(3): 1085~1093
    [44] Vial C, Poncin S, Wild G. A simple method for regime identification and flow characterisation in bubble columns and airlift reactors. Chem. Eng. Processing, 2001, 40(2): 135~151
    [45] Joshi JB. Computational flow modelling and design of bubble column reactors. Chem. Eng. Sci., 2001, 56(21-22): 5893~5933
    [46] Magaud F, Souhar M, Wild G, et al. Experimental study of bubble columns hydrodynamics. Chem. Eng. Sci., 2001, 56(15): 4597~4607
    [47] Latifi MA, Rode S, Midoux N, et al. The use of microelectrodes for the determination of flow regimes in a trickle-bed reactor. Chem. Eng. Sci., 1992, 47(8): 1955~1961
    [48] Rode S, Midoux N, Latifi MA, et al. Hydrodynamics and liquid-solid mass transfer mechanisms in packed beds operating in cocurrent gas-liquid downflow: An experimental study using electrochemical shear rate sensors. Chem. Eng. Sci., 1994, 49(9): 1383~1401
    [49] Serizawa A, Kataoka I, Mishigoshi I. Turbulence structure of air-water bubbly flow-1. measuring techniques. Int. J. Multiphase Flow, 1975, 2(3): 221~259
    [50] Menzel T, in der Weide T, Staudacher O, et al. Reynolds shear stress for modeling of bubble column reactors. Ind. Eng. Chem. Res., 1990, 29(6): 988~994
    [51] Young MA, Carbonell RG, Ollis DF. Airlift bioreactors: Analysis of local two-phase hydrodynamics. AIChE J., 1991, 37(3): 403~428
    [52] Ligrani PM, Singer BA, Baun LR. Miniature five-hole pressure probe for measurement of three mean velocity components in low speed flow. J. Physics E: Scientific Instruments, 1989, 22(10): 868~876
    [53] Cho SH, Becker HA. Response of static pressure probes in turbulent streams. Exp. Fluids, 1985, 3(2): 93~102
    [54]杜建新,气升式环流反应器流体力学、传质特性研究及应用:[学位论文],北京;清华大学,1995
    [55] Wen JP, Chen Y, Chen DY, et al. Removal of ethyl acetate in air streams using a gas–liquid–solid three-phase flow airlift loop bioreactor. Biochem. Eng. J., 2005, 24: 135–139
    [56] Arcuri EJ, Slaff G, Greasham R. Continuous production of thienamycin in immobilized cell systems. Biotechnol. Bioeng., 1986, 28:842–849.
    [57] Federici F, Petruccioli M, Miller MW. Enhancement and stabilization of the production of glucoamylase by immobilized cells of Aureobasidium pullulans in a fluidized bed reactor. Appl. Microbiol. Biotechnol., 1990, 33: 407–409.
    [58] Chang IS, Kim BH, Lovitt RW, et al. Effect of CO partial pressure on cell-recycled continuous CO fermentation by Eubacterium limosium kist612. Process Biochem, 2001, 37: 411–421.
    [59] Ogbonna JC, Mashima H, Tanaka H. Scale up of fuel production from sugar beet juice using loofa sponge immobilized bioreactor. Bioresource Technol, 2001, 76: 1–8.
    [60] Prakash A, Margaritis A, Li H. Hydrodynamics and local heat transfer measurements in a bubble column with suspension of yeast. Biochem Eng J, 2001, 9: 155–163.
    [61] John G, Schugerl K. Co-immobilized aerobic/anaerobic mixed cultures in stirred tank and gaslift loop reactors. J Biotechnol, 1996, 50: 115-122
    [62] Bayer T, Zhou W, Holzhauer K, et al. Investigations of cephalosporin C producton in an airlift tower loop reactor. Appl Microbiol Biotechnol, 1989, 30: 26-33.
    [63] Siedenberg D, Gerlach SR, Czwalinna A, et al. Production of xylanase by Aspergillus awamori on complex medium in stirred tank and airlift tower loop reactors. J Biotechnol, 1997, 56 (3): 205-216
    [64] Tzeng YM, Rao YK, Tsay KJ, et al. Effect of cultivation conditions on spore production from Bacillus amyloliquefaciens B128 and its antagonism to Botrytis elliptica. J Appl Microbiol,2008,104: 1275-1282
    [65]刘志军,张兴文,李桂芹,废水处理用ALR生物反应器研究与设计,化工设备设计,1998,35( 5):,24-28
    [66] Lucas MS,Peres JA,Lan BY,et al. Ozonation kinetics of winery wastewater in a pilot-scale bubble column reactor. Water Res, 2009, 43:1523-1532
    [67] El-Naas MH, Al-Muhtaseb SA, Makhlouf S. Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. J Hazard Mater, 2009, 164: 720-725
    [68] Sahu JN, Agarwal S, Meilap BC, et al. Performance of a modified multi-stage bubble column reactor for lead(II) and biological oxygen demand removal from wastewater using activated rice husk. J Hazard Mater, 2009, 161:317-324
    [69] Martin MMB, Perez JAS, Sanchez JLG, et al. Degradation of alachlor and pyrimethanil by combined photo-Fenton and biological oxidation. J Hazard Mater, 2008, 155: 342-9
    [70] Kreetachat T, Damrongsri M, Punsuwon V, et al. Effects of ozonation process on lignin-derived compounds in pulp and paper mill effluents. J Hazard Mater, 2007, 142: 250-257
    [71] van Benthum WAJ, van den Hoogen JHA, van der Lans RGJM, et al. The biofilm airlift suspension extension reactor. Part I: Design and two-phase hydrodynamics. Chem Eng Sci, 1999, 54:1909-1924
    [72] Dhouib A, Aloui F, Hamad N, et al. Pilot-plant treatment of olive mill wastewaters by Phanerochaete chrysosporium coupled to anaerobic digestion and ultrafiltration. Process Biochem, 2006, 41:159-167
    [73] Jia XQ, Wen JP, Jiang Y, et al. Modeling of batch phenol biodegradation in internal loop airlift bioreactor with gas recirculation by Candida tropicalis. Chem Eng Sci, 2006, 61: 3463-3475
    [74] Jin RC, Zheng P, Mahmood Q, et al. Performance of a nitrifying airlift reactor using granular sludge. Sep Purif Technol, 2008, 63: 670-675
    [75] Li YZ, He YL, Ohandja DG, et al. Simultaneous nitrification-denitrification achieved by an innovative internal-loop airlift MBR: Comparative study. Bioresource Technol, 2008, 99: 5867-5872
    [76] Dhamole PB, Nair RR, D'Souza SF, et al. Simultaneous removal of carbon and nitrate in an airlift bioreactor. Bioresource Technol, 2009, 100: 1082-1086
    [77]余世锋,程可可,张建安等,气升式环流反应器处理化纤废水,水处理技术,2007,2:56-59
    [78]陈冬燕,气升式环流生物反应器处理二组分有机废气的研究:[硕士学位论文],天津;天津大学,2004
    [79] Sarkar S, Meikap BC, Chatterjee SG. Modeling of removal of sulfur dioxide from flue gases in a horizontal cocurrent gas-liquid scrubber, Chem Eng J, 2007, 131: 263-271
    [80] Ozturk B, Yilmaz D. Absorptive removal of volatile organic compounds from flue gas streams. Process Saf Environ, 2006, 84: 391-398
    [81] Nagase H, Eguchi K, Yoshihara K, et al. Improvement of microalgal NOx removal in bubble column and airlift reactors. J Fermen Bioeng, 1998, 86: 421-423
    [82] Nagase H, Yoshihara K, Eguchi K, et al. Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae. Biochem Eng J, 2001, 7: 241-246
    [83] Lo CS, Hwang SJ. Dynamic behavior of an internal-loop airlift bioreactor for degradation of waste gas containing toluene. Chem Eng Sci, 2004, 59: 4517-4530
    [84] Lo CS, Hwang SJ. Degradation of waste gas containing toluene in an airlift bioreactor. Environ Sci Technol, 2004, 38: 2271-2280
    [85] Vunjak-Novakovic G, Kim Y, Wu XX, et al. Air-lift bioreactors for algal growth on flue gas: Mathematical modeling and pilot-plant studies. Ind Eng Chem Res, 2005, 44: 6154-6163
    [86] Nikakhtari H, Hill GA. Volatile organic chemical mass transfer in an external loop airlift bioreactor with a packed bed. Ind Eng Chem Res, 2005, 44: 9299-9306
    [87]蒋裕平,螺旋气升式环流生物反应器处理含甲苯废气的研究,环境污染与防治, 2008,8:47-52
    [88] Wen JP, Chen Y, Jia XQ, et al. Removal of Toluene from air streams using a gas–liquid–solid three-phase airlift loop bioreactor containing immobilized cells. J Chem Technol Biotechnol, 2006, 81:17–22
    [89] Jakobsen HA, Lindborg H, Dorao CA, Modeling of bubble column reactors: progress and limitations. Ind Eng Chem Res, 2005, 44(14): 5107~5151
    [90] Monahan SM, Vitankar VS, Fox RO. CFD predictions for flow-regime transitions in bubble columns. AIChE J, 2005, 51(7): 1897~1923
    [91]傅德薰,马延文,计算流体力学,北京:高等教育出版社, 2002.
    [92]中国人民解放军总装备部军事训练教材编辑工作委员会,计算流体力学及应用,北京:国防工业出版社, 2003.
    [93] Delnoij E, Kuipers JAM, van Swaaij WPM. Computational fluid dynamics applied to gas-liquid contactors. Chem Eng Sci, 1997, 52(21-22): 3623~3638
    [94] Lapin A, Lubbert A. Numerical simulation of the dynamics of two-phase gas-liquid flows in bubble columns. Chem Eng Sci, 1994, 49(21): 3661~3674
    [95]张兆顺,湍流,北京:国防工业出版社, 2002.
    [96] Baldwin BS, Lomax H. Thin layer approximation and algebraic model for separated turbulent flows. AIAA 16th Aerospace Sciences Meeting, Huntsville, Ala., 1978, 78-257.
    [97] Speziale CG., Gatski TB, Fitzmaurice N. An analysis of RNG-based turbulence models for homogeneous shear flow. Physics of Fluids A (Fluid Dynamics), 1991, 3(9): 2278-2281.
    [98] Yakhot V, Orszag SA. Renormalization group analysis of turbulence. I. Basic theory, J Sci Comput, 1986, 1(1): 3-51.
    [99] Choudhury D, Introduction to the Renormalization Group Method and Turbulence Modeling. New Hampshire: Fluent Inc., 1993.
    [100] Wilcox DC, Turbulence Modeling for CFD, La Canada, California: DCW Industries, Inc., 1998.
    [101] ANSYS Canada Ltd., CFX Flow Solver User Guide, Computational Fluid Dynamics Services, ANSYS Canada Ltd., 2003.
    [102] Galperin BA, Orszag SA, Large Eddy Simulation of Complex Engineering and Geophysical Flows, New York: Cambridge University Press, 1993
    [103] Sokolichin A, Eigenberger G. Gas-liquid flow in bubble columns and loop reactors: Part I, Detailed modeling and numerical simulation Chem Eng Sci, 1994, 49(24): 5735~5746
    [104] Sokolichin A, Eigenberger G, Lapin A, et al. Dynamic numerical simulation of gas-liquid two-phase flows: Euler/Euler versus Euler/Lagrange. Chem Eng Sci, 1997, 52(4): 611~626
    [105] Pan Y, Dudukovic MP, Chang M. Numerical investigation of gas-driven flow in 2-D bubble columns. AIChE J, 2000, 46(3): 434~449
    [106] Chen P, Sanyal J, Dudukovic MP. CFD modeling of bubble columns flows: implementation of population balance. Chem Eng Sci, 2004, 59(22-23): 5201~5207
    [107] Hagesaether L, Jakobsen HA, Svendsen HF. Modeling of the dispersed-phase size distribution in bubble columns. Ind Eng Chem Res, 2002, 41(10): 2560~2570
    [108] Lehr F, Mewes D. A transport equation for the interfacial area density applied to bubble columns. Chem Eng Sci, 2001, 56(3): 1159~1166
    [109] Lehr F, Millies M, Mewes D. Bubble-size distributions and flow fields in bubble columns. AIChE J, 2002, 48(11): 2426~2443
    [110] Sanyal J, Marchisio DL, Fox RO, et al. On the comparison between population balance models for CFD simulation of bubble columns. Ind Eng Chem Res, 2005, 44(14): 5063~5072
    [111] van den Hengel EIV, Deen NG, Kuipers JAM. Application of coalescence and breakup models in a discrete bubble model for bubble columns. Ind Eng Chem Res, 2005, 44(14): 5233~5245
    [112] Buwa VV, Ranade VV. Dynamics of gas-liquid flow in a rectangular bubble column: experiments and single/multi-group CFD simulations. Chem Eng Sci, 2002, 57(22-23): 4715~4736
    [113] Olmos E, Gentric C, Vial C, et al. Numerical simulation of multiphase flow in bubble column reactors: Influence of bubble coalescence and break-up. Chem Eng Sci, 2001, 56(21-22): 6359~6365
    [114] Krishna R, van Baten JM, Urseanu MI. Three-phase Eulerian simulation of bubble column reactors operating in the churn-turbulent regime: a scale-up strategy. Chem Eng Sci, 2000, 55(16): 3275~3286
    [115] Mudde RF, Simonin O. Two- and three-dimensional simulations of a bubble plume using a two-fluid model. Chem Eng Sci, 1999, 54(21): 5061~5069
    [116] Sanyal J, Vasquez S, Roy S, et al. Numerical simulation of gas-liquid dynamics in cylindrical bubble column reactors. Chem Eng Sci, 1999, 54(21): 5071~5083
    [117] Sokolichin A, Eigenberger G, Applicability of the standard k-εturbulence model to the dynamic simulation of bubble columns: Part I. Detailed numerical simulations, Chem Eng Sci, 1999, 54(13-14): 2273~2284
    [118] Delnoij E, Kuipers JAM, van Swaaij WPM. A three-dimensional CFD model for gas-liquid bubble columns. Chem Eng Sci, 1999, 54(13-14): 2217~2226
    [119] Pfleger D, Gomes S, Gilbert N, et al. Hydrodynamic simulations of laboratory scale bubble columns fundamental studies of the Eulerian-Eulerian modelling approach. Chem Eng Sci, 1999, 54(21): 5091~5099
    [120]冯伟,气液两相流生物反应器流动与降酚特性动态行为研究:[博士学位论文],天津;天津大学,2006
    [123]袁清,气相脉冲式鼓泡塔流动与传质的实验研究及CFD数值模拟:[硕士学位论文],天津;天津大学,2007
    [124]贾晓强,气液固三相生物反应器流动与降酚特性动态行为研究:[博士学位论文],天津;天津大学,2008
    [125] Toomy RD, Johnstone HF. Gas-liquid two-phase flow in bubble columns. Chem Eng Prog, 1952, 48: 220-231
    [126] Zhang D, Deen NG, Kuipers JAM. Numerical simulation of the dynamic flow behavior in a bubble column: A study of closures for turbulence and interface forces. Chem Eng Sci, 2006, 61: 7593-7608
    [127] Kulkarni AA, Kambara K, Joshi, JB. On the development of flow pattern in a bubble column reactor: Experiments and CFD. Chem Eng Sci, 2007, 62: 1049-1072
    [128] Law D, Battaglia F, Heindel TJ. Model validation for low and high superficial gas velocity bubble column flows. Chem Eng Sci, 2008,63: 4605-4616
    [129] Simonnet M, Gentric C, Olmos E, et al. CFD simulation of the flow field in a bubble column reactor: Importance of the drag force formulation to describe regime transitions. Chem Eng Process, 2008, 47: 1726-1737
    [130] Diaz ME, Montes FJ, Galan MA. Influence of the lift force closures on the numerical simulation of bubble plumes in a rectangular bubble column. Chem Eng Sci, 2009, 64: 930-944
    [131] Diaz ME, Iranzo A, Cuadra D, et al. Numerical simulation of the gas-liquid flow in a laboratory scale bubble column Influence of bubble size distribution and non-drag forces. Chem Eng J, 2008, 139: 363-379
    [132] Gong XB, Takagi S, Matsumoto Y. The effect of bubble-induced liquid flow on mass transfer in bubble plumes. Int Multiphase Flow, 2009, 35 : 155-162
    [133] Wang Y, Fan W, Liu Y, et al. Modeling of the Fischer-Tropsch synthesis in slurry bubble column reactors, Chem Eng Process, 2008, 47: 222-228
    [134] Darmana D, Henket RLB, Deen NG, et al. Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model: Chemisorption of CO2 into NaOH solution, numerical and experimental study, Chem Eng Sci, 2007, 62: 2556-2575
    [135] Troshko, AA; Zdravistch, F CFD modeling of slurry bubble column reactors for Fisher-Tropsch synthesis, Chem Eng Sci, 2009, 64: 892-903
    [136] Matos, EM; Guirardello, R; Mori, M, et al. Modeling and simulation of a pseudo-three-phase slurry bubble column reactor applied to the process of petroleum hydrodesulfurizati, Computers & Chem Eng, 2009, 33: 1115-1122
    [137] Oey R S, Mudde R F, Portela L M, et al., Simulation of a slurry airlift using a two-fluid model, Chem Eng Sci, 2001, 56 (23): 673-681.
    [138] van Baten JM, Ellenberger J, Krishna R. Hydrodynamics of internal air-lift reactors: experiments versus CFD simulations. Chem Eng Process, 2003, 42: 733-742
    [139] Wang, TF; Wang, JF; Jin, Y,Experimental study and CFD simulation of hydrodynamic behaviours in an external loop airlift slurry reactor,Can J Chem Eng,2004,82: 1183-1190
    [140] Cao CQ, Dong SQ, Guo QJ. Experimental and numerical simulation for gas-liquid phases flow structure in an external-loop airlift reactor. Ind Eng Chem Res, 2007, 46: 7317-7327
    [141] Talvy S, Cockx A, Line A. Modeling of oxygen mass transfer in a gas-liquid airlift reactor, AICHE J, 2007, 53: 316-326
    [142] Talvy S, Cockx A, Line A. Modeling hydrodynamics of gas-liquid airlift reactor,AICHE J, 2007, 53: 335-353
    [143] Boltes K, Caro A, Leton P, et al. Gas-liquid mass transfer in oil-water emulsions with an airlift bio-reactor. Chem Eng Process, 2008, 47: 2408-2412
    [144] Feng W, Wen JP, Liu CY, et al. Modeling of local dynamic behavior of phenol degradation in an internal loop airlift bioreactor by yeast Candida tropicalis, Biotechnol Bioeng, 2007, 97: 251-264
    [145] Michele V, Hempel DC. Liquid flow and phase holdup-measurement and CFD modeling for two-and three-phase bubble columns. Chem Eng Sci, 2002, 57(11): 1899~1908
    [146] Zhang XY, Ahmadi G. Eulerian-Lagrangian simulations of liquid-gas-solid flows in three-phase slurry reactors. Chem Eng Process, 2005, 60(18): 5089~5104
    [147] Zhou LX, Yang M, Fan LS. A second-order moment three-phase turbulence model for simulating gas–liquid–solid flows. Chem Eng Sci, 2005, 60: 647– 653
    [148] Yang GQ, Du B, Fan LS. Bubble formation and dynamics in gas-liquid-solid fluidization- A review. Chem Eng Sci, 2007,62: 2-27
    [149] Jia XQ, Wen JP, Zhou HL, et al. Local hydrodynamics modeling of a gas-liquid-solid three-phase bubble column. AICHE J, 2007, 53: 2221-2231
    [150] Jia XQ, Wen JP, Feng W, et al. Local hydrodynamics modeling of a gas-liquid-solid three-phase airlift loop reactor. Ind Eng Chem Res, 2007, 46: 5210-5220
    [151] Jia XQ, Wen JP, Wang X, et al. CFD modeling of immobilized phenol biodegradation in three-phase airlift loop reactor. Ind Eng Chem Res, 2009, 48: 4514-4529
    [152] Becker S, Sokolichin A, Eigenberger G. Gas–liquid flow in bubble columns and loop reactors: Part II. Comparison of detailed experiments and flow simulations. Chem Eng Sci, 1994, 49: 5747–5762.
    [153] Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Trans, 2003, 46: 3639–3653.
    [154] Xuan, Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Trans, 2000, 43: 3701–3707.
    [155] Jakobsen H A, Sannas B H, Gervskott S, et al. Modeling of vertical bubble-driven flows. Ind Eng Chem Res, 1997, 36: 4052–4074
    [156] Ishii M, Zuber N. Drag coefficient and relative velocity in bubbly droplet or particulate flows. AIChE J, 1979, 25:843–855.
    [157] Launder BE, Spalding DB, Lectures in mathematical models of turbulence, Academic Press, London, UK, 1972.
    [158] Sato Y, Sekoguchi K. Liquid velocity distribution in two-phase bubble flow. Int J Multiphase Flow, 1975, 2: 79–95.
    [159] Prince M, Blanch H. Bubble coalescence and break-up in air-sparged bubble columns. AIChE J, 1990, 36:1485-1499.
    [160] Luo SM, Svendsen H, Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J, 1996, 42: 1225-1233.
    [161] Livingston AG. Biodegradation of 3,4-dichloroaniline in a fluidized bed bioreactor and a steady-state biofilm kinetic model. Biotechnol Bioeng, 1991, 38: 260–272.
    [162] Bailey JE, Ollis DF (Eds), Biochemical engineering fundamentals, McGraw-Hill, New York, NY, USA, 1986.
    [163] Miyahara T, Matsuba Y, Takahashi T. The Size of Bubbles Generated from Perforated Plates. Int. Chem. Eng., 1983, 23(3): 517 -524.
    [164] Krishna R, Van Baten JM. Eulerian simulations of bubble columns operating at elevated pressures in the churn turbulent flow regime. Chem Eng Sci, 2001, 56: 6249–6258.
    [165] Simcik M, Ruzicka MC, Draho? J. Computing the added mass of dispersed particles. Chem Eng Sci, 2008, 63: 4580-4595.
    [166] Zhang D, Deen NG, Kuipers JAM. Numerical simulation of the dynamic flow behavior in a bubble column: a study of closures for turbulence and interface forces. Chem Eng Sci, 2006, 61: 7593-7608.
    [167] de Bertodano ML, Turbulent bubbly two-phase flow in a triangular, Duct, Ph.D. thesis, Renssealaer Polytechnic Institute, Troy, New York, 1991.
    [168] Moraga FJ, Larreteguy AE, Drew DA, et al. Assessment of turbulent dispersion models for bubbly flows in the low Stokes number limit, Int. J. Multiphase Flow, 2003, 29 : 655–673.
    [169]彭雅娟,固定化静止细胞脱硫特性及模型化研究:[硕士学位论文],天津:天津大学,2007.
    [170] Shreve GS, Vogel TM. Comparison of substrate utilization and growth kinetics between immobilized and suspended Pseudomonas cells. Biotechol Bioeng, 1993, 41:370-378.
    [171] Manohar S, Kim CK, Karegoudar TB. Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam. Appl. Microbiol. Biotechnol, 2001, 55:311–316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700