用户名: 密码: 验证码:
等离子体及联合等离子体光解(CPP)技术降解挥发性有机废气
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DBD等离子体是一项相对成熟且可行的有机废气治理技术,用DBD降解挥发性有机气体(Volatile Organic Compounds,VOCs)的研究已非常多。然而,已有的研究都集中在静态或低流速动态(反应区流速<0.1 m/s)条件下的降解,或与其它技术联合降解气态污染物,其研究结果很难直接用于指导工业废气的治理。本文采用DBD等离子体和联合等离子体光解(Combined Plasma Photolysis,CPP)两种技术研究高流速(反应区流速>1m/s)条件下VOCs的降解,以期为VOCs的治理提供依据。
     全文分两部分,第一部分研究了DBD等离子体技术降解“三苯”和乙酸异丁酯废气,考察了DBD降解流动态废气的影响因素,进行了串级和工程应用研究,推测了反应机理并进行了可行性分析,主要结论有:
     (1)“三苯”的去除率随输入功率和外施电压的升高而升高,随气体流速和初始浓度的升高而下降。能率随初始浓度和外施电压的升高而升高,流速对能率的影响则比较复杂。对比相同条件下DBD降解“三苯”的效果,发现三者的去除率和能率比较接近。对混合“三苯”废气进行串级实验研究,结果显示:浓度为300~700mg/m~3的“三苯”混合废气,单级DBD降解时去除率达50%以上,三级串联时去除率达89%以上。费用核算表明,单级DBD降解时“三苯”废气处理费用为2~4元/1000m~3。最后指出,要实现DBD降解“三苯”废气工业化,首先要解决管壁结焦和出流气体中的气溶胶粒子问题。
     (2)气体流速2.85m~3/h,外施电压9kV,初始浓度为1788mg/m~3的乙酸异丁酯气体,DBD降解时去除率达75.3%。外施电压升高、初始浓度和气体流速下降,乙酸异丁酯的去除率升高。能率随初始浓度升高而升高,最高值达32.9 g/(kW.h)。考察了DBD降解含乙酸异丁酯的工业废气,结果表明:废气流量2000m~3/h,DBD反应管中的气体流速5.4m/s,单个DBD电源输入电压16 kV时,乙酸异丁酯的去除率达80%以上,处理费用为12元/1000m~3。最后,对DBD降解乙酸异丁酯的产物进行了分析并初步探讨了其降解机理。
     为进一步优化等离子体对废气的降解,第二部分开发了一项废气治理新技术—联合等离子体光解(CPP),即用一个高压电源激发气体放电同时产生等离子体和准分子紫外光。研究了CPP降解废气的原理和特点,以VOCs(苯、苯乙烯和乙酸异丁酯)为目标物,考察了CPP对其降解的效果,分析了其影响因素,并对CPP发射的准分子光谱进行了初步分析,主要结论有:
     (1)CPP中不宜填充Xe/I_2混合气体降解苯,因为其激发的XeI~*准分子(253nm)波长太长;ICPP(即内置式结构的CPP反应器)降解苯时,苯的去除率低。
     采用OCPP(KrI~*/DBD)降解苯时,浓度为800mg/m~3,流量为35L/min的含苯废气9kV条件下降解,去除率比DBD降解时提高了15.9%。同时,OCPP降解苯时,苯的矿化度和CO_2的选择性都高于DBD。OCPP中填充的Kr/I_2压力、配比、石英介质材料对苯的去除率有一定影响。对OCPP产生的KrI~*发射光谱和降解苯的产物进行了分析。
     研究还发现,准分子紫外光直接光解苯的效率低,推测准分子紫外光只是作为光电离剂,降低了气体击穿电压。OCPP优于DBD主要体现在六个方面:气体击穿电压降低、微放电数量的增加、·OH浓度增加、能量利用率提高、放电更均匀和降解产物对光的吸收作用。
     (2)OCPP(KrI~*/DBD)降解模拟流动态苯乙烯气体,结果表明:Kr26.6 kPa,I_26mg,气体流速3.26 m~3/h,1265 mg/m~3的苯乙烯气体在外施电压9.0kV时去除率达84.4%,与DBD等离子体相比提高了20.6%,能率提高了5.7 g/(kW.h)。同时,研究了OCPP降解苯乙烯的影响因素,包括:填充的Kr和I_2的量、石英材质、气体流速、苯乙烯的初始浓度及反应器的结构形式。最后,采用红外光谱和气质联用分析了结焦产物,探讨了OCPP降解苯乙烯的机理。
     (3)初始浓度为2500mg/m~3的乙酸异丁酯气体,气体流速为2.8 m~3/h,在OCPP(内充Kr 35.9 kPa,Br_21.2kPa)中降解,与DBD相比,9kV时,乙酸异丁酯的去除率提高了18.3%。填充的Kr/Br_2混合气体的总压和配比对OCPP降解污染物有一定影响,研究表明,Kr/Br_2配比为30-50之间比较适合污染物降解;在一定范围内总压升高有利于OCPP降解乙酸异丁酯;填充缓冲气体Ar有利于提高OCPP对乙酸异丁酯的去除率。OCPP激发Kr/Br_2主要辐射207nm(KrBr~*),228nm(KrBr~*)和289nm(Br~*)三个波长的紫外光。207nm KrBr~*准分子光的强度随外施电压升高而升高,随填充气体总压的升高而升高。
Dielectric barrier discharge (DBD) plasma was a mature and feasible technologyfor organic waste gas treatment.Up to now,there have been many reports on DBDplasma used for treating volatile organic compounds (VOCs) as an alternativeapproach.However,their studies mainly based on pollutants destruction under staticstate or low-flow case (gas flow rate in reaction region<0.1m/s) and on combinedplasma technology,as a result,their results were hard to be used for practical exhauststreatment directly.In this dissertation,we studied VOCs destruction with DBDplasma and combined plasma photolysis under high gas flow rate (gas flow rate inreaction region>1m/s) in order to give some valuable proposals to commercialavailability.
     This dissertation was mainly composed of two parts.In Part 1,the destruction of“three benzene”(benzene,toluene,xylene) and isobutyl acetate gas with DBDtechnology was studied and the influence factors were investigated.Moreover,weconducted experiment in DBD system in series and actual engineering applicationresearch and inferred reaction mechanisms as well as feasibility.The results mainlyincluded:
     (1)The removal efficiency of“three benzene”increased with the increase of inputpower and applied voltage,and decreased with increasing gas flow rate and initialconcentration.The energy yield (Ey) increased with the increase of initialconcentration and applied voltage,while gas flow gas has a relatively complex effecton Ey.Moreover,we found that benzene,toluene and xylene have closed removalefficiency and energy yield with DBD destruction technology under the samecondition.We also carried out“scale-up”experiment on hybrid“three benzene”andthe experimental results showed that“three benzene”removal efficiency was morethan 50% in one DBD and over 89% in three DBD systems in series,when theirconcentrations were in the range of 300-700mg/m~3.Treatment cost assessment of perunit volume“three benzene”hybrid waste gas showed that only 2 to 4 yuan RMB wasneeded per 1000m~3 waste gases with DBD technology.At last,we pointed out that thefirst thing to consider was to remove solid residues in the wall of tube and aerosolparticles in effluent,before“three benzene”destruction with DBD were actuallyapplied.
     (2)When gas flow rate was 2.58 m~3/h,removal efficiency of isobutyl acetate of 1788 mg/m~3 can reach 75.3% at 9 kV.The removal efficiency of isobutyl acetate increasedwith increasing applied voltage and decreasing initial concentration and gas flow rate.Ey increased with the increase of initial concentration and the highest Ey can reach32.9 g/(kW.h) according to our results.We also investigated the decomposition ofactual industrial waste gas containing isobutyl acetate in terms of three aspectsincluding the removal efficiency,treatment cost and feasibility.The results showedthat removal efficiency of isobutyl acetate was above 80% when applied voltage,gasflow rate,and flow rate in DBD reactor region were set at 16 kV,2000m~3/h,and5.4m/s,respectively.The treatment cost of isobutyl acetate was 12 yuanRMB/1000m~3.At last,the likely reaction mechanisms for the removal of isobutylacetate by DBD were suggested on the basis of byproducts analysis.
     In order to optimize DBD plasma for waste gas removal,in part 2,a new-typereactor was designed and constructed,nominated combined plasma photolysis (CPP)that simultaneously produced plasma and excimer UV radiation with onehigh-pressure power supply.Destruction principle and characteristic of CPP for wastegas were discussed.In addition,we investigated degradation performance of CPP withVOCs (benzene,styrene and isobutyl acetate) as targets and analyzed influencefactors.Finally,we measured the excimer spectrum from CPP,and the results were asfollows:
     (1)The elementary study showed that it was unsuitable for Xe/I_2 mixture as excimergas filled in CPP reactor,because wavelength of XeI~* excimer (253nm) was too long.When we utilized ICPP (inner combined plasma photolysis) reactor for benzeneremoval,removal efficiency of benzene was lower.
     In OCPP (KrI~*/DBD),benzene removal efficiency increased by 15.9% in contrastto DBD,when applied voltage,gas flow rate,and initial concentration of benzenewere set at 9 kV,35 L/min,and 800 mg/m~3,respectively.In addition,themineralization degree and CO_2 selectivity in OCPP was higher than that in DBD.Theeffects of various operational parameters including total pressure,ratio of Kr/I_2,andquartz dielectric characteristics on OCPP performance were investigated.At last,theemission spectra of KrI~* excimer and byproducts analysis were suggested.
     The experimental results also showed that benzene has low removal efficiencywhen decomposed only by excimer UV,which by inference only was a lightionization reagent for decreasing breakdown voltage of gas ionization.On the basis of above results,we concluded the reasons for OCPP superior to DBD from six aspects:the decrease of breakdown voltage,the increasing of microdischarge numbers,improvement of OH radical concentration,the enhancement of energy efficiency,more homogeneous discharge and benzene molecule absorption of UV light.
     (2)Simulated flowing waste gas containing styrene was decomposed with OCPP(KrI~*/DBD) reactor.The results showed that styrene removal efficiency was up to84.4% in OCPP (Kr 26.6kPa,I_2 6 mg),and removal efficiency was increased by20.6%,Ey increased by 5.7 g/(kW.h) in contrast to DBD plasma,when appliedvoltage,gas flow rate,and initial concentration of styrene were set at 9 kV,3.26 m~3/h,and 1265 mg/m~3,respectively.Moreover,we investigated influence factors of styrenedecomposition including pressure of filled Kr and mass of I_2,quartz material,gas flowrate,initial concentration of styrene,as well as reactor configuration.At last,weanalyzed solid depositions on the internal wall of OCPP reactor by a FourierTransformation Infrared Spectrometer (FTIR) and a Gas Chromatography-MassSpectrometry (GC-MS),on the basis of which,the likely reaction mechanisms for theremoval of styrene by OCPP were discussed.
     (3)In OCPP (Kr 35.9 kPa,Br_2 1.2kPa),isobutyl acetate removal efficiency increasedby 18.3% in contrast to DBD,when applied voltage,gas flow rate,and initialconcentration of isobutyl acetate were set at 9 kV,2.8 m~3/h,and 2500mg/m~3,respectively.The results showed that the total pressure and ratio of Kr/Br_2 mixturehave effect on isobutyl acetate destruction.When Kr/Br_2 was in the range of 30-50,good removal efficiency for isobutyl acetate was achieved.The increase of totalpressure and the adding of buffer gas Ar were in favor of isobutyl acetate destructionin OCPP to some extent.Three representative wavelengths at 207 nm (KrBr~*),228nm(KrBr~*) and 289nm (Br~*) were produced from Kr/Br_2 excited by OCPP.The excimerradiation intensity at 207nm was enhanced by the increase of applied voltage and totalpressure of Kr/Br_2 mixture.
引文
[1] Jani M A,Toda K,Takaki K,et al.An experimental comparison between electrode shapes for NOx treatment using a dielectric barrier discharge [J].J.Phys.D:Appl.Phys.,2000,33:3078—3082.
    [2] 王辉,孙岩洲,方志,等.不同电极条件下介质阻挡放电的特性研究[J].高压电器,2006,42(1):25-27.
    [3] Takaki K,Hatanaka Y,Arima K.Influence of electrode configuration on ozone synthesis and microdischarge property in dielectric barrier discharge reactor [J].Vacuum,2009,83:128—132.
    [4] Ognier S,Cavadias S,Amouroux J.Aromatic VOC removal by formation of microparticles in pure nitrogen discharge barrier discharge [J].Plasma Process.Polym.,2007,4:528—536.
    [5] Okubo M,Kuroki T,Kametaka H,et al.Odor control using the AC barrier-type plasma reactors [J].IEEE Trans.Ind.Appl.,2001,37(5):1447-1455.
    [6] 刘彤,宋志民,石川,等.介质阻挡放电等离子体直接分解NO_x的影响因素[J].环境科学,2000,5(21):80-82.
    [7] 方志,邱毓昌,王辉,等.介质阻挡放电的电荷传输特性研究[J].高压电器,2004,40(6):401-403.
    [8] Samaranayake W J M,Miyahara Y,Namihira T,et al.Ozone generation in dry air using pulsed discharges with and without a solid dielectric layer [J].Trans.Dielectrics Electrical Insulation,2001,8(4):687-697.
    [9] Kang W S,Park J M,Kim Y,et al.Numerical study on influences of barrier varrangements on dielectric barrier discharge characteristics [J].IEEE Trans.Plasma Sci.,2003,31(4):504-510.
    [10] Carman R J,Mildren R P.Electron energy distribution functions for modelling the plasma kinetics in dielectric barrier discharges [J].J.Phys.D:Appl.Phys.,2000,33:L99—L103.
    [11] Wang X X,Luo H Y,Liang Z,et al.Influence of wire mesh electrodes on dielectric barrier discharge [J].Plasma Sources Sci.Technol.,2006,15:845—848.
    [12] Singh K P,Subrata R,Gaitonde D V.Study of control parameters for separation mitigation using an asymmetric single dielectric barrier plasma actuator [J].Plasma Sources Sci.Technol.,2006,15:735—743.
    [13] 王承智,石荣,胡筱敏,等.等离子体技术应用于气相污染物治理综述[J].环境污染与防治,2006,28(3):205.209.
    [14] Liu C Z,Norman M D,Brown B J.Statistical analysis of the effect of dielectric barrier discharge operating parameters on the surface processing of poly (methylmethacrylate) film [J].Surf.Sci.,2005,575(3):273-286.
    [15] Esena P,Riccardi C,Zanini S,et al.Surface modification of PET film by a DBD device at atmospheric pressure [J].Surf.Coat.Technol.,2006,200(1):664-667.
    [16] Liu C Z,Wu J Q,Ren L Q,et al.Comparative study on the effect of RF and DBD plasma treatment on PTFE surface modification [J].Mater.Chem.Phys.,2004,85(2-3):340-346.
    [17] 苟立,郑元元,冉均国.等离子体刻蚀处理大面积金刚石薄膜[J].微细加工技术,2007,1:28.31.
    [18] Wieneke S,Born S,Vi(?)l W.Sealed-off CO_2 lasers excited by an all-solid-state 0.6 MHz generator [J].J.Phys.D:Appl.Phys.,2000,33:1282—1286.
    [19] Xu X J.Dielectric barrier discharge-properties and applications [J].Thin Solid Films,2001,390:237-242.
    [20] 冯景伟,郑正,孙亚兵,等.介质阻挡放电对水中敌草隆的降解研究[J].环境化学,2008,27(4):422.426.
    [21] Mok Y S,Jo J O,Lee H J,et al.Application of dielectric barrier discharge reactor immersed in wastewater to the oxidative degradation of organic contaminant [J].Plasma Chem.Plasma Process.,2007,27:51—64.
    [22] Mok Y S,Jo J O,Lee H J.Dielectric barrier discharge plasma-induced photocatalysis and ozonation for the treatment of wastewater [J].Plasma Sci.Technol.,2008,10(1):101-105.
    [23] Moka Y S,Jo J O,Whitehead J C.Degradation of an azo dye Orange II using a gas phase dielectric barrier discharge reactor submerged in water [J].Chem.Eng.J.,2008,142:56—64.
    [24] Bubnov A G,Burova E Y,Grinevich V I,et al.Plasma-catalytic decomposition of phenols in atmospheric pressure dielectric barrier discharge [J].Plasma Chem.Plasma Process.,2006,26(1):19-30.
    [25] Mok Y S,Jo J O,Lee H J,et al.Application of dielectric barrier discharge reactor immersed in wastewater to the oxidative degradation of organic contaminant [J].Plasma Chem.Plasma Process.,2007,27:51—64.
    [26] Mok Y S,Jo J O.Degradation of organic contaminant by using dielectric barrier discharge reactor immersed in wastewater [J].IEEE Trans.Plasma Sci.,2006, 34(6):2624-2629.
    [27] Magureanu M,Piroi D,Mandache N B,et al.Decomposition of methylene blue in water using a dielectric barrier discharge:Optimization of the operating parameters [J].J.Appl.Phys.,2008,104:103306 (7pp)
    [28] Baroch P,Saito N,Takai O.Special type of plasma dielectric barrier discharge reactor for direct ozonization of water and degradation of organic pollution [J].J.Phys.D:Appl.Phys.,2008,41:085207 (6pp).
    [29] Sun Q,Zhu A M,Yang X F,et al.Plasma-catalytic selective reduction of NO with C_2H_4 in the presence of excess oxygen [J].Chin.Chem.Lett.,2005,16(6):839-842.
    [30] Chang M B,Lee H M,Lai C R.Simultaneous removal of nitrogen oxide/nitrogen dioxide/sulfur dioxide from gas streams by combined plasma scrubbing technology [J].J.Air Waste Manage Assoc.,2004,54(3):941-949.
    [31] Yamamoto K,Kawamura K,Yukimura K,et.al.Oxygen effect on high concentration NO removal using an intermittent DBD [J].Vacuum,2004,73(3-4):583-588.
    [32] Sun W,Pashaie B J,Dhalia S K.Non-thermal plasma remediation of SO_2/NO using a dielectric-barrier discharge [J].J.Appl.Phys.,1996,79(7):34-38.
    [33] Chang M B,Yu S J.An atmospheric-pressure plasma process for C_2F_6 removal [J].Environ.Sci.Technol.,2001,35(8):1587-1592.
    [34] Ulrich K.Dielectric barrier discharges:their history,discharge physics,and industrial applications [J].Plasma Chem.Plasma Process.,2003,23(1):46.
    [35] 叶招莲,候惠奇.介质阻挡放电处理气态污染物的研究进展[J].化工环保,2007,27(3):230-235.
    [36] 王淑惠,刘正超,侯惠奇,等.DBD降解CF_2ClBr过程中自由基与电子能量 [J].环境科学,2000,21(1):36-39.
    [37] 董丽芳,刘峰,李树锋,等.混合气体介质阻挡放电中的电子激发温度[J].北京理工大学学报,2005,S25:61-63.
    [38] Takiyama K,Hiroshima U,Grad S E,et al.Observation of OH radical reactions with atomic hydrogen in He/H_2O plasmas by laser-induced fluorescence spectroscopy [J].Jpn.J.Appl.Phys.,2006,45(10):8260-8263.
    [39] 谢维杰,李龙海,周保学,等.氧气常压介质阻挡放电的发射光谱及能量传递机理[J].物理化学学报,2008,24(5):827-832.
    [40] 侯健,潘循皙,赵太洁,等.常压非平衡态等离子体降解挥发性烃类污染物 [J].中国环境科学,1999,19(3):277-280.
    [41] Lee H M,Chang M B.Abatement of gas-phase p-xylene via dielectric barrier discharges [J].Plasma Chem.Plasma Process.,2003,23(3):541-556.
    [42] 蒋洁敏,侯健,候惠奇.介质阻挡放电常压分解苯系物的研究[J].化学世界,2000,S1:91-93.
    [43] 舒小红,房豪杰,潘丹霞,等.介质特性对DBD降解苯的影响[J].环境污染治理技术与设备,2006,7(7):67-73.
    [44] Guo Y F,Ye D Q,Chen K F.Toluene removal characteristics by a superimposed wire-plate dielectric barrier discharge plasma reactor [J].J.Environ.Sci.,2006, 18(2):276-280.
    [45] 缪劲松,徐红利,欧阳吉庭.利用低温等离子体脱除甲醛的研究[J].北京理工大学学报,2005,S25:189-192.
    [46] Subrahmanyam Ch,Magureanu M,Renken A,et.al.Catalytic abatement of volatile organic compounds assisted by non-thermal plasma:Part 1.A novel dielectric barrier discharge reactor containing catalytic electrode [J].Appl.Catal.B:Environ.,2006,65(1-2):150-156.
    [47] Falkenstein Z.Effects of the O_2 concentration on the removal efficiency of volatile organic compounds with dielectric barrier discharges in Ar and N_2 [J].J.Appl.Phys.,1999,85(1):525-529.
    [48] Ogata A,Shintani N.Effect of water vapor on benzene decomposition using a nonthermal-discharge plasma reactor [J].Plasma Chem.Plasma Process.,2000, 20(4):453-467.
    [49] 沈燕,黄丽,张仁熙,等.介质阻挡放电降解SF_6的研究[J].环境化学,2007,26(3):275-279.
    [50] 李战国,胡真,王守国,等.介质阻挡放电等离子体洗消芥子气染毒空气的研究[J].环境科学学报,2007,27(3):522—528.
    [51] Lee H M,Chang M B.Gas-phase removal of acetaldehyde via packed-bed dielectric barrier discharge reactor [J].Plasma Chem.Plasma Process.,2001, 21(3):329-343.
    [52] Ding H X,Zhu A M,Lu F G..Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams [J].J.Phys.D:Appl.Phys., 2006,39(16):3603-3608.
    [53] Lu B,Zhang X,Yu X,et al.Catalytic oxidation of benzene using DBD corona discharges [J].J.Hazard.Mater.,2006,137(1):633-637.
    [54] Ayrault C,Barrault J,Simiand N B,et al.Oxidation of 2-heptanone in air by a DBD-type plasma generated within a honeycomb monolith supported Pt-based catalyst [J].Catal.Today,2004,89(1-2):75-81.
    [55] Chang C L,Lin T S.Plasma decomposition of toluene and acetone in packed dielectric barrier discharge reactors [J].Plasma Chem.Plasma Process.,2005, 25(3):227-232.
    [56] 竹涛,李坚,梁文俊,等.非平衡等离子体联合技术降解甲苯气体[J].环境科学学报,2008,28(11):2299-2304.
    [57] Li D ,Zhang D,Wu Y,et al.A study of removing chlorobenzene by the synergistic effect of catalysts and dielectric-barrier discharge driven by bipolar pulse-power [J].Plasma Sci.Technol.,2008,10(1):93-99.
    [58] Falkenstein Z.The influence of ultraviolet illumination on OH formation in dielectric barrier discharges of Ar/O_2/H_2O:The Joshi effect [J].J.Appl.Phys., 1997,81(11):7158-7162.
    [59] Huang H B,Ye D Q,Fu M L,et al.Contribution of UV light to the decomposition of toluene in dielectric barrier discharge plasma/photocatalysis system [J].Plasma Chem.Plasma Process.,2007,27:577—588.
    [60] Grundmann J,M(?)ller S,Zahn R J.Treatment of soot by dielectric barrier discharges and ozone [J].Plasma Chem.Plasma Process.,2005,25(5):455-466.
    [61] Tanabe S.Oligomerization and carbon dioxide reforming of methane in a dielectric-barrier discharge-plasma system [J].J.Jpn.Pet.Assoc.,1999,42:383-391.
    [62] 侯健,刘先年,侯惠奇.低温等离子体技术及其治理工业废气的应用[J].上海环境科学,1999,18(4):151-153.
    [63] Koehler H A,Ferderber L J,Redhead D L,et al.Vacuum-ultraviolet emission from high pressure xenon and argon excited by high-current relativistic electron beams [J].Phys.Rev.A,1974,9:768-781.
    [64] Millet P,Birot A,Brunet H,et al.Time resolved study of the UV and near UV continuums of xenon [J].J.Chem.Phys.,1978,69:92-97.
    [65] Brodmann R,Zimmerer G.Vacuum-ultraviolet fluorescene under monochromatic excitation and collision processes in gaseous Kr and Xe [J].J.Phys.B:Atom Molec.Phys.,1977,10:3395-3408.
    [66] Wieme W,Lenaerts J.Excimer formation in argon,krypton,and xenon discharge afterglows between 200 and 400 K [J].J.Chem.Phys.,1981,74:483-493.
    [67] Calloway A R,Galantowicz T A,Fenner W R.Vacuum ultraviolet driven chemical vapor deposition of localized aluminum thin films [J].J.Vac.Sci.Techin.A,1983,1:534-536.
    [68] Gellert B,Kogelschatz U K.Generation of excimer emission in dielectric barrier discharge [J].Appl.Phys.B,1991,52:14-21.
    [69] 刘洋,龙奇,陈大华.传统紫外光源与新型紫外光源[J].光源与照明,2006.1:7-9.
    [70] Zhang J Y,Boyd L W.Efficient XeI~* excimer ultraviolet sources from a dielectric barrier discharge [J].J.Appl.Phys.,1998,84(3):1174-1177.
    [71] Zhang J Y,Boyd L W.Efficient excimer ultraviolet sources from a dielectric barrier discharge in rare-gas/halogen mixtures [J].J.Appl.Phys.,1996,80(2):633-638.
    [72] Eliasson B,Kogelschatz U.Modeling and applications of silent discharge [J].Plasma IEEE Trans.Plasma Sci.,1991,19 (2):309-323.
    [73] Eliasson B,Gellert B.Investigation of resonance and excimer radiation from a dielectric barrier discharge in mixtures of mercury and the rare-gases [J].J.Appl.Phys.,1990,68:2026-2037.
    [74] 徐金洲,梁荣庆,任兆杏.一种新型的紫外光源—准分子紫外灯[J].真空科学与技术,2001,21(4):298-302.
    [75] 阎克路,赵炯心,杨梅.准分子紫外光源对涤纶织物的表面改性[J].染整技术,2005,6:11-14.
    [76] 夏东升.新型微波无极紫外光源用于光化学反应的综合评述[J].自然杂志,2005,27(3):147-150.
    [77] 夏兰艳,顾丁红,董文博,等.无极紫外灯及其在环境污染治理中的应用[J].四川环境,2007,26(4):800-811.
    [78] Eliasson B,Kogelschatz U.UV excimer radiation from dielectric-barrier discharges [J].Appl.Phys.B,1988,46:299-303.
    [79] Hirose K,Sugahara H,Matsuno H.Basic performance of VUV exposure systems using head-on type Ar_2~* and Kr_2~* DBD excimer lamps [J].J.Light Vis.Env., 2002,26:35-41.
    [80] Kurosawa K,Takezoe N,Yanagida H,et al.Silica film preparation by chemical vapor deposition using vacuum ultraviolet excimer lamp [J].Appl.Surf.Sci., 2000,68:37-40.
    [81] Mildren R P,Carman R J.Enhanced performance of a dielectric barrier discharge lamp using short-pulsed excitation [J].J.Phys.D:Appl.Phys.,2001,34:L1-L6.
    [82] Mildren R P,Carman R J,Falcomer I S.Visible and VUV images of dielectric barrier discharges in Xe [J].J.Phys.D:Appl.Phys.,2001,34:3378-3382.
    [83] Lee W G,Shao M,Gottschalk J R,et al.Vacuum ultraviolet emission dynamics of a coplanar electrode microdischarge:dependence on voltage and Xe concentratin [J].J.Appl.Phys.,2002,92 (2):682-689.
    [84] Xu J Z,Liang R Q,Ren Z X.UV emissin of excimer XeCl~* excited in dielectric barrier discharge by using pulse power supply [J].Plasma Sci.Technol.,2001,3:933-940.
    [85] Xu J Z,Liu W,Liang R Q,et al.The characteristics of dielectric barrier discharge and its influence on the excimer XeCl~* emission [J].Plasma Sci.Technol.,2001, 3:1027-1036.
    [86] Falkenstein Z,Coogan J.The development of a silent discharge-driven XeBr~* excimer UV light source [J].J.Phys.D:Appl.Phys.,1997,30:2704-2710.
    [87] Beleznai S,Mihajlik G,Agod A,et al.High-efficiency dielectric barrier Xe discharge lamp:theoretical and experimental investigations [J].J.Phys.D:Appl.Phys.,2006,39:3777—3787.
    [88] Qu Q R,Meng Y D,Xu X,et al.Effect of frequency on emissin of XeI~* excimer in a pulsed dielectric barrier discharge [J].Chin.Phys.Lett.,2004,21:1317-1319.
    [89] 徐学基.准分子光源的进展[J].照明工程学报,1998,9(1):9-16.
    [90] Shuaibov A K,Grabovaya I A.Electric-discharge He/Xe/I_2 excimer-halogen UV lamp [J].Tech.Phys.,2004,49(4):443-446.
    [91] 徐金洲,梁荣庆,任兆杏,等.气体对介质阻挡放电激发XeCl~*辐射的影响[J].核聚变与等离子体物理,2003,23(4):243-247.
    [92] Jakob L,Hashem T M,S(?)bastien B.Vacuum-ultraviolet (VUV) photolysis of water:oxidative degradation of 4-chlorophenol [J].J.Photochem.Photobiol.A:Chem.,1993,75:97-103.
    [93] Li Q R,Gu C Z,Di Y.Photodegradation of nitrobenzene using 172 nm excimer UV lamp [J].J.Hazard.Mater.,2006,B133:68—74.
    [94] Feng X F,Zhu S L,Hou H Q.Photolytic degradation of organic azo dye in aqueous solution using Xe-excimer lamp[J].Environ.Technol.,2006, 27(2):119-126.
    [95] Feng X F,Zhu S L,Hou H Q.Investigation of 207 nm UV radiation for degradation of organic dye in water [J].Water SA.,2006,32 (1):43-48.
    [96] 冯祥芬,侯惠奇,朱绍龙.172 nm辐射降解恶臭气体二硫化碳的研究[J].化学世界,2006,5:257-259.
    [97] Oppenl(?)nder T,Fradl M.TOC dstruction of a phenol /water azeotrope by photoreactive distillation through an incoherent vacuum UV excimer lamp [J].Chem.Eng.Technol.,1999,22(11):951-954.
    [98] Oppenl(?)nder T,Gliese S.Mineralization of organic micropollutants (homologous alcohols and phenols) in water by vacuum-UV-oxidation (H_2O_2-VUV) with an incoherent xenon excimer lamp at 172 nm [J].Chemosphere,2000,(40):15-21.
    [99] 陶有胜.三苯废气治理技术[M].环境保护,1999(8):20-21.
    [100] 夏昭林,孙品,张忠彬,等.苯的职业健康危害研究的回顾与展望[J].中华劳动卫生职业病,2005,23(4):241.243.
    [101] Cheng N.Neurotoxic effect of styrene further evidence [J].Br Ind Med,1990,47:29-33.
    [102] 王史远,朱崇法.苯乙烯对作业工人健康影响调查[J].职业医学,1994,21(4):45-46.
    [103] 李子东,李广宇.对苯乙烯毒性的新评价[J].沈阳化工,1999,28(4):7-8.
    [104] 黄财林,李贞钊,陈东杰.苯乙烯与甲苯对人体慢性危害的探讨[J].中国职业医学,1997,24(3):22-24.
    [105] Kogelschatz,U.1993.UV production in dielectric barrier discharges for pollution control.In:Penetrante,B.M.,Schultheis,S.E.(Eds).Non-thermal plasma techniques for pollution control,NATO ASI Series,Vol.G 34,Part B, Springer,Berlin,German,pp.339—354.
    [106] Heise M,Neff W,Franken O,et al.Sterilization of polymer foils with dielectric barrier discharges at atmospheric pressure [J].Plasmas Polym.,2004,(1):23-33.
    [107] Fang H J,Hou H Q,Xia L Y,et al.A combined plasma photolysis (CPP) method for removal of CS_2 from gas streams at atmospheric pressure [J].Chemosphere,2007,69:1734—1739.
    [108] 沈学静,王海舟.体积流量法配制多组分气体混合物[J].理化检验-化学分册,2004,40(11):643-647.
    [109] Ogata A,Miyamae K,Mizuno K,et al.Decomposition of benzene in air in a plasma reactor:Effect of reactor type and operating conditions [J].Plasma Chem.Plasma Process.,2002,22:537-552.
    [110] Lu B,Zhang X,Yu X,et al.Catalytic oxidation of benzene using DBD corona discharges[J].J.Hazard.Mater.B,2006,137:633—637.
    [111]姜素霞,韩中枢,夏春.标准气体的制备方法及配制技术[J].化学分析计量,2004,13(6):71-78.
    [112] 邱建,谭若明.用称量法制备气体标准物质浅谈[J].低温与特气,2004,22(6):20-24.
    [113] 周泽义,盖良京,梁建平.标准气体静态容量法配气方法研究[J].计量学报,2003,24(3):236-239.
    [114] Kim H H,Kobara H,Ogata A,et al.Comparative assessment of different nonthermal plasma reactors on energy efficiency and aerosol formation from the decomposition of gas-phase benzene [J].IEEE Trans.Ind.Appl.,2005, 41(1):206-214.
    [115] Kuroki T,Mine J,Okubo M,et al.CF4 decomposition using inductively coupled plasma:effect of power frequency [J].IEEE Trans.Ind.Appl.,2005,41(1):215-220.
    [116] Yamamoto T,Jang B W L.Aerosol generation and decomposition of CFC-113 by the ferroelectric plasma reactor [J].IEEE Trans.Ind.Appl.,1999,35(4):736—742.
    [117] Tonkyn R G,Barlow S E,Orlando T M.Destruction of carbon tetrachloride in a dielectric barrier/packed-bed corona reactor [J].J.Appl.Phys.,1996,80:4877—4886.
    [118] Yukimura K,Hiramatsu T,Murakami H,et al.Molar ratio and energy efficiency of deNOx using an intermittent DBD ammonia radical injection system [J].IEEE Trans.Plasma Sci.,2006,34(2):235-241.
    [119] 马竞涛,周则飞,吴祖成,等.低温等离子体处理恶臭废气技术的工业应用研究[J].炼油技术与工程,2007,37(4):50-54.
    [120] 聂勇,李伟,施耀,等.脉冲放电等离子体治理甲苯废气放大试验研究[J].环境科学,2004,25(3):30-34.
    [121] 王龙义,孙志杰,毕先伟,等.苯及苯系物对接触人员健康状况的影响[J].中国工业医学杂志,2005,18(2):109-110.
    [122] 白洪亮,张永春,宋伟杰,等.脱除工业废气中微量苯系物杂质的研究进展[J].低温与特气,2005,23(3):6-10.
    [123] 宋彦龙,游俊琴,张忠良,等.真空紫外光降解苯的研究[J].环境工程学报,2008,2(11):1535-1538.
    [124] 顾卓良,赵伟荣,工海强,等.玻纤负载纳米TiO_2光催化降解气相苯 [J].江南大学学报(自然科学版),2008,7(2):239-243.
    [125] 任成军,邹涛,陈国强,等.Pt-TiO_2/CeO_2-MnO_2复合催化剂光热降解气相[J].催化学报,2006,27(12):1048-1050.
    [126] 陆彬,季民,于欣,等.介质阻挡等离子体放电与催化联用技术分解苯[J].中国环境科学,2006,26(6):703-707.
    [127] Toda K,Takaki K,Kato S,et al.Removal of NO and NOx using a multipoint-type dielectric barrier discharge at a narrow gap [J].J.Phys.D:Appl.Phys.,2001,34:2032—2036.
    [128] Takaki K,Hatanaka Y,Arima K,et al.Influence of electrode configuration on ozone synthesis and microdischarge property in dielectric barrier discharge reactor [J].Vacuum,2009,83:128—132.
    [129] Khassin A A,Pietruszk B L,Heintze M,et al.Methane oxidation in a dielectric barrier discharge.the impact of discharge power and discharge gap filling [J].React.Kinet.Catal.Lett.,2004,82(1):111-119.
    [130] Sekiguchi H,Ando M,Kojima H,et al.Study of hydroxylation of benzene and toluene using micro-DBD plasma reactor [J].J.Phys.D:Appl.Phys.,2005,38:1722-1727.
    [131] Ascenzi D,Franceschi P,Guella G,et al.Phenol production in benzene/air plasmas at atmospheric pressure:Role of radical and ionic routes [J].J.Phys.Chem.A,2006,110:7841-7847.
    [132] Kim H H,Ogata A,Futamura S.Effect of different catalysts on the decomposition of VOCs using flow-type plasma-driven catalysis [J].IEEE Trans.Plasma.Sci.,2006,34:984-995.
    [133] Guo Y F,Ye D Q,Chen K F.Toluene removal characteristics by a superimposed wire-plate dielectric barrier discharge plasma reactor [J].J.Environ.Sci.,2006, 18:276-280.
    [134] Subrahmanyam Ch,Renken A,Minsker L K.Catalytic abatement of volatile organic compounds assisted by non-thermal plasma Part II.Optimized catalytic electrode and operating conditions [J].Appl.Catal.B:Environ.,2006,65:150-156.
    [135] Lee H M,Chang M B.Abatement of gas-phase p-xylene via dielectric barrier discharges [J].Plasma Chem.Plasma Process.,2003,23:541-558.
    [136] 郑光云,侯健,蒋洁敏,等.非平衡等离子体降解流动态低浓度甲苯的研究[J].复旦学报(自然科学版),2001,40(4):364-367.
    [137] 吴玉萍,郑光云,蒋洁敏,等.介质阻挡放电-催化降解苯的研究[J].环境化学,2003,22(4):329-333.
    [138] 赵化侨.等离子体化学与工艺[M].北京:中国科学技术大学出版社,1993
    [139] 白希尧,张芝涛,等.高气压非平衡等离子体化学及应用基础研究[J].物理,2000,29(7):406-410.
    [140] 蒋洁敏,侯健,郑光云,等.介质阻挡放电常压分解苯、二甲苯[J].中国环境科学,2001,21(6):531-534.
    [141] Berndt T,B(?)ge O,Herrmann H.On the formation of benzene oxide/oxepin in the gas-phase reaction of OH radicals with benzene [J].Chem.Phys.Lett.,1999, 314:435-442.
    [142] Hsu K J,Durant J L,Kaufman F.Rate constants for atomic hydrogen + oxygen + M at 298 K for M = helium,nitrogen,and water [J].J.Phys.Chem.,1987,91:1895-1899.
    [143] Yu T,Lin M C.Kinetics of phenyl radical reactions studied by the cavity-ring-down method [J].J.Am.Chem.Soc.,1993,115:4371-4372.
    [144] Ascenzi D,Franceschi P,Guella G,et al.Phenol production in benzene/air plasmas at atmospheric pressure.Role of radical and ionic routes [J].J.Phys.Chem.A,2006,110:7841-7847.
    [145] Roder M,Wojharovits L,Foldiak G.Pulse radiolysis of aqueous solutions of aromatic hydrocarbons in the presence of oxygen [J].Radiat.Phys.Chem., 1990,36:175-176.
    [146] Michael B D,Hart E J.Rate constants of hydrated electron,hydrogen atom,and hydroxyl radical reactions with benzene,1,3-cyclohexadiene,1, 4-cyclohexadiene,and cyclohexene [J].J.Phys.Chem.,1970,74:2878-2884.
    [147] Kima H H,Prietob G,Takashima K,et al.Performance evaluation of discharge plasma process for gaseous pollutant removal [J].J.Electrostat.,2002,55:25—41.
    [148] Kim H H,Kobara H,Ogata A,et al.Comparative assessment of different nonthermal plasma reactors on energy efficiency and aerosol formation from the decomposition of gas-phase benzene [J].IEEE Trans.Ind.Appl.,2005,41:206-214.
    [149] Jiang C Q,Aleam A,Mohamed H,et al.Removal of volatile organic compounds in atmospheric pressure air by means of direct current glow discharges [J].IEEE Trans.Plasma.Sci.,2005,33:1416-1425.
    [150] Futamura S,Einaga H,Kabashima H,et al.Synergistic effect of silent discharge plasma and catalysts on benzene decomposition [J].Catal.Today, 2004,89:89-97.
    [151] Friedlander S K.Smoke,Dust,and Haze;fundamentals of aerosol behavior [M].New York:Wiley,1977,235—236.
    [152] Nolan P J,Kuffel E.Metal point discharge nuclei and the production of multiply charged ions from condensation nuclei [J].Geofis.Pura.Appl.,1957, 36:201—210.
    [153] Nolan P J,O'Toole C P J.The condensation nuclei produced by point discharge [J].Geofis.Pura.Appl.,1959,42:117—126.
    [154] Spencer W P,Johnson R A,Wietti M A.On fog formation in a coronal discharge:Effects of the discharge on droplet growth [J].J.Aerosol Sci.,1976, 7:441—445.
    [155] Hakoda T,Kim H H,Okuyama K,et al.Charged nanoaerosol formation from humidified gases with and without dilute benzene under electron beam irradiation [J].J.Aerosol Sci.,2003,34:977-991.
    [156] Shih S I,LinT C,Shih M.Decomposition of benzene in the RF plasma environment Part II.Formation of polycyclic aromatic hydrocarbons [J].J.Hazard.Mater.B,2005,117:149—159.
    [157] Shahin M M.Mass-spectrometric studies of corona discharges in air at atmospheric pressures [J].J.Chem.Phys.,1966,45:2600—2605.
    [158] Sakata S,Okada T.Effect of humidity on hydrated cluster-ion formation in a clean room corona discharge neutralizer [J].J.Aerosol Sci.,1994,25:879—893.
    [159] Gravendeel B,Dehoog F J.Clustered negative ions in atmospheric negative corona discharges in the Trichel regime [J].J.Phys.B,At.Mol.Opt.Phys., 1987,20:6337—6361.
    [160] 童志权.工业废气净化与利用[M].北京:化学工业出版社,2001,419-420.
    [161] 王鹏飞,王艺,宫曼丽,等.生物滴滤法处理“三苯”废气的影响因素研究[J].哈尔滨工业大学学报,2003,35(1):73-80.
    [162] 应卫勇,廖仕杰,房鼎业.新型催化剂上甲苯、丙烯、一氧化碳催化燃烧反应动力学[J].化工学报,2002,53(10):1051-1055.
    [163] 吕阳,刘京,吕炳南,等.生物滴滤塔处理甲醛和三苯混合气体的实验研究[J].天津大学学报,2007,40(10):1225-1220.
    [164] 王丽萍,华素兰,赵跃民,等.生物法净化苯、甲苯、二甲苯废气菌利驯化[J].中国矿业大学学报,2006,35(5):633-636.
    [165] 郭泉辉,杨建军,毛立群,等.Pt/TiO_2光催化降解甲苯[J].化学研究,2001,12(3):53—55.
    [166] 刘凡新,郭志岩,杨涛,等.掺铈纳米TiO_2薄膜制备及光催化降解甲醛甲苯[J].分子催化,2003,17(4):298-301.
    [167] Gaur V,Sharma A,Verma N.Catalytic oxidation of toluene and m-xylene by activated carbonfiber impregnated with transition metals [J].Carbon,2005,43 :3041-3053.
    [168] 梁夫艳,张彭义,余刚,等.气相中甲苯的臭氧光催化降解[J].环境科学2002,23(6):17—21.
    [169] 曹晓强,黄学敏,马广大.真菌过滤塔净化含苯、甲苯废气影响因素的研究[J].环境科学,2007,28(8):1873—1877.
    [170] 李鹏,童志权.“三苯系”VOCs催化燃烧催化剂的研究进展[J].工业催化,2006,14(8):1-6.
    [171] Malaonado H F J,Moreno C C,Perez C A F.Catalytic combustion of toluene on platinummonolithic carbon aerogels [J].Appl.Catal.B:Environ.,2004,54:217-224.
    [172] 李时瑶,李淑莲,李恒强,等.2种催化剂在甲苯燃烧反应中的催化性能研 究[J].Environ.Sci.,1997,18:45-47.
    [173] 余凤江,张丽丹.苯催化燃烧反应Cu-Mn-Ce-Zr-O催化剂催化活性的研究[J].北京化工大学学报,2001,28(4):67-72.
    [174] Kang M,Kim B J,Cho S M,et al.Decomposition of toluene using an atmospheric pressure plasma/TiO2 catalytic system [J].2002,J.Mole.Catal.A:Chem.,180:125—132.
    [175] 竹涛,梁文俊,李坚,等.等离子体联合纳米技术降解甲苯废气的研究[J].中国环境科学,2008,28(8):699—703.
    [176] 殷永泉,苏元成,由丽娜,等.复合催化剂对气相苯和甲苯的光催化降解研究[J].环境科学,2007,28(6):1188—1192.
    [177] Webster T S,Togna A P,Guarini W J,et al.Application of a biological trickling filter reactor to treat volatile organic compound emission from a spray paint booth operation [J].Met.Finish.,1999,97:20—26.
    [178] Qi B,Moe W M,Kinney K A.Biodegradation of volatile organic compounds by five fungal species [J].Appl.Microbiol.Biotechnol.,2002,58:684-689.
    [179] Hinwood A L,Berko H N,Farrar D,et al.Volatile organic compounds in selected micro-environments [J]. Chemosphere, 2006, 63: 421-429.
    [180] Bruner W M, Ware V W. Isobutyl acetate -a new commercial nitrocellulose solvent [J]. Paint Oil Chem. Rev., 1939, 101:9-11.
    [181] Moe W M, Qi B. Performance of a fungal biofilter treating gas-phase solvent mixtures during intermittent loading [J]. Water Res., 2004, 38: 2259-2268.
    [182] Mathur A K, Majumder C B. Biofiltration and kinetic aspects of a biotrickling filter for the removal of paint solvent mixture laden air stream [J]. J. Hazard. Mater., 2008, 152:1027-1036.
    [183] Keller V, Bernhardt P, Garin F. Photocatalytic oxidation of butyl acetate in vapor phase on TiO_2, Pt/TiO_2 and WO_3/TiO_2 catalysts [J]. J. Catal., 2003, 215: 129-138.
    [184] Wojciech P. Degradation of n- butyl acetate in a corona discharge reactor, Inzynieria Chemiczna i Procesowa [J]. 2001, 22: 239-250 (in polish).
    [185] Deshusses M A, Johnson C T, Leson G. Biofiltration of high loads of ethyl acetate in the presence of toluene [J]. J. Air Waste Manage. Assoc, 1999, 49: 973-979.
    [186] Jorio H, Bibeau L, Viel G, et al. Effects of gas flow rate and inlet concentration on xylene vapors biofiltration performance [J]. J. Chem. Eng., 2000, 76: 209-221.
    [187] Demidiouk V, Moon S I, Chae J O. Toluene and butyl acetate removal from air by plasma-catalytic system [J]. Catal. Commun., 2003, 4: 51-56.
    [188] Lu C, Chang K, Hsu S, et al. Biofiltration of butyl acetate by a trickle-bed air biofilter [J]. Chem. Eng. Sci., 2004, 59: 99-108.
    [189] Gardin H, Lebeault J M, Pauss A, et al. Biodegradation of xylene and butyl acetate using an aqueous-silicon oil two-phase system [J]. Biodegrad., 1999, 10:193-200.
    [190] Demidiouk V, Chae J O. Decomposition of volatile organic compounds in plasma-catalytic system [J]. IEEE Trans. Plasma Sci., 2005, 33: 157-161.
    [191] Samaranayake W J M, Miyahara Y T, Namihira S K, et al. Ozone generation in dry air using pulsed discharges with and without a solid dielectric layer [J]. Trans. Dielectrics Eletrical. Insulation, 2001, 8: 687-697.
    [192] Wang Z C, Yeboah Y D, Bai T J, et al. Gap space optimization for NO removal in a non-thermal plasma discharge [J]. Plasma Chem. Plasma Process., 2004, 24: 405-420.
    [193] Sun W,Paschate B,Dhali S K,et al.Non-thermal plasma remediation of SO_2/NO using dielectric-barrier discharge [J].J.Appl.Phys.,1996,79:3438—3444.
    [194] 舒小红,吴玉萍,朱承柱,等.光电离剂对SBD降解苯的影响机理研究[J].环境科学研究,2005,18(6):37—40.
    [195] Zhang J Y,Boyd L W.Multi-wavelength excimer ultraviolet sources from a mixture of krypton and iodine in a dielectric barrier discharge [J].Appl.Phys.B, 2000,71 :177-179.
    [196] Feng X F,Zhu S L.Investigation of excimer ultraviolet sources from dielectric barrier discharge in krypton and halogen mixtures [J].Phys.Ser.,2006,74:322-325.
    [197] 赵凯华,陈熙谋.电磁学(上册)[M].人民教育出版社,1979,257-258.
    [198] Joshi S S,Deshmukh G S.An effect of light in gases under electrical discharge [J].Nature,1941,147:806-806.
    [199] Guaitella O.Dynamic of the plasma current amplitude in a barrier discharge [J].J.Phys.D:Appl.Phys.,2006,39(14):2964-2972.
    [200] Paca J,Koutsky B,Maryska M,et al.Styrene degradation along the bed height ofperlite biofilter [J].J.Chem.Technol.Biotechnol,2001,76:(8):873-878.
    [201] 王占华,许德玄,陈瑜,等.放电极雾化介质阻挡放电低温等离子体对染料溶液的脱色研究[J].环境科学研究,2007,20(6):720-724.
    [202] Harling A M,Kim H H,Futamura S,et al.Temperature dependence of plasma-catalysis using a nonthermal,atmospheric pressure packed bed;the Destruction of Benzene and Toluene [J].J Phys Chem C,2007,111:5090-5095.
    [203] Magureanu M,Mandache N B,Parvulescu V I.Chlorinated organic compounds decomposition in a dielectric barrier discharge [J].Plasma Chem.Plasma Process.,2007,27:679—690.
    [204] 赵雷,周中平.低温等离子体技术净化空气中的甲苯[J].环境科学研究,2006,19(4):70-73.
    [205] Chang C L,Bai H,Lu S J.Destruction of styrene in an air stream by packed dielectric barrier discharge reactors [J].Plasma Chem.Plasma Process.,2005, 25(6):641-657.
    [206] Anderson G K,Snyder H,Coogan J.Oxidation of styrene in a silent discharge plasma [J].Plasma Chem.Plasma Process.,1999,19(1):131-151.
    [207] 吴玉萍,赵之骏,张建良,等.介质阻挡放电降解苯乙烯的研究[J].中国环境科学,2003,23(6):653-656.
    [208] Chang M B,Kushner M J,Rood M J.Removal of sulfur dioxide and nitric oxide from gas streams with combined plasma photolysis [J].J.Environ.Eng., 1993,119(3):414-423.
    [209] Zoran F.Processing of C3H7OH,C_2HCl_3 and CCl_4 in flue gases using silent discharge plasmas (SDPs),enhanced by (V)UV at 172 nm and 253.7 nm [J].J Adv.Oxid.Technol.,1997,2(1):223-238.
    [210] Li J H,Ke R,Li W,et al.Mechanism of selective catalytic reduction of NO over Ag/Al_2O_3 with the aid of non-thermal plasma [J].Catal.Today,2008,139:49—58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700