用户名: 密码: 验证码:
慢病毒介导的亲环素A(CyPA)siRNA对非小细胞肺癌抑制作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌是常见的恶性肿瘤,被认为是对人类健康和生命威胁最大的恶性肿瘤之一。全球每年新增120万病例,中国每年有60万人死于肺癌,在中国肺癌5年生存率仅8.9%,非小细胞肺癌占肺癌的85%以上,而非小细胞肺癌中85%以上又都属中晚期肺癌而失去根治性手术治疗的机会。
     肺癌的发生是环境因素和遗传因素共同作用的结果,多种基因在肺癌的发生和发展中均起到了非常重要的作用,蛋白组学的发展使得在非小细胞肺癌(Non-small celllung cancer,NSCLC)发现了许多高表达和低表达蛋白,亲环素A(Cyclophilin A,CyPA)就是众多相关蛋白之一。
     CyPA是本课题组应用双向电泳技术(2-DE)在肺腺鳞癌组织中发现的特异性高表达的差异蛋白,CyPA是功能相关的蛋白家族成员之一,具有肽基脯氨基顺反异构酶活性,能催化细胞内蛋白质的折迭、装配和运输,起分子伴侣的作用。新近研究表明,CyPA参与了许多癌的发生和发展过程,其促进癌细胞生长的作用在胰腺癌研究中,取得了很有说服力的结果。
     RNA干扰(RNAi)技术具有快速、高效、易行的特点,在基因功能研究、基因治疗方面显示了巨大的前景。慢病毒载体介导的短发夹RNA(shRNA)表达载体能感染非分裂细胞和终末分化细胞,并且在感染后整合到宿主细胞的基因组,进行长时间的稳定表达,适合体内实验研究。
     研究目的
     1.假设特异性地沉默CyPA基因可能是抑制非小细胞肺癌生长的有效方法,为此,本课题首先构建慢病毒介导的CyPA siRNA系统。
     2.本课题旨在研究CyPA在NSCLC发生中的作用,以寻求其作为基因治疗新靶点的依据。因此,采用慢病毒介导的CyPA siRNA,分别在体内体外水平研究CyPA基因沉默对非小细胞肺癌细胞生长的抑制作用,对已筛选的肺癌相关蛋白CyPA的基因进行生物学功能研究。
     材料与方法
     1.CyPA mRNA和蛋白在NSCLC细胞和组织的表达水平
     1.1采用双链嵌合荧光染料SYBR GreenⅠ荧光定量PCR技术,设计特异性引物,提取NSCLC A549、H1299及人正常支气管上皮细胞BEAS-2B细胞的总RNA,反转录获得cDNA进行PCR,低熔点琼脂糖凝胶回收纯化PCR扩增产物,取1μl的纯化产物,作10倍系列稀释共9个梯度,取后6个稀释梯度的模板做标准曲线,分别建立内对照β-actin和目的基因CyPA定量标准曲线。检测A549、H1299及BEAS-2B细胞CyPAmRNA的表达水平,以BEAS-2B细胞作为对照,用2~(-ΔΔCt)计算CyPAmRNA相对表达量,通过PCR产物的熔解曲线评价其特异性。
     1.2收集45例NSCLC手术病人切除的肺癌组织,22例对应的癌旁组织,33例对应的正常肺组织制成组织芯片,其中鳞癌25例,腺癌20例;按TNM分期标准Ⅰ+Ⅱ期27例,Ⅲ期18例,用SP免疫组化方法和组织芯片技术,观察CyPA在NSCLC癌组织、癌旁组织及正常组织中的表达和分布情况以及与临床病理指标的关系。
     2.构建并筛选慢病毒介导的CyPA siRNA有效靶点和制备病毒颗粒
     2.1首先设计并合成4对CyPA基因siRNA靶序列寡核苷酸,退火形成双链DNA,与经HpaⅠ和XhoⅠ酶切后的pGCL-GFP载体连接产生Lv-shCyPA慢病毒质粒载体,PCR及测序筛选鉴定阳性克隆。
     2.2将阳性克隆Lv-shCyPA慢病毒质粒载体与pHelper1.0和pHelper2.0质粒共转染293T细胞,包装制备5个假包装病毒颗粒(Lv-shCyPA)并感染NSCLC A549、H1299细胞,Western Blot分析CyPA蛋白表达水平,筛选CyPA siRNA有效靶点并进行该靶点高滴度病毒包装,命名为Lv-shCyPA。
     2.3待A549、H1299细胞生长至50%~70%融合度时,将Lv-shCyPA分别按照MOI值为2、5、10、20、40感染A549细胞、H1299,根据表达荧光的细胞百分数优化MOI值。
     3.慢病毒介导的CyPA siRNA对A549、H1299细胞生长的体外研究
     3.1待A549、H1299细胞生长至50%~70%融合度时,按照优化的MOI值,加入适量的病毒,每孔细胞加Polyberne(5μg/ml),正常培养传代4~5次,以GFP为报告基因镜下筛选GFP强表达的克隆,分离培养,建立了CyPA稳定沉默的细胞系A549/Lv-shCyPA、H1299/Lv-shCyPA。
     3.2将Lv-shCyPA分别按照A549细胞(MOI=20)、H1299(MOI=5)感染NSCLC A549、H1299细胞,感染第5天提取细胞总RNA,采用荧光定量RT-PCR检测CyPA mRNA表达水平。
     3.3取对数生长期的CyPA稳定沉默的细胞系A549/Lv-shCyPA、H1299/Lv-shCyPA,胰酶消化后重悬成2×10~4/ml的细胞悬液,每孔接种100μl于96孔板,分别在培养1d、2d、3d、4d、5d、6d时终止培养,MTT法检测细胞增殖情况。
     3.4将Lv-shCyPA按照A549细胞(MOI=20)、H1299(MOI=5)感染A549、H1299细胞,用不含EDTA的0.25%胰酶消化感染第5天的细胞培养物,4℃70%乙醇固定细胞,加1mlPI(50μg/ml)染色,4℃避光30min,进行细胞周期及凋亡检测。
     3.5阴性对照病毒颗粒按上述步骤进行平行实验,未感染病毒的A549、H1299分别作为实验对照组。
     4.慢病毒介导的CyPA siRNA对A549、H1299细胞裸鼠移植瘤生长的作用
     4.1 A549/Lv-shCyPA、H1299/Lv-shCyPA细胞悬液(5×10~7/ml),注射于裸鼠协腹皮下,每组5~6只裸鼠,注射体积为100μl/只。
     4.2裸鼠成瘤后每四天测量1次移植瘤体积,从注射起测量到第38d,肿瘤体积=(长×宽~2)×0.5,根据移植瘤体积绘制移植瘤生长曲线。
     4.3阴性对照病毒颗粒感染的A549、H1299按上述步骤进行致瘤,未感染病毒的A549、H1299分别作为实验对照组。
     5.统计学处理
     利用SPSS12.0软件对数据进行统计分析,采用t检验对不同感染条件下细胞CyPA蛋白、mRNA、细胞增殖率、细胞周期分布、凋亡率以及裸鼠移植瘤瘤体、重量与对照组比较;秩和检验比较不同组织CyPA蛋白表达水平的差异,以α=0.05为检验水准。
     结果
     1.CyPA mRNA和蛋白在NSCLC细胞和组织的表达水平
     1.1荧光定量RT-PCR检测A549、H1299、BEAS-2B细胞中CyPA mRNA的表达水平,结果显示:肺腺癌细胞A549、H1299中CyPA mRNA呈高表达,其表达水平与BEAS-2B细胞相比差异均有统计学意义(P<0.05)。
     1.2组织芯片免疫组织化学技术检测,结果显示:CyPA蛋白的阳性信号见于肺癌细胞浆、肺泡上皮细胞浆,呈棕色颗粒状,其分布以广泛性表达为主,偶见局灶性或散在性分布;正常肺组织未见或少见棕色颗粒沉着。NSCLC癌组织及癌旁组织中CyPA的表达水平明显高于正常肺组织中CyPA蛋白的表达水平,其差异有统计学意义(P<0.05),CyPA蛋白在正常组织、癌旁组织及肺癌组织中的阳性表达率分别为9.09%(3/33)、53.62%(12/22)、82.22%(37/45),CyPA在正常组织、癌旁组织及肺癌组织中的表达水平依次呈递增趋势;肺腺癌与肺鳞癌组织中CyPA蛋白的表达水平差异无统计学意义(P>0.05);不同TNM分期的的癌组织CyPA蛋白的表达水平差异无统计学意义(P>0.05)。
     2.慢病毒介导的CyPA siRNA的有效靶点
     有效的CyPA siRNA靶序列是5'-GTGAAAGAAGGCATGAATA-3',根据该序列制备的CyPA siRNA假包装病毒颗粒滴度为2×10~9TU/ml。
     3.慢病毒介导的CyPA siRNA对A549、H1299中CyPA基因的沉默作用
     Lv-shCyPA感染A549、H1299细胞,CyPA mRNA和蛋白表达水平均下降,与对照组相比,CyPA mRNA相对表达量分别为0.048和0.1452,CyPA mRNA的沉默效率分别为95.2%和85.48%,CyPA蛋白水平相对表达量分别为13.48%和14.7%,其表达抑制效率分别为86.52%和85.3%,CyPA mRNA与蛋白的表达水平具有一致性,其表达水平与对照组相比差异均有统计学意义(P<0.05)。阴性对照A549/NC、H1299/NC组CyPA mRNA和蛋白的表达水平与对照组差异无统计学意义(P>0.05)。
     4.慢病毒介导的CyPA siRNA对A549、H1299细胞生长的抑制作用
     MTT法分析不同条件下A549、H1299细胞的生长状态,结果显示:A549/Lv-shCyPA、H1299/Lv-shCyPA细胞生长明显平缓,感染第5d细胞增殖率下降,与对照组相比差异有统计学意义(P<0.05)。流式细胞术分析不同条件下细胞各周期分布,结果显示:不同条件下细胞G_0-G_1期、S期细胞比例与对照组相比差异无统计学意义(P>0.05);A549/Lv-shCyPA、H1299/Lv-shCyPA细胞G_2-M期细胞相对减少,细胞凋亡率增加,与对照组相比差异均有统计学意义(P<0.05);而A549/NC、H1299/NC组G_2-M期比例、细胞凋亡率与对照组相比差异均无统计学意义(P>0.05)。
     5.慢病毒介导的CyPA siRNA对A549、H1299细胞裸鼠移植瘤生长的抑制作用
     未感染病毒组及阴性对照病毒颗粒感染组的细胞接种裸鼠后,移植瘤在第4d出现可见肿瘤,然后生长迅速,而A549/Lv-shCyPA、H1299/Lv-shCyPA感染组可见肿瘤在接种后6d出现,移植瘤生长明显迟缓。接种后第38d,A549/Lv-shCyPA、H1299/Lv-shCyPA组移植瘤体积小、重量轻,与对照组相比差异均有统计学意义(P<0.05),CyPA基因沉默组移植瘤瘤体重量平均降低了77.76%和78.85%。而A549/NC、H1299/NC组细胞接种后形成的移植瘤体积、重量与对照组相比差异均无统计学意义(P>0.05)。
     结论
     1.CyPA蛋白在正常肺组织、NSCLC癌旁组织及癌组织中的表达水平依次呈递增趋势,尤其是在癌组织中呈高表达水平;同时在NSCLC A549、H1299细胞中CyPA mRNA亦呈高表达水平,CyPA mRNA的表达水平与BEAS-2B细胞相比差异有统计学意义,提示CyPA可能参与了非小细胞肺癌的发生发展。
     2.筛选出有效的CyPA siRNA靶序列为5'-GTGAAAGAAGGCATGAATA-3',制备的Lv-shCyPA经体外观察对NSCLC A549、H1299中CyPA基因的表达有沉默作用,对NSCLC A549、H1299生长有抑制作用。
     3.慢病毒介导的CyPA siRNA在裸鼠移植瘤实验中也显示出一定的抑瘤作用,为肺癌的基因治疗和药物治疗提供新的治疗策略。
Lung cancer is considered as one of the most lethal cancers which has posed a threat to the patient's health and life.About 1,200,000 new cases were predicted every year in the world.In China,600,000 cases were died of lung cancer annually and the overall 5-year survival remains at 8.9%.About 85%of patients with lung cancer were non-small cell lung cancer(NCSLC) and among those 85%were in advanced stage and have no opportunity to have surgical treatment.Carcinogenesis of lung is cooperated with the environmental and genetic factors.Many genes play an important roles in tumorigenesis during the progression of non-small cell lung cancer.With the development of proteomics some overor low- expression protein were found in non-small cell lung cancer tissues,One of these proteins,Cyclophilin A(CyPA),was found to have overexpression in lung tumor tissues by two-dimension electrophoresis.
     CyPA is a member of the peptidyl-prolyl isomerases.CyPA also catalyzes protein folding and conformational changes which depends on its capacity as chaperon proteins. Recently,correlations of CypA with tumor pathogenesis have been studied.A possible role for CyPA in tumor cell growth has been demonstrated by the overexpression of CyPA in human pancreatic adenocarcinoma tissues and addition of exogenous CypA significantly stimulated pancreatic cancer cell proliferation in a dose-dependent manner.
     The technique of RNAi is rapid,cost effective and can be easily adapted to study homo -logous gene function in a wide variety of organisms.Lentiviral vector hold great promise for gene therapeutic applications because it can mediated stable gene transfer both in dividing and non-dividing cells.In addition,the lentiviral products are integrated into the host genome ensuring siRNA stable long-term expression.Therefore Lentiviral vector is adapted to study in vivo.
     Objectives
     1.We proposed that it is a potential pathway to inhibite the growth of NSCLC by silencing CyPA gene.So,CyPA siRNA mediated by lentiviral vector was firstly constructed and screened.
     2.To investigate the biological functions of CyPA among the development in non-small cell lung cancer,and to seek new treatment targets.Lentiviral-vector-mediated siRNA of CyPA was used to study its inhition of A549 and H1299 in vitro and in vivo,respectively.
     Materials and Methods
     1.The expression of CyPA mRNA and protein in NSCLC cell and lung tissues
     1.1 Total RNA was extracted from cells using TRIZOL reagent.RT and cDNA amplification were performed according to SYBR GreenⅠreal-time PCR kit.Primer pairs were designed for CyPA andβ-actin.The products amplified were purified and serial diluted ranging from 10 to 10~9 as a standard curve,respectively.β-actin as an internal control used to normalized the signal value of each sample.The relative quantitation of CyPA mRNA was presented as unit values of 2~(-ΔΔCt).To confirm amplification specificity the PCR products were subjected to a melting curve analysis.
     1.2 The expressions of CyPA protein were examined in 45 lung cancer tissues,22 paired tumor-adjacent tissues and 33 normal pulmonary tissues using tissue microarray immuno-histochemistry method.The relationship of CyPA expression in NSCLC with clinic pathological characteristic was analyzed.
     2.Construction and screening of CyPA siRNA mediated by lentiviral vector
     2.1 Four target sequences were selected and the complementary DNA contained both sense and antisense oligonucleotides were designed,synthesized and cloned into pGCL-GFP vector.The recombinant lentiviral vector containing CyPA shRNA was confirmed by PCR and sequencing.
     2.2 The positive recombinant lentiviral vector was cotransfected with pHelper1.0 and pHelper 2.0 into 293T cells to pack lentivirus particles which was named after Lv-shCyPA. At the same time,the packed virus infected A549、H1299,the expression level of CyPA protein after infection was detected by Western Blot in order to screen the effective target of CyPA siRNA.
     2.3 A549 and H1299 were infected with specific or negative control packed virus (Lv-shCyPA,NC) using multiplenty of infection of 5,10,20,respectively.The infected cells were maintained in culture medium for 4-5 passages and selected the single colony with GFP strongly expressed to establish stable silencing lines.The MOI of A549 and H1299 were optimized according to GFP.
     3.The growth of A549 and H1299 was suppressed by lentiviral mediated CyPA siRNA in vitro
     3.1 A549 and H1299 cells were infected by Lv-shCyPA or NC according to the MOI of A549/20 and H1299/5,respectively.Cultured cells were collected at 5~(th) day,and total RNA was extracted from cultured cells.The quantity of CyPA mRNA was quantited by real-time RT-PCR.
     3.2 Add stable silencing lines A549/Lv-shCyPA and H1299/Lv-shCyPA 100μl into 96 well (approximately 5×10~3cells/well).After incubation for 1d,2d,3d,4d,5d,6d,respectively. MTT assay were performed at the end of the cultivation period.The growth curve of cells and proliferation rate of cells were analyzed,respectively.
     3.3 A549 and H1299 cells were infected by Lv-shCyPA or NC according to the MOI of A549/20 and H1299/5,respectively.At 5~(th) day after infected,cells were harvested and fixed in 70%ethanol.Cell cycle and apoptosis rate were analyzed using the flow cytometer.
     3.4 Uninfected cells of A549 and H1299 were as control groups in the study,respectively.
     3.5 Data from real-time PCR,Western Blot,MTT and FCM are expressed as(?)±s from at three independent groups.Significant differences were determined by paired Student t-test(two tails,paired) using SPSS12.0 software for Window XP.
     4.The growth of xenografts were inhibited by lentiviral mediated CyPA siRNA in vivo
     Approximately 1×10~6 A549/Lv-shCyPA,A549/NC,H1299/Lv-shCyPA,H1299/NC and their parental cells were injected subcutaneously into the right flank of the mouse.Tumor growth and animal weight were monitored every 4 days starting from the 4~(th) day to 38~(th) after injection.Tumor dimensions were measured with calipers and the volume was calculated according to the equationⅤ(mm~3)=ab~2/2(a:length,b:width,b≤a).
     RESULTS
     1.The expression of CyPA mRNA and protein in NSCLC cell and lung tissues
     1.1 The overexpression of CyPA mRNA in A549 and H1299 were significant difference compared to that in BEAS-2B by fluorescent quantitative PCR(P<0.05),and so,we can take A549 and H1299 as the target cell for CyPA gene silencing.
     1.2 The expressions of CyPA protein in NSCLC tissues and paired tumor adjacent tissues were significantly higher than that in the normal lung tissues(P<0.05).The positive rates of CyPA protein in the normal lung tissues,paired tumor adjacent tissues and NSCLC tissues were 9.09%(3/33),53.62%(12/22) and 82.22%(37/45),respectively.We can see the level expressions were increased in turn.No significant correlations were found in histological types(P>0.05) and TNM stage(P>0.05).
     2.Construction and screening of CyPA siRNA mediated by lentiviral vector
     The effective sequence of CyPA siRNA was 5'-GTGAAAGAAGGCATGAATA-3'. Pseudotyped virus were packed and concentrated.The titer of pseudotyped virus was 2×10~9TU/ml.
     3.The expression of CyPA mRNA and protein were downregulated by lentiviral mediated CyPA siRNA
     3.1 GFP was strongly expressed in infected cell lines at 5~(th) day.The relative expression of CyPA mRNA in A549/Lv-shCyPA and H1299/Lv-shCyPA were 0.048 and 0.1452, respectively.The CyPA mRNA was downregulated by 95.2%and 85.48%compared to the parent cells,and the relative expression of CyPA protein were 14.78%and 13.78%compared to control groups.CyPA protein was downregulated by 86.52%and 85.3%compared to the parent cells,respectively(P<0.05).So,it is suggested that these results confirm consistency.
     3.2 A549/Lv-shCyPA and H1299/Lv-shCyPA cells grew more slowly than control groups. Proliferation rate of A549 and H1299 infected by Lv-shCyPA was significant declined at 5~(th) day compared to control group(P<0.05).Flow cytometric analysis demonstrated no significant cell cycle arrested in G_0-G_1 phase and S phase,while G_2-M phase was decreased relatively in A549/Lv-shCyPA and H1299/Lv-shCyPA compared to control groups (P<0.05).The apoptosis rate of A549/Lv-shCyPA and H1299/Lv-shCyPA was higher than control groups(P<0.05).No significant difference was found both in distribution of cell cycle and in apoptosis rate of A549/NC and H1299/NC compared to control groups (P>0.05).
     4.Xenografts growth were inhibited by lentiviral mediated CyPA siRNA in vivo
     Visible xenograft tumors in the parent cell groups and NC groups were readily detectable at 4~(th) day after implantation and grew rapidly in the next days.In contrast, visible tumors were only detectable at 6~(th) day after inoculated by A549/Lv-shCyPA and H1299/Lv-shCyPA.The xenograft tumors of A549/Lv-shCyPA and H1299/Lv-shCyPA cells remarkably delayed tumor growth and remained at a similarly small average size at 38~(th) days after inoculation compared to the control group(P<0.05),the mass of xenograft tumors inoculated by A549/Lv-shCyPA and H1299/Lv-shCyPA were decreased at 77.76% and 78.85%,respectively.No significant difference was found in H1299/NC and A549/NC compared to the control group(P<0.05).
     Conclusion
     1.It is consistent with the results performed by 2-DE method that CyPA is overexpressed in NSCLC tissues,suggesting that CyPA might serve as one of the biomarkers involved the development and progression of NSCLC.
     2.The sequence of CyPA siRNA was 5'-GTGAAAGAAGGCATGAATA-3'.Pseudotyped lentivirus particles containg CyPA siRNA can dowrtregulate the expression of CyPA mRNA in A549 and H1299,and also can suppress the cell growth of A549 and H1299 in our study.
     3.The results show that CyPA siRNA mediated by lentiviral vector can inhibite the xenograft tumor growth of A549 and H1299 in vivo.This data suggested that CyPA may have a good performance in therapies for NSCLC.Lentiviral vector system could be a potential therapeutic approach.
引文
[1]Parkin DM,Bray F,Ferlay J,et al.Global cancer statistics,2002.CA Cancer J Clin,2005,55(2):74-108.
    [2]杨瑞森.肺癌流行病学和早期诊断新技术.肿瘤防治杂志,2004,11(7):745-748.
    [3]陈娟综述,张锦审校.肺癌早期诊断的研究进展.肿瘤研究与临床,2003,15(2):134-136.
    [4]张昕,张湘茹.肺癌肿瘤标志的临床价值.癌症进展杂志,2005,3(2):159-162.
    [5]Mahaffey CM,Davies AM,Lara PN Vr,et al.Schedule-dependent apoptosis in K-ras mutant non-small-cell lung cancer cell lines treated with docetaxel and erlotinib:rationale for pharmacodynamic separation.Clin Lung Cancer,2007,8(9):548-553.
    [6]Suzuki C,Takahashi K,Hayama S,et al.Identification of Myc-associated protein with JmjC domain as a novel therapeutic target oncogene for lung cancer.Mol Cancer Ther,2007,6(2):542-551.
    [7]Rudin CM,Salgia R,Wang X,et al.Randomized phase Ⅱ Study of carboplatin and etoposide with or without the bcl-2 antisense oligonucleotide oblimersen for extensive stage small-cell lung cancer:CALGB 30103.J Clin Oncol,2008,26(6):870-876.
    [8]Rudin CM,Salgia R,Wang X.Subsequent brain metastasis responses to epidermal growth factor receptor tyrosine kinase inhibitors in a patient with non-small-cell lung cancer.J Clin Oncol,2008,26(6):870-876.
    [9]Gounant V,Wislez M,Poulot V.Prognostic impact of p53 Pro72 homozygous genotype in non-small cell lung cancer patients.Lung Cancer,2007,58(3):425-428.
    [10]Blanco D,Vicent S,Fraga MF.Molecular analysis of a multistep lung cancer model induced by chronic inflammation reveals epigenetic regulation of p16 and activation of the DNA damage response pathway.Neoplasia,2007,9(10):840-852.
    [11]Bekar A,Ce(?)ener G,Tunca B.Investigation of mutations and expression of the FHIT gene in Turkish patients with brain metastases derived from non-small cell lung cancer.Tumori,2007,93(6):604-607.
    [12]Kinch MS,Moore MB,Harpole DH Jr.Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival.Clin Cancer Res,2003,9(2):613-618.
    [13]Dai Z,Zhu WG,Morrison CD.A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes.Hum Mol Genet,2003,12(7):791-801.
    [14]Campa MJ,Wang MZ,Howard B,et al.Protein expression profiling identifies macrophage migration inhibitory factor and cyclophilin A as potential molecular targets in non-small call lung cancer.Cancer Res,2003,63(7):1652-1656.
    [15]Cour JM,Mollerup J,Winding P,et al.Up-regulation of ALG-2 in hepatomas and lung cancer tissue.Am J Pathol,2003,163(1):81-89.
    [16]Krebs J,Saremaslani P,Caduff R.ALG-2:a Ca~(2+)-binding modulator protein invoLved in cell proliferation and in cell death.Biochim Biophys Acta,2002,1600(1-2):68-73.
    [17]郭敏杰,张晓滨,实怀风.亲环素的研究进展.免疫学杂志,2004,20(4):321-327.
    [18]Akagi H,Reynolds A,Hjelm M.Cyclosporin A and its metabolites,distribution in blood and tissues.Int Med Res,1991,19(1):1-18.
    [19]Jin ZG,Lungu AO,Xie L,et al.Cyclophilin A is a proinflammatory cytokine that activates endothelial cells.Arterioscler.Thromb.Vasc.Biol,2004,24(7):1186-1191.
    [20]Jin ZG,Melaragno MG,Liao DF,et al.Cyclophilin A is a secreted growth factor induced by oxidative stress.Circ Res,2000,87(9):789-796.
    [21]Yao Q,Li M,Yang H,et al.Roles of cyclophilins in cancers and other organ systems.World Surg,2005,29(3):276-280.
    [22]Shen J,Person MD,Zhu J,Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry.Cancer Res,2004,64(24):9018-9026.
    [23]Li M,Wang H,Li F,et al,Effect of cyclophilin A on gene expression in human pancreatic cancer cells.Am J Surg,2005,190(5):739-745.
    [24]张慧珍,巴月,杨继要,等.肺癌相关蛋白的筛选与鉴定.第四军医大学学报,2007,28(1):6-8.
    [25]Howard BA,Furumai R,Campa MJ,et al.Stable RNA interference mediated suppression of cyclophilin A diminishes non-small cell lung tumor growth in vivo.Cancer Res,2005,65(19):8853-8860.
    [26]Howard BA,Zheng Z,Campa MJ,et al.Translating biomarkers into clinical practice:prognostic implications of cyclophilin A and macrophage migratory inhibitory factor identified from protein expression profiles in non-small cell lung cancer.Lung Cancer,2004,46(3):313-323.
    [27]Li M,Zhai Q,Bharadwaj U,et al.Cyclophilin A is overexpressed in human pancreatic cancer cells and stimulates cell proliferation through CD147.Cancer,2006,106(10):2284-2294.
    [28]Wang MZ,Shetty JT,Howard BA.Thermodynamic analysis of cyclosporin A binding to cyclophilin A in a lung tumor tissue lysate.Anal Chem,2004,76(15):4343-4348.
    [29]周四桂,徐立朋,廖端芳,等.环孢霉素A通过ROS-Cyclophilin A-ERK1/2信号途径抑制人脐静脉内皮细胞与中性粒细胞粘附.生理学报,2004,56(3):313-320.
    [30]聂蓉,朱润庆,姚飞,等.磷酸化ERK1/2与Cyclin D1、VEGF在非小细胞肺癌中表达的关系.武汉大学学报(医学版),2005,26(3):276-280.
    [31]Pan H,Luo C,Li R,et al.Cyclophilin A is required for CXCR4-mediated nuclear export of heterogeneous nuclear ribonucleoprotein A2,activation and nuclear translocation of ERK1/2,and chemotactic cell migration.J Biol Chem,2008,283(1):623-637.
    [32]Yang H,Chen J,Yang J,et al.Cyclophilin A is upregulated in small cell lung cancer and activates ERK1/2 signal.Biochem Biophys Res Commun,2007,361(3):763-767.
    [33]Choi KJ,Piao YJ,Lim MJ,et al.Overexpressed cyclophilin A in cancer cells renders esistance to hypoxia- and cisplatin-induced cell death.Cancer Res,2007,67(8):3654-3662.
    [34]Li M,Zhai Q,Bharadwaj U,et al.Cyclophilin A is overexpressed in human pancreatic cancer cells and stimulates cell proliferation through CD147.Cancer,2006,106(10):2284-2294.
    [35]Yang H,Li M,Chai H,et al.Effects of cyclophilin A on cell proliferation and gene expressions in human vascular smooth muscle cells and endothelial cells.Surg Res,2005,123(2):312-319.
    [36]Brazin KN,Mallis RJ,Fulton DB,et al.Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A.PNAS,2002,99(4):1899-1904.
    [37]Jin ZG,Melaragno MG,Liao DF,et al.Cyclophilin A is a proinflammatory cytokine that activates endothelial cells.Arterioscler Thromb Vasc Biol,2004,24(7):1186-1191.
    [38]Bharadwaj U,Zhang R,Yang H,et al.Effects of cyclophilin A on myeloblastic cell line KG-1 derived dendritic like cells(DLC) through p38 MAP kinase activation.Surg Res,2005,127(1):29-38.
    [39]Nomura T,Yamamoto H,Mimata H.Enhancement by cyclosporin A of taxol-induced apoptosis of human urinary bladder cancer cells.Urol Res,2002,30(2):102-111.
    [40]Chopin D,Barei-Moniri R,Maill(?) P.Human urinary bladder transitional cell carcinomas acquire the functional Fas ligand during tumor progression.Am J Pathol,2003,162(4):1139-1149.
    [41]Semba S,Huebner K,et al.Protein expression profiling identifies cyclophilin A as a molecular target in Fhit-mediated tumor suppression.Mol Cancer Res,2006,4(8):1-10.
    [42]Melle C,Osterloh D,Ernst G.Identification of proteins from colorectal cancer tissue by two-dimensional gel electrophoresis and SELDI mass spectrometry.Int J Mol Med,2005,16(1):11-17.
    [43]杨红,李郁,杨勇,等.环亲和素A的重组表达及其促进肝癌细胞侵袭转移的体外研究.科学技术与工程,2006,6(23):4672-4675.
    [44]Zhu P,Ding J,Zhou J.Expression of CD147 on monocytes/macrophages in rheumatoid arthritis:its potential role in monocyte accumulation and matrix metallo-proteinase production.Arthritis Res Ther,2005,7(5):R1023-1033.
    [45]李芳秋.亲环素与HIV的转导性.医学研究生学报,2001,14(1):54-57.
    [46]Zipper H,Brunner H,Bernhagen J,et al.Investigations on DNA intercalation and surface binding by SYBR Green I,its structure determination and methodological implications.Nucleic Acids Res,2004,32(12):e103.
    [47]Giglio S,Monis PT,Saint CP.Desmontration of preferential binding of SYBR Green I to specific DNA fragments in real-time multiplex PCR.Nucleic Acids Res,2003,31(22):e136.
    [48]Liu S,Asparuhova M,Brondani V,et al.Inhibition of HIV-1 multiplication by antisense U7 snRNAs and siRNAs targeting cyclophilin A.Nucleic Acids Res,2004,32(12):3752-3759.
    [49]Nahreini P,Hovland AR,Kumar B,et al.Effects of altered cyclophilin A expression on growth and differentiation of human and mouse neuronal cells.Cell Mol Neurobiol,2001,21(1):65-79
    [50]Zhong CY,Zhou YM,Douglas GCMAPK/AP-1 signal pathway in tobacco smoke-induced cell proliferation and squamous metaplasia in the lungs of rats.Carcinogenesis.2005,26(12):2187-2195.
    [51]张卫东,赵惠儒,于秉治,等.斑蝥素通过MAPK途径对肺癌A549细胞周期阻滞及其分子机制的研究.中国医科大学学报,2006,35(4):382-384.
    [52]Eggeling FV,Davies H,Lomas L,et al.Tissue-specific microdisstion coupled with proteinchip array technologies:applications in cancer research.Bio Techniques,2000,29(5):1066-1070.
    [53]Bubendorf L,Nocito A,Moch H,et al.Tissue microarray(TMA) technology:miniaturized pathology archives for high-throughput in situ studies.J Pathol,2001,195(1):72-79.
    [54]李军,刘镭.组织芯片技术与肿瘤研究.肿瘤学杂志,2002,8(6):350-352.
    [55]Simon R,Mirlacher M,Sauter G.Tissue microarrays in cancer diagnosis.Expert Rev Mol Diagn,2003,3(4):421-430.
    [56]Rimmal DI,Camp RL,Charette LA,et al.Tissue microarray:a new technology for amplification of tissue resources.Cancer J,2001,7(1):24-31.
    [57]李军,张爱萍,王军霞,等.组织芯片在肿瘤标志高通量分析中的应用.肿瘤防治杂志,2004,11(8):785-789.
    [58]EKallioniemi OP,Wagner U,Kononen J,et al.Tissue microarray technology for high -throughput molecular profiling of cancer.Hum Mol Genet,2001,10(7):657-662.
    [59]杨宇娟,裴冬生,徐开林,等.survivin反义RNA的克隆及慢病毒载体的构建.徐州医学院学报,2005,25(6):502-504.
    [60]Zhang M,Zhang X,Bai CX,et al.Inhibition of epidermal growth factor receptor expression by RNA interference in A549 cells.Acta Pharmacol Sin,2004,25(1):61-67.
    [61]Karaqiannis To,EI-Osta A.siRNAs:mechanism of RNA interference,in vivo and potential clinical applications.Cancer Biol Ther,2004,3(11):1069-1074.
    [62]陈煜,谢小芳.RNAi的作用机制及抗病毒研究进展.世界华人消化杂志,2006,14(21):2123-2129.
    [63]张丽娜,于玲,俞诗源,等.RNA干涉研究进展.西北师范大学学报(自然科学版),2006,42(5):105-111.
    [64]Shen WG.RNA interference and its current application in mammals.Clin Med J (Engl),2004,117(7):1084-1091.
    [65]Guo QY,Ma WL,Zhang B,et al.Preparation of small interfering RNA expression cassette based on PCR technique.Nan Fang Yi Ke Da Xue Bao,2006,26(4):483-485,489.
    [66]Mizuguchi H,Funakoshi N,Hosono T,et al.Rapid construction of small interfering RNA-expressing adenoviral vectors on the basis of direct cloning of short hairpin RNA-coding DNAs.Hum Gene Ther,2007,18(1):74-80.
    [67]An DS,Xie Y,Mao SH,et al.Efficient lentiviral vectors for short hairpin RNA delivery into human cells.Hum Gene Ther,2003,14(12):1207-1212.
    [68]Pluta K,Diehl W,Zhang XY,et al.Lentiviral vectors encoding tetracycline-dependent repressors and transactivators for reversible knockdown of gene expression:a comparative study.BMC Biotechnol,2007,16(7):41-50.
    [69]Henriksen JR,Lokke C,Hammero M,et al.Comparison of RNAi efficiency mediated by tetracycline-responsive H1 and U6 promoter variants in mammalian cell lines.Nucleic Acids Res,2007,35(9):e67.
    [70]Fish RJ,Kruithof EK.Short-term cytotoxic effects and long-term instability of RNAi delivered using lentiviral vectors.BMC Mol Biol,2004,8(5):9-12.
    [71]Tiscornia G,Singer O,Verma IM,et al.Design and cloning of lentiviral vectors expressing small interfering RNAs.Nat Protoc,2006,1(1):234-240.
    [72]El-Armouche A,Singh J,Naito H.Adenovirus-delivered short hairpin RNA targeting PK Calpha improves contractile function in reconstituted heart tissue.J Mol Cell Cardiol,2007,43(3):371-376.
    [73]Andersson MG,Haasnoot PC,Xu N.Suppression of RNA interference by adenovirus virus-associated RNA.J Virol,2005,79(15):9556-9565.
    [74]Xu N,Segerman B,Zhou X.Adenovirus virus-associated RNA Ⅱ-derived small RNAs are efficiently incorporated into the RNA-induced silencing complex and associate with polyribosomes.J Virol,2007,81(19):10540-10549.
    [75]Lu S,Cullen BR.Adenovirus VAI noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis.J Virol,2004,78(23):12868-12876.
    [76]Geraerts M,Willems S,Baekelandt V,et al.Comparison of lentiviral vector titration methods.BMC Biotechnol,2006,12(6):34-43.
    [77]Pellinen R,Hakkarainen T,Wahlfors T,et al.Cancer cells as targets for lentivirus-mediated gene transfer and gene therapy.Int J Oncol,2004,25(6):1753-1762.
    [78]Zhang B,Metharom P,Jullie H,et al.The significance of controlled conditions in lentiviral vector titration and in the use of multiplicity of infection(MOI) for predicting gene transfer events.Genet Vaccines Ther,2004,2(1):6-15.
    [79]Tuchs U,Damm-Welk C,Borkhardt A.Silencing of disease-related genes by small interfering RNAs.Curr Mol Med,2004,2(5):507-517.
    [80]Kumar R,Conklin DS,Mittal V.High-throughput selection of effective RNAi probes for gene silencing.Genome Res,2003,13(10):2333-2340.
    [81]Hui EK,Yap EM,An DS,et al.Inhibition of influenza virus matrix(M1) protein expression and virus replication by U6 promoter driven and lentivirus mediated delivery of siRNA.J Gen Virol,2004,85(7):1877-1884.
    [82]范玮,张海龙,吴晓明.核苷酸切除修复基因XPA反义RNA增强肺癌细胞对顺铂的敏感性.癌症,2005,24(4):403-407.
    [83]黄盛东,李白翎,龚德军,等.腺病毒介导RNA干扰抑制血管内皮生长因子的表达治疗人肺腺癌的实验研究.第二军医大学学报,2007,28(1):58-63.
    [84]Wiznerowicz M,Trono D.Conditional suppression of cellular genes:Lentivirus vector mediated drug inducible RNA interference.J Virol,2003,77(16):8957-8951.
    [85]张中华,候永泰.siRNA制备技术的研究进展.生命科学,2004,16(4):231-235.
    [86]马强,李明,董文其,等.一种新型慢病毒载体制备体系的初步建立.生物化学与生物物理进展,2007,34(8):836-843.
    [87]Wilson JF.Gene therapy yields to RNA interference.Ann Intern Med,2005,143(2):161-164.
    [88]陈波斌.慢病毒载体用于人类疾病基因治疗研究的进展.国外医学输血及血液学分册,2002,25(6):550-553.
    [89]Kafri T,van Praag H,et al.Lentiviral vectors:regulatedgene expression.Mol Ther,2000,1(6):516-521.
    [90]Zhang M,Zhang X,Bai CX,et al.Silencing the epidermal growth factor receptor gene with RNAi may be developed as a potential therapy for non small cell lung cancer.Genet Vaccines Ther,2005,30(3):5-16.
    [91]Liu YL,Yu JM,Song XR,et al.Regulation of the chemokine receptor CXCR4 and metastasis by hypoxia-inducible factor in non small cell lung cancer cell lines.Cancer Biol Ther,2006,5(10):1320-1326.
    [92]张遵真,张勤,李娜.DNA氧化损伤修复基因HOGG1低表达细胞株的建立及其生物学特性鉴定.卫生研究,2005,34(6):661-663.
    [93]张驰宇,徐顺高,黄新祥.SYBR green I RQ-PCR定量检测DNA方法的改良与建立一种新颖简便的荧光实时RT-PCR相对定量方法的建立.生物化学与生物物理进展,2005,32(9):883-888.
    [94]Huang WS,Wang JP,Wang T.ShRNA-mediated gene silencing of beta-catenin inhibits growth of human colon cancer cells.World J Gastroenterol,2007,13(48):6581-6587.
    [95]Ho HY,Cheng ML,Wang YH,et al.Flow cytometry for assessment of the efficacy of siRNA.Cytometry A,2006,69(10):1054-1061.
    [96]Cand(?) C,Vahsen N,Kouranti I,et al.AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis.Oncogene,2004,23(8):1514-1521.
    [97]Krasilnikov M,Ivanov VN,Dong J,et al.ERK and PI3K negatively regulate STAT-transcriptional activities in human melanoma cells:implications towards sensitization to apoptosis.Oncogene,2003,22(26):4092-4101.
    [98]Narasaki F,Oka M,Fukuda M,et al.A novel quinoline derivative,MS-209,overcomes drug resistance of human lung cancer cells expressing the multidrug resistance-associated protein(MRP) gene.Cancer Chemother Pharmacol,1997,40(5):425-432.
    [99]Ciechomska ILM,Golab J,Wesolowska A,et al.Cyclosporine A and its non-immuno -suppressive derivative NIM811 induce apoptosis of malignant melanoma cells in vitro and in vivo studies.Int J Cancer,2005,117(1):59-67.
    [100]Zupanska A,Dziembowska M,Ellert-Miklaszewska A,et al.Cyclosporine A induces growth arrest or programmed cell death of human glioma cells.Neurochem Int,2005,47(6):430-441.
    [101]Eckstein LA,Van Quill KR,Bui SK,et al.Cyclosporin A inhibits calcineurin/nuclear factor of activated T-cells signaling and induces apoptosis in retinoblastoma cells.Invest Ophthalmol Vis Sci,2005,46(3):782-790.
    [102]Shihab FS,Andoh TF,Tanner AM,et al.Role of transforming growth factor-beta 1 in experimental chronic cyclosporine nephropathy.Kidney Int,1996,49(4):1141-1151.
    [103]Hojo M,Morimoto T,Maluccio M,etal.Cyclosporine induces cancer progression by a cell-autonomous mechanism.Nature,1999,397(6719):530-534.
    [104]Veldwijk MR,Berlinghoff S,Jauch A,et al.Characterization of human mesothelioma cell lines as tumor models for suicide gene therapy.Onkologie,2008,31(3):91-96.
    [105]Chaszczewska-Markowska M,Stebelska K,Sikorski A,et al.Liposomal formulation of 5-fluorocytosine in suicide gene therapy with cytosine deaminase for colorectal cancer.Cancer Lett,2008,262(2):164-172.
    [106]Cheon J,Kim HK,Moon DG,et al.Adenovirus-mediated suicide-gene therapy using the herpes simplex virus thymidine kinase gene in cell and animal models of human prostate cancer:changes in tumour cell proliferative activity.BJU Int,2000,85(6):759-766.
    [107]R(?)cz Z,Hamar P.Can siRNA technology provide the tools for gene therapy of the future? Curr Med Chem,2006,13(19):2299-2307.
    [108]Takeshita F,Ochiya T.Therapeutic potential of RNA interference against cancer. Cancer Sci,2006,97(8):689-696.
    [109]Hao DL,Liu CM,Dong WJ,et al.Knockdown of human p53 gene expression in 293-T cells by retroviral vector-mediated short hairpin RNA.Acta Biochim Biophys Sin(Shanghai),2005,37(11):779-783.
    [110]Yamaguchi H,Chen J,Bhalla K,et al.Regulation of Bax activation and apoptotic response to microtubule-damaging agents by p53 transcription-dependent and -independent pathways.J Biol Chem,2004,279(38):39431-39437.
    [111]吕有勇.从p53肿瘤基因治疗临床试验展望我国肿瘤生物学研究的前景.中华医学杂志,2003,83(23):2017.
    [112]Orisaki T,Matsumoto K,Onishi H,et al.Dendritic cell-based combined immunotherapy with autologous tumor-pulsed dendritic cell vaccine and activated T cells for cancer patients:rationale,current progress,and perspectives.Hum Cell,2003,16(4):175-182.
    [113]Mosolits S,Ullenhag G,Mellstedt H,et al.Therapeutic vaccination in patients with gastrointestinal malignancies.A review of immunological and clinical results.Ann Oncol,2005,16(6):847-862.
    [114]Majumdar AS,Zolotorev A,Samuel S,et al.Efficacy of herpes simplex virus thymidine kinase in combination with cytokine gene therapy in an experimental metastatic breast cancer model.Cancer Gene Ther,2000,7(7):1086-1099.
    [115]Terao S,Shirakawa T,Goda K,et al.Recombinant interleukin-2 enhanced the antitumor effect of ADV/RSV-HSV-tk/ACV therapy in a murine bladder cancer model.Anticancer Res,2005,25(4):2757-2760.
    [116]Freund CT,Sutton MA,Dang T,et al.Adenovirus-mediated combination suicide and cytokine gene therapy for bladder cancer.Anticancer Res,2000,20(3A):1359-1365.
    [117]Ju DW,Tao Q,Cheng DS,et al.Adenovirus-mediated lymphotactin gene transfer improves therapeutic efficacy of cytosine deaminase suicide gene therapy in established murine colon carcinoma.Gene Ther,2000,7(4):329-338.
    [118]Park SY,Lee W,Lee J,Kim IS.Combination gene therapy using multidrug resistance (MDR1) gene shRNA and herpes simplex virus-thymidine kinase.Cancer Lett,2008,261(2):205-214.
    [119]Tang Q,Zhang D,Wan M,et al.Experimental study of the RV-HSV-TK/GCV suicide gene therapy system in gastric cancer.Cancer Biother Radiopharm,2007,22(6):755-761.
    [120]Shankar P,Manjunath N,Lieberman J.The prospect of silencing disease using RNA interference.JAMA,2005,293(11):1367-1373.
    [121]Check E.Safety panel backs principle of gene-therapy trials.Nature,2002,420(6916):595.
    [122]Check E.Cancer fears cast doubts on future of gene therapy.Nature,2003,421(6924):678.
    [123]Cavazzana-CaLvo M,Thrasher A,Mavilio F.The future of gene therapy.Nature,2004,427(6977):779-781.
    [1]方亮.siRNA技术在肿瘤研究中的应用.国外医学肿瘤学分册,2005,32(80):563-5651.
    [2]Fire A.Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans.Nature,1998,391(6669):806-811.
    [3]Hannon GJ.RNA interference.Nature,2002,418(6894):244-251.
    [4]Nykanen A,Haley B,Zamore P D,et al.ATP requirements and small interfering RNA structuire in the RNA interference pathway.Cell,2001,107(3):309-321.
    [5]Bernstein E.Role for a bidentate ribonuelease in the initiation step of RNA interference.Nature,2001,4(6818):295-296.
    [6]Shi Y.Mammalian RNAi for the masses.Trends Genet,2003,19(1):9-12.
    [7]Dalmay T,Hamilton A,Rudd S,et al.An RNA-dependent RNA polymerase gene in Arabidopsis is required for transcriptional gene silencingmediated by a transgene but not by a virus.Cell,2000,101(5):543-553.
    [8]Bass BL.RNA interference.The short answer.Nature,2001,411(6836):428-429.
    [9]McManusMT,Sharp PA.Gene silence in mammals by small interfering RNA.Nat Rev Genet,2002,3(10):737-747.
    [10]Hannon GJ.RNA interference.Nature,2002,418(6894):244-251.
    [11]Sijen T,Fleenor J,Simmer F,et al.On the role of RNA amplification in dsRNA triggered gene silencing.Cell,2001,107(4):465-476.
    [12]陈道荣,王丕龙,闫歌.RNA干扰技术的研究进展.胃肠病学和肝病学杂志,2005,14(1):104-106.
    [13]张中华,候永泰.siRNA制备技术的研究进展.生命科学,2004,4(16):231-236.
    [14]Van den Haute C,Eggermont K,Nuttin B,et al.Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in mouse brain.Hum Gene Ther,2003,14(18):1799-1807.
    [15]Takeshita F,Ochiya T.Therapeutic potential of RNA interference against cancer.Cancer Sci,2006,97(8):689-696.
    [16]王鸿鹄.基因治疗中慢病毒载体的最新进展.国外医学输血及血液学分册,2002, 25(5):401-404.
    [17]Chen BK,Feinberg MB,Baltimore D.The kappa B sites in the human immunodeficiency virus type 1 long terminal repeat enhance virus replication yet are not absolutely required for viral growth.J Virol,1997,71(7):5495-5504.
    [18]Naldini L,Blomer U,Gallay P,et al.In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector.Science,1996,12(272):263-267.
    [19]Zufferey R,Nagy D,Mandel RJ,et al.Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo.Nat Biotechnol,1997,15(9):871-875.
    [20]Chinnasamy D,Chinnasamy N,Enriquez MJ,et al.Lentiviral-mediated gene transfer into human lymphocytes:role of HIV-1 accessory proteins.Blood,2000,96(4):1309-1316.
    [21]Dull T,Zufferey R,Kelly M,et al.A third generation lentivirus vector with a conditional packaging system.J Virol,1998,72(11):8463-8471.
    [22]Dallas A,Vlassov AV.RNAi:a novel antisense technology and its therapeutic potential.Med Sci Monit,2006,12(4):RA67-74.
    [23]Tuschl T,Borkhart A.Small interfering RNAs:a revolutionary tool for the analysis of gene function and gene therapy.Molecular Interventions,2002,2(3):158-167.
    [24]Jin Z,Gao F,Flagg T,et al.Tobacco-specific nitrosamine 4-(methylnitrosamino)-l-(3-pyridyl)-l-butanone promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation.J Biol Chem,2004,279(38):40209-40219.
    [25]Zhang M,Zhang X,Bai CX,et al.Inhibition of epidermal growth factor receptor expression by RNA interference in A549 cells.Acta Pharmacol Sin,2004,25(1):61-67.
    [26]Krysan K,Dalwadi H,Sharma S,et al.Cyclooxygenase 2-dependent expression of survivin is critical for apoptosis resistance in non-small cell lung cancer.Cancer Res,2004,64(18):6359-6362.
    [27]Spankuch B,Matthess Y,Knecht R,et al.Cancer inhibition in nude mice after systemic application of U6 promoter-driven short hairpin RNAs against PLK1.Nat Cancer Inst,2004,96(11):862-872.
    [28]He B,You L,Uematsu K,et al.A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells.Neoplasia,2004,6(1):7-14.
    [29]Suzuki M,Sunaga N,Shames DS,et al.RNA interference-mediated knockdown of DNA methyltransferase 1 leads to promoter demethylation and gene re-expression in human lung and breast cancer cells.Cancer Res,2004,64(9):3137-3143.
    [30]July LV,Beraldi E,So A,et al.Nucleotide-based therapies targeting clusterin chemosensitize human lung adenocarcinoma cells both in vitro and in vivo.Mol Cancer Ther,2004,3(3):223-232.
    [31]Song S,Wientjes MG,Gan Y,et al.Fibroblast growth factors:an epigenetic mechanism of broad spectrum resistance to anticancer drugs.Proc Nat Acad Sci USA,2000,97(15):8658-8663.
    [32]Pardo OE,Lesay A,Arcaro A,et al.Fibroblast growth factor 2 mediated trans-lational control of IAPs blocks mitochondrial release of Smac/DIABLO and apoptosis in small cell lung cancer cells.Mol Cell Biol,2003,23(21):7600-7610.
    [33]Gao Z,Gao Z,Fields JZ,et al.Co-transfection of MDR1 and MRP antisense RNAs abolishes the drug resistance in multidrug-resistant human lung cancer cells.Anticancer Res,1998,18(4C):3073-3076.
    [34]Marthinet E,Divita G,Bernaud J,et al.Modulation of the typical multidrug resistance phenotype by targeting the MED-1 region of human MDR1 promoter.Gene Ther,2000,7(14):1224-1233.
    [35]Weinberg MS,Ely A,Barichievy S,et al.Specific inhibition of HBV replication in vitro and in vivo with expressed long hairpin RNA.Mol Ther,2007,15(3):534-541.
    [36]Chan DW,Ng IO.Knock-down of hepatitis B virus X protein reduces the tumor-igenicity of hepatocellular carcinoma cells.J Pathol,2006,208(3):372-380.
    [37]Arbuthnot P,Longshaw V,Naidoo T,et al.Opportunities for treating chronic hepatitis B and C virus infection using RNA interference.J Viral Hepat,2007,14(7):447-459.
    [38]Chevalier C,Saulnier A,Benureau Y,et al.Inhibition of hepatitis C virus infection in cell culture by small interfering RNAs.Mol Ther,2007,15(8):1452-1462.
    [39]Smith RM,Smolic R,Volarevic M,et al.Positional effects and strand preference of RNA interference against hepatitis C virus target sequences.J Viral Hepat,2007, 14(3):194-212.
    [40]Salvi A,Arici B,Alghisi A,et al.RNA interference against urokinase in hepatocellular carcinoma xenografts in nude mice.Tumour Biol,2007,28(1):16-26.
    [41]Huang J,Zhang X,Zhang M,et al.Up-regulation of DLK1 as an imprinted gene could contribute to human hepatocellular carcinoma.Carcinogenesis,2007,28(5):1094-1103.
    [42]Li J,Shen F,Wu D,et al.Expression level of Bcl-XL critically affects sensitivity of hepatocellular carcinoma cells to light-enhanced and interferon-gamma- induced apoptosis.Oncol Rep,2007,17(5):1067-1075.
    [43]Sirach E,Bureau C,P(?)ron JM,et al.KLF6 transcription factor protects hepatocellular carcinoma-derived cells from apoptosis.Cell Death Differ,2007,14(6):1202-1210.
    [44]Bessard A,Fremin C,Ezan F,et al.MEK/ERK-dependent uPAR expression is required for motility via phosphory lation of P70S6K in human hepatocarcinoma cells.J Cell Physiol,2007,212(2):526-536.
    [45]Zhu XQ,Ye QH,Lei KF,et al.Knocking down osteopontin expression by specific siRNA reduces the in vitro invasiveness of human hepatocellular carcinoma cells.Zhonghua Zhong Liu Za Zhi,2006,28(6):404-407.
    [46]杨诏旭,窦科峰,路凡,等.抑制gankyrin的表达对肝癌细胞系HepG2增殖的影响.世界华人消化杂志,2005,13(8):988-992.
    [47]Bottaro DP,Rubin JS,Faletto DL,et al.Identification of the hepatocyte growth facto r receptor as the c-met proto-oncogene product.Science,1991,251(4995):802-804.
    [48]SaLvi A,Arici B,Portolani N,et al.In vitro c-met inhibition by antisense RNA and plasmid-based RNAi down-modulates migration and invasion of hepatocellular carcinoma cells.Int J Oncol,2007,31(2):451-460.
    [49]邓大君,鄂征.胃癌病因:人N-亚硝酰胺暴露.世界华人消化杂志,2000,8(3):250-252.
    [50]Crew KD,Neugut AI.Epidemiology of gastric cancer.World J Gastroentero,2006,12(3):354-362.
    [51]Framp A.Diffuse gastric cancer.Gastroenterol Nurs,2006,29(3):232-236,236-238.
    [52]Jinawath N,Furukawa Y,Nakamura Y.Identification o f NOL8,a nucleolar protein containing an RNA recognition motif(RRM),which was overexpressed in diffuse-type gastric cancer.Cancer Sci,2004,95(5):430-435.
    [53]刘娜,毕锋,潘阳林,等.RhoC在胃癌细胞中的表达及其小干扰RNA表达载体的构建与鉴定.细胞与分子免疫学杂志,2004,20(2):148-151.
    [54]徐文华,葛银林,徐宏伟,等.VEGF基因表达抑制对胃腺癌细胞SGC-7901增殖的影响.世界华人消化杂志,2006,14(7):655-659.
    [55]Meng F,Ding J,Liu N,et al.Inhibition of gastric cancer angiogenesis by vector-based RNA interference for Raf-1.Cancer Biol Ther,2005,4(1):113-117.
    [56]Katoh M,Katoh M.Pharmacogenomics on gastric cancer.Cancer Biol Ther,2004,3(6):566-567.
    [57]Stege A,Priebsch A,Nieth C,et al.Stable and complete overcoming of MDR1/P-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference.Cancer Gene Ther,2004,11(11):699-706.
    [58]Ning H,Li T,Zhao L,et al.TRF2 promotes multidrug resistance in gastric cancer cells.Cancer Biol Ther,2006,5(8):950-956.
    [59]Fleming JB,Shen GL,Holloway SE,et al.Molecular consequences of silencing mutant K-ras in pancreatic cancer cells:justification for K-ras-directed therapy.Mol Cancer Res,2005,3(7):413-423.
    [60]Zhu H,Liang ZY,Ren XY,et al.Small interfering RNAs targeting mutant K-ras inhibit human pancreatic carcinoma cells growthin vitro and in vivo.Cancer Biol Ther,2006,5(12):1693-1698.
    [61]Chen LM,LeH Y,Qin R Y,et al.Reversal of the phenotype by K-ras val12 silencing mediated by adenovirus-delivered siRNA inhuman pancreatic cancer cell line Panc-1.World J Gastroenterol,2005,11(6):831-838.
    [62]Ocker M,Neureiter D,Lueders M,et al.Variants of bcl-2 specific siRNA for silencing antiapoptotic bcl-2 in pancreatic cancer.Gut,2005,54(9):1298-1308.
    [63]Shrikhande SV,Kleeff J,Kayed H,et al.Silencing of X-linked inhibitor of apoptosis (XIAP) decreases gemcitabine resistance of pancreatic cancer cells.Anticancer Res,2006,26(5A):3265-3273.
    [64]GuanH T,Xue XH,Dai ZJ,et al.Down-regulation of survivinexpression by small interfering RNA induces pancreatic cancer cell apoptosis and enhances its radiosensitivity.World J Gastroenterol,2006,12(18):2901-2907.
    [65]Arumugam T,SimeoneDM,VanGolenK,et al.S100P promotes pancreatic cancer growth,survival and invasion.Clin Cancer Res,2005,11(15):5356-5364.
    [66]Duxbury MS,Ito H,Benoit E,et al.CEA CAM6 is a determinant of pancreatic adenocarcinoma cellular invasiveness.Br J Cancer,2004,91(7):1384-1390.
    [67]Duxbury MS,Ito H,Zinner MJ,et al.EphA2:a determinant of malignant cellular behavior and a potential therapeutic target inpancreatic adenocarcinoma.Oncogene,2004,23(7):1448-1456.
    [68]Nieth C,Priebsch A,Stege A,et al.Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference(RNAi).FEBS Lett,2003,545(2-3):144-150.
    [69]Duxbury MS,Ito H,Benoit E,et al.RNA interference demonstrates a novel role for integrin-linked kinase as a determinant of pancreatic adenocarcinoma cell gemci-tabine chemoresistance.Clin Cancer Res,2005,11(9):3433-3438.
    [70]KamiK,DoiR,KoizumiM,et al.Downregulation of survivin by siRNA diminishes radio resistance of pancreatic cancer cells.Surgery,2005,138(2):299-305.
    [71]Berberat PO,Dambrauskas Z,Gulbinas A,et al.Inhibition of hemeoxygenase-1increases responsiveness of pancreatic cancer cells to anticancer treatment.Clin Cancer Res,2005,11(10):3790-3798.
    [72]Hata T,Furukawa T,Sunamura M,et al.RNA interference targeting aurora kinase a suppresses tumor growth and enhances the taxane chemosensitivity in human pancreatic cancer cells.Cancer Res,2005,65(7):2899-2905.
    [73]Duxbury MS,Ito H,Benoit E,et al.Retrovirally mediated RNA interference targeting the M2 subunit of ribonucleotide reductase:a novel therapeutic strategy in pancreatic cancer.Surgery,2004,136(2):261-269.
    [74]Duxbury MS,Ito H,Zinner MJ,et al.siRNA directed against c-Src enhances pancreatic adenocarcinoma cell gemcitabine chemosensitivity.J Am Cell Surg,2004,198(6):953-959.
    [75]Duxbury MS,Ito H,Zinner MJ,et al.RNA interference targeting the M2 subunit of ribonucleotide reductase enhances pancreatic adenocarcinoma chemosensitivity to gemeitabine.Oncogene,2004,23(8):1539-1548.
    [76]李胜保,吴清明,王强,等.腺病毒介导的cox-2反义RNA对食管癌细胞株DNA 和蛋白质合成的影响.世界华人消化杂志,2003,11(5):517-521.
    [77]潘立峰,李巧霞,单保恩,等.VEGF反义RNA对人食管癌细胞抑制作用的研究.中国肿瘤生物治疗杂志,2005,12(1):41-45.
    [78]Mizukami Y,Li J,Zhang X,et al.Hypoxia-inducible factor-1 independent regulation of vascular endothelial growth factor by hypoxia in colon cancer.Cancer Res,2004,64(5):1765-1772.
    [79]Harris AL.Hypoxia a key regulatory factor in tumour growth.Nat Rev Cancer,2002,2(1):38-47.
    [80]Sanchez-Elsner T,Botella LM,Velasco B,et al.Synergistic cooperation between hypoxia and transforming growth factor-beta pathways on human vascular endothe-lial growth factor gene expression.J Biol Chem,2001,276(42):38527-38535.
    [81]Koukourakis MI,Giatromanolaki A,Skarlatos J,et al.Hypoxia inducible factor (HIF-1a and HIF-2a) expression in early esophageal cancer and response to photodynamic therapy and radiotherapy.Cancer Res,2001,61(5):1830-1832.
    [82]Sun X,Kanwar JR,Leung E,et al.Gene transfer of antisense hypoxia inducible factor-1 alpha enhances the therapeutic efficacy of cancer immunotherapy.Gene Ther,2001,8(8):638-645.
    [83]Semenza GL.Development of novel therapeutic strategies that target HIF-1.Expert Opin Ther Targets,2006,10(2):267-280.
    [84]Semenza GL.HIF-1 and tumor progression:pathophysiology and therapeutics.Trends Mol Med,2002,8(4 Suppl):S62-67.
    [85]刘军叶,郭鹞,郭国桢.Bcl-2基因特异性小干涉RNA增强食管癌细胞辐射敏感性的实验研究.国际放射医学核医学杂志,2006,14(2):112-115.
    [86]Kappler M,Bathe M,Barte F,et al.Knockdown of survivin expression by small interfering RNA reduces the clonogenic survival of human sarcoma cell lines independently of p53.Cancer Gene Ther,2004,11(3):186-193.
    [87]杨奎忠,孙雪飞,项继顺,等.cFLIP反义寡核苷酸对食管癌EC109细胞裸鼠移植抑制作用的实验研究.山东大学学报(医学版),2007,45(12):1234-1205.
    [88]Schneikert J,Behrens J.Truncated APC is required for cell proliferation and DNA replication.Int J Cancer,2006,119(1):74-79.
    [89]Yu Y,Sun P,Sun LC,et al.Down-regulation of MDM2 expression by RNAi inhibits LoVo human colorectal adenocarcinoma cells growth and the treatment of LoVo cells with mdm2 siRNA3 enhances the sensitivity to cisplatin.Biochem Biophys Res Commun,2006,339(1):71-78.
    [90]Liu Y,Chen L,Ko TC,et al.Evil is a survival factor which conveys resistance to both TGF beta- and taxol-mediated cell death via PI3K/AKT.Oncogene,2006,25(25):3565-3575.
    [91]Williams NS,Gaynor RB,Scoggin S,et al.Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference.Clin Cancer Res,2003,9(3):931-946.
    [92]Zhu H,Guo W,Zhang L,et al.Enhancing TRAIL-induced apoptosis by Bcl-X(L)siRNA.Cancer Biol Ther,2005,4(4):393-397.
    [93]Rivat C,Rodrigues S,Bruyneel E,et al.Implication of STAT3 signaling in human colonic cancer cells during intestinal trefoil factor 3(TFF3) and vascular endothelial growth factor-mediated cellular invasion and tumor growth.Cancer Res,2005,65(1):195-202.
    [94]Pichler A,Zelcer N,Prior JL,et al.In vivo RNA interference mediated ablation of MDR1 P-glycoprotein.Clin Cancer Res,2005,11(12):4487-4494.
    [95]Matsui Y,Kobayashi N,Nishikawa M,et al.Sequence-specific suppression of mdr1a/1b expression in mice via RNA interference.Pharm Res,2005,22(12):2091-2098.
    [96]Celius T,Garberg P,Lundgren B.Stable suppression of MDR1 gene expression and function by RNAi in Caco-2 cells.Biochem Biophys Res Commun,2004,324(1):365-371.
    [97]Belguise K,Kersual N,Galtier F,et al.FRA-1 expression level regulates proliferation and invasiveness of breast cancer cells.Oncogene,2005,24(8):1434-1444.
    [98]Chen Y,Stamatoyannopoulos G,Song CZ.Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro.Cancer Res,2003,63(16):4801-4804.
    [99]Smith MC,Lukcr KE,Garbow JR,et al.CXCR4 regulates growth of both primary and metastatic breast cancer.Cancer Res,2004,64(23):8604-8612.
    [100]Lipscomb EA,Dugan AS,Rabinovitz I,et al.Use of RNA interference to inhibit integrin(alpha6bcta4)-mediated invasion and migration of breast carcinoma cells.Clin Exp Metastasis,2003,20(6):569-576.
    [101]Wu H,Halt WN,Yang JM.Small interfering RNA-induced suppression of MDR1(P-glycoprotcin) restores sensitivity to multidrug-resistant cancer cells Cancer Res,2003,63(7):1515-1519.
    [102]Lu M,Kwan T,Yu C,ctal.Peroxisomc proliferator-activated receptor gamma agonists promote TRAIL-induced apoptosis by reducing survivin levels via cyclin D3repression and cell cycle arrest.J Biol Chem,2005,280(8):6742-6751.
    [103]Spankuch-Schmitt B,Bereiter-Hahn J,Kaufmann M,et al.Effect of RNA silencing of polo-like kinase-1(PLK1)on apoptosis and spindle formation in human cancer cells.J Natl Cancer Inst,2002,94(24):1863-1877.
    [104]李莉萍,梁念慈,罗超权.存活素siRNA表达质粒的构建及其对MCF-7细胞周期和增殖的调控.癌症,2004,23(7):742-748.
    [105]Wang YH,Liu S,Zhang G,et al.Knockdown of c-Myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitroand in vivo.Breast Cancer Res,2005,7(2):R220-228.
    [106]Holle L,Hicks L,Song W,et al.Bcl-2 targeting siRNA expressed by a T7 vector system inhibits human tumor cell growth in vitro.Int J Oncol,2004,24(3):615-621.
    [107]Yang G,Cai KQ,Thompson-Lanza JA,et al.Inhibition of breast and ovarian tumor growth through multiple signaling pathways by usingretrovirus-mediated small interfering RNA against Her-2/neu geneexpression.J Biol Chem,2004,279(6):4339-4345.
    [108]Urban-Klein B,Werth S,Abuharbeid S,et al.RNAi-mediated gene-targeting through systemic application of polyethylenimine(PEI)-complexed siRNA in vivo.Gene Ther, 2005,12(5):461-466.
    [109]Yang G,Thompson JA,Fang B,et al.Silencing of H-ras gene expression by retrovirus-mediated siRNA decreases transformation efficiency and turmor growth in a model of human ovarian cancer.Oncogene,2003,22(36):5694-5701.
    [110]Mei FC,Young TW,Liu J,et al.RAS-mediated epigeneticin activation of OPCML in oncogenic transformation of human ovariansurface epithelial cells.FASEB J,2006,20(3):497-499.
    [111]Singer G,Stohr R,Cope L,et al.Patterns of p53 mutations separate ovarian serous borderline tumors and low-and high-grade carcinomasand provide support for a new model of ovarian carcinogenesis,amutational analysis with immunohistochemical correlation.Am J Surg Pathol,2005,29(2):218-224.
    [112]Scian MJ,Stagliano KE,Ellis MA,et al.Modulation of gene expression by tumorderived p53 mutants.Cancer Res,2004,64(20):7447-7454.
    [113]Williams J,Lucas PC,Griffith KA,et al.Expression of Bcl-xL in ovarian carcinoma is associated with chemoresistance and recurrent disease.Gynecol Oncol,2005,96(2):287-295.
    [114]Dodier P,Piche A.Bcl-x(L) is functionally non-equivalent for the regulation of growth and survival in human ovarian cancer cells.Gynecol Oncol,2006,100(2):254-263.
    [115]Zhang L,Yang N,Mohamed-Hadley A,et al.Vector-based RNAi,a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer.Biochem Biophys Res Commun,2003,303(4):1169-1178.
    [116]Lakka SS,Gondi CS,Dinh DH,et al.Specific interference of urokinase-type plasminogen activator receptor and matrix metalloproteinase-9 gene expression induced by double-stranded RNA results in decreased invasion,tumor growth,and angiogenesis in gliomas.J Biol Chem,2005,280(23):21882-21892.
    [117]heng ZM,Baker CC.Papillomavirus genome structure,expression,and post-trans criptional regulation.Front Biosci,2006,1(11):2286-2302.
    [118]Gu W,Putral L,Hengst K,et al.Inhibition of cervical cancer cell growth in vitro and in vivo with lentiviral-vector delivered shorthairpin RNA targeting human papillomavirus E6 and E7 oncogenes.Cancer Gene Ther,2006,13(11):1023-1032.
    [119]Xie XH,An HJ,Kang S,et al.Loss of Cyclin B1 followed bydownregulation of Cyclin A/Cdk2,apoptosis and antiproliferationin Hela cell line.Int J Cancer,2005,116(4):520-525.
    [120]Uchida H,Tanaka T,Sasaki K,et al.Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo.Mol Ther,2004,10(1):162-171.
    [121]Paik J,Duncan T,Lindahl T,et al.Sensitization of human carcinoma cells to alkylating agents by small interfering RNA suppression of 3-alkyladenine-DNA glycosylase.Cancer Res,2005,65(22):10472-10477.
    [122]Rossi A,Ciafre S,Balsamo M,et al.Targeting the heat shock factor 1 by RNA interference:a potent tool to enhance hyperthermochemotherapy efficacy in cervical cancer.Cancer Res,2006,66(15):7678-7685.
    [123]余德荣.膀胱内给予靶向PLK-1的siRNA成功抑制膀胱癌的生长.国际肿瘤学杂志,2006,33(1):80.
    [124]Inoue K,Wood CG,Slaton JW,et al.Adenoviral-mediated gene therapy of human bladder cancer with antisense interleukin-8.Oncol Rep,2001,8(5):955-964.
    [125]Inoue K,Perrotte P,Wood CG,et al.Gene therapy of human bladder cancer with adenovirus-mediated antisense basic fibroblast growth factor.Clin Cancer Res,2000,6(11):4422-4431.
    [126]Zhang Z,Zhang Z,Zeng G,et al.Extracellular domain of kinase domain region mediated by adeno-associated virus inhibits growth and angiogenesis of bladder cancer in Balb-c mice.Chin Med J(Engl),2002,115(8):1209-12012.
    [127]汤洋,隋志芳,c-Ha-ras癌基因反义RNA抑制膀胱癌细胞生长及粘附的研究.中华实验外科杂志,2000,17(2):178-179.
    [128]姚欣,畅继武,李文录,等.反义转化生长因子β1抑制人膀胱癌细胞体内外增殖的实验研究.中华肿瘤杂志,2004,26(1):18-21.
    [129]Rahman MM,Miyamoto H,Lardy H,et al.Inactivation of androgen receptor coregulator ARA55 inhibits androgen receptor activity andagonist effect of antiandrogens in prostate cancer cells.Proc Natl Acad Sci USA,2003,100(9):5124- 5129.
    [130]Paddison PJ,Caudy AA,Hannon GJ.Stable suppression of gene expression by RNAi in mammalian cells.Proc Natl Acad Sci USA,2002,99(3):1443-1438.
    [131]Tan C,Cruet-Hennequart S,Troussard A,et al.Regulation of tumor angiogenesis by integrin-linked kinase(ILK).Cancer Cell,2004,5(1):79-90.
    [132]Zha S,Ferdinandusse S,Denis S,et al.Alpha-methylacyl-CoA racemase as an androgen-independent growth modifier in prostate cancer.Cancer Res,2003,63(21):7365-7376.
    [133]Varambally S,Dhanasekaran SM,ZhouM,et al.The polycomb group protein EZH2is involved in progression of prostate cancer.Nature,2002,419(6907):624-629.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700