用户名: 密码: 验证码:
四频激光陀螺旋转式惯导系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前国际上的高精度激光陀螺惯导系统,普遍采用了旋转自动补偿技术,以此在系统成本增加有限的情况下大幅度地提高惯导系统的精度。本文即是从理论和工程实现两个方面对光学陀螺惯导系统中的旋转自动补偿技术及其它关键技术进行了研究,最终设计完成了一套四频激光陀螺旋转式惯导系统双轴原理样机,并进行了相关导航试验。本文的研究可以分为五个部分:
     (1)旋转式惯导系统自动补偿原理的理论研究。在分析了旋转式惯导系统自动补偿漂移误差的本质后,对旋转式惯导系统中的补偿方式、转轴位置、转动周期等一般性问题进行了讨论和总结,并由此提出了研究旋转式惯导系统中惯性元件误差效应的方法。根据提出的研究旋转式系统中惯性元件误差效应的方法,研究了旋转式系统中标度因数误差、安装误差、加速度计二阶非线性误差的自动补偿情况,同时对自动补偿这些误差的条件和方式进行了分析,并讨论了转位运动引起的锯齿形速度误差和加速度计组件尺寸效应。
     (2)旋转式惯导系统的转位方案研究。根据对单轴旋转式系统的分析,总结和提出了多种单轴转位方案,包括隔离载体航向变化的单轴转位方案及不隔离载体航向变化的两位置单轴转位方案等,并着重对四位置单轴转位方案及在其基础上改进后的方案进行了分析,为单轴旋转式系统转位方案的设计提供了参考。在静电陀螺平台翻滚方案的基础之上,提出了旋转式系统的八次序双轴转位方案,并进一步提出了十六次序双轴转位方案,然后对其进行了导航仿真和深入研究,指出此十六次序双轴转位方案是一种合理和实用的转位方案,它不但能够自动补偿惯导系统中全部惯性元件的常值漂移误差、安装误差、标度因数不对称性误差,还能够部分抵消均匀恒定磁场引起的四频激光陀螺IMU漂移误差。
     (3)四频激光陀螺旋转式惯导系统双轴原理样机的软硬件设计。在提出了原理样机的总体结构方案和转动控制方案的基础之上,完成了多方面的硬件工作,主要有:进行了系统主要元器件的选型:设计并实现了原理样机的机械结构(包括惯性测量本体、轴系、框架及基座等);设计并实现了直流力矩电机的驱动与控制电路等。为了配合原理样机的硬件部分,在软件方面设计了导航软件(包括电机控制、初始对准、导航解算等功能)、惯导系统综合测试软件、电机驱动的单片机程序、四频陀螺的扫模与稳频程序等,最终完成了原理样机的研制。
     (4)惯导系统的标定及初始对准技术研究。在对激光陀螺惯性测量组合的标定模型、标定精度等进行了分析和总结后,提出了一种基于方程解算的激光陀螺IMU标定方法,并结合实际条件,对所研制的原理样机进行了可倾式速率位置转台上的标定试验和加速度计二阶非线性系数及磁场引起四频陀螺漂移的补偿。在分析了旋转式惯导系统的实际需要后,提出了一种大方位失准角度下的初始对准方案,可以使任意大小的方位失准角度正确收敛到零;并提出了分阶段多级循环执行的卡尔曼滤波对准测漂方法,能够使卡尔曼滤波对准时的误差参量被正确的估算和修正:最后将所提出的大方位失准角下的对准方案和分阶段多级卡尔曼对准测漂方法应用到了实际原理样机的初始对准方案中。
     (5)旋转式系统双轴原理样机的导航试验。对所研制的原理样机进行了24小时的双轴、单轴、静止三种类型的导航试验,然后对试验结果进行了精度分析,对试验系统进行了的误差分析和仿真模拟,并指出了当前原理样机的主要误差因素和需要改进的方向。同时原理样机的导航试验也验证了各项研究与实现方法的正确性,表明了旋转自动补偿技术不但能够克服惯导系统中激光陀螺及加速度计的漂移,而且是提高系统导航精度的一个有效途径。
     本文理论方面的创新有:分析了旋转式惯导系统中的各种误差效应,并推导了相应公式;提出了实用的单轴和双轴转位方案,并进行了误差分析:提出了惯导系统中新的标定方法和新的初始对准方法等。本文理论上的创新可以作为实际旋转式惯导系统的设计参考,双轴原理样机的研制,也为进一步发展更高精度的四频激光陀螺双轴旋转式惯导系统积累了技术经验。
The auto-compensation techniques of rotation is widely used in high accuracy inertial navigation systems based on ring laser gyros, in order to increase navigation performance with limited cost increase. The auto-compensation techniques and some other crucial techniques in optical gyro inertial navigation system developing are studied in theoretical and engineering aspects. An experimental two-axis rotating inertial navigation system based on four-mode differential laser gyros is developed and tested. The work of this thesis includes following five parts.
     (1) Theoretical research on the auto-compensation principle of rotating INS. On the analysis of the essence of drift auto-compensation by rotation, discussions and conclusions are made on the genuine problems in rotating inertial navigation systems, such as compensating pattern, axis direction, rotation period, and etc. Using the method proposed of analyzing the error effect of inertial elements, the compensation of scale factor error, misalignment error, accelerometer second-order non-linearity error is studied.
     (2) Research on the indexing scheme of rotating INS. Based on the analysis of single axis rotating system, several indexing schemes are put forward, including single axis indexing scheme with vehicle azimuth isolation and two position single axis indexing scheme without vehicle azimuth isolation. Emphasis is made on the analysis of four position indexing scheme which keeps rotating angle within 360 degrees. A modified four position scheme is put forward, which can be used as reference in the design of single axis indexing scheme. An eight-sequence and a sixteen-sequence two-axis indexing scheme are put forward referring to the platform rotating scheme of electrostatic gyroscope system. Analysis and simulating show that the sixteen-sequence scheme is very practical, which can compensate all the drift error, misalignment, non-symmetric scale factor error of inertial elements, as well as the partial error of four-mode differential laser gyro induced by constant magnetic field.
     (3) Software and hardware design of the experimental dual axis rotating navigation system based on four mode differential laser gyro. A lot of works on hardware among many fields are done, including: selection of the main elements used in the system, mechanical design and implementation of the dual axis navigation system (such as IMU, axis system, frame, base, and etc.), design and implementation of driving and control circuit of dc moment motor. Software works include navigation software (such as motor control, initial alignment, navigation algorithm, etc), integrated testing software of the navigation system, SCM program of motor driver, mode scanning and frequency stabilizing program of differential gyro.
     (4) Study on the calibration and initial alignment techniques of inertial navigation. An calibration method of laser gyro IMU is put forward on the analysis and conclusion of calibration model and calibration accuracy. The experimental navigation system is calibrated with this method, using tilting rate and position turning table. Second order nonlinear error of accelerometer and magnetic induced error of differential laser gyro are compensated. An initial alignment scheme is put forward which can be used under arbitrary azimuth misalignment angle. And a multi-stage cyclic alignment and calibration method is put forward, which ensures the valid estimation and correction of error parameter in the Kalman filter. The methods put forward are successfully used in the experimental navigation system.
     (5) Navigation test of the experimental dual axis rotating system. Navigation tests of 24 hour period are made on the experimental system, in the mode of dual axis rotating, single axis rotating and non-rotating. Accuracy analysis is made on the navigation result and error analysis is made on the experimental system. The navigation results prove the validity of the research and implementation. The rotating scheme can average out the drift of laser gyros and accelerometers in the navigation system, and is a valid way of navigation accuracy enhancement.
     The theoretically innovations of the thesis include: analysis on many kinds of error effect and error factor in rotating navigation system, with some formulas deduced; many practical single axis and dual axis rotating schemes, with error analysis; new calibration and initial alignment methods. These innovations can be used as reference in the design of rotating navigation system.
引文
[1]高伯龙,李树棠.激光陀螺.长沙:国防科技大学出版社,1984.
    [2]Lawrence Anthony.modern Inertial Technology:navigation,guidance,and control.2nd ed.Springer-Verlag New York,Inc,1998,ISBN:0-387-98507-7.
    [3]陆元九 主编.惯性器件(上下册).北京:宇航出版社,1990&1993.
    [4]Barbour N.Inertial Components-Past,Present and Future.2001 AIAA Guidance,Navigation and Control Conference.Montreal,Canada,August 2001:1-11.
    [5]任思聪 著.实用惯导系统原理.北京:宇航出版社,1988.
    [6]丁衡高.海陆空天显神威惯性技术纵横谈.广州:暨南大学出版社,2000.
    [7]许国祯 主编.惯性技术手册.北京:宇航出版社,1995.
    [8]郭秀中 编著.惯导系统陀螺仪理论.北京:国防工业出版社,1996.
    [9]陈哲 编著.捷联惯导系统原理.北京:宇航出版社,1986.
    [10]Richard L G.Inertial Navigation Technology from 1970-1995.Journal of the Institute Navigation,Vol 42,No 1,1995:165-185.
    [11]Beiter S,Poquette R,Filipo B S,Goetz W.Precision hybrid navigation system for varied marine applications.Position Location and Navigation Symposium,IEEE,0-7803-4330-1,1998:316-323.
    [12]King A D.Inertial Navigation-Forty Years of Evolution.GEC REVIEW,Volume 13,No 3,1998:140-149.
    [13]Rice H,Mendelsohn L,Aarons R,Mazzola D.Next Generation Marine Precision Navigation System.In:IEEE 2000 Position Location and Navigation Symposium.New York,IEEE Inc,2000:200-206.
    [14]Titterton D H,Weston J L.Strapdown Inertial Navigation Technology.Second Edition.Copublished by the American institute of Aeronautics and Astronautics and the Institution of Electrical Engineers,2004:453-456,ISBN:1-56347-693-2.
    [15]Levinson Dr E,San Giovanni C Jr.Laser Gyro Potential for Long Endurance Marine Navigation.In:Rec IEEE PLANS Position Location Navigation Symposium.Atlantic City,NJ:IEEE,Piscataway,NJ,1980:115-129.
    [16]Sperry Marine-Legacy,Systems & Technologies.Northrop Grumman Electronic SystemsSperry Marine.Printed in U.S.A,2005.
    [17]MK39 MOD 3A Ring Laser Ship's Inertial Navigation System.Northrop Grumman Electronic SystemsSperry Marine.Printed in U.S.A,2005.
    [18]Lahham J I,Wigent D J,Coleman,A L.Tuned Support Structure for Structure-Borne Noise Reduction of Inertial Navigator with Dithered Ring Laser Gyros(RLG).In:Position Location and Navigation Symposium,IEEE,0-7803-5872-4,2000:419-428.
    [19]Levinson Dr E,ter Horst J,Willcocks M.The Next Generation Marine Inertial Navigator is Here Now.In:IEEE Position Location and Navigation Symposium,1994:121-127.
    [20]Lahhan J I,Brazell J R.Acoustic Noise Reduction in the MK49 Ship's Inertial Navigation System(SINS).Rec IEEE PLANS Position Location and Navigation Symposium.Monterey,CA,USA:IEEE,Piscataway,N J,USA,1992:32-39.
    [21]Adams G,Gokhale Dr M.Fiber Optic Gyro based precision navigation for submarines.In:AIAA Guidance,Navigation,and Control Conference and Exhibit.Denver,CO,UNITED STATES.2000:2-6.
    [22]Heckman D W,Baretela L M.Improved Affordability of High Precision Submarine Inertial Navigation by Insertion of Rapidly Developing Fiber Optic Gyro Technology.In:IEEE PLANS Position Location and Navigation Symposium.San Diego,CA,USA:IEEE,Piscataway,NJ,USA,2000:404-410.
    [23]Morrow R B Jr,Heckman D W.High Precision IFOG Insertion Into The Strategic Submarine Navigation System.In:IEEE PLANS Position Location and Navigation Symposium.Palm Springs,CA:IEEE,Piscataway,NJ,USA,1998:332-338.
    [24]Hays K M,Schmidt R G,Wilson W A,et al.A submarine navigator for the 21st century.In:Position Location and Navigation Symposium,IEEE,April 2002:179-188.
    [25]Vajda S,Zorn A.Survey Of Existing And Emerging Technologies For Strategic Submarine Navigation.In:Position Location and Navigation Symposium,IEEE,1998:309-315.
    [26]姜亚南著.环形激光陀螺.北京:清华大学出版社,1985.
    [27]Lefevre H C.光纤陀螺仪.北京:国防工业出版,2002.
    [28][美]M.萨晋Ⅲ,M.O.斯考莱,W.E.兰姆.激光物理学.北京:科学出版社,1982.
    [29][俄]B.B.谢列金,P.M.库库利耶夫著,刘迎晖译.激光陀螺及其应用.北京:航空工业出版社,1992.
    [30]杨培根,龚智炳编著.光电惯性技术.北京:兵器工业出版社,1999.
    [31]高伯龙,王关根.陀螺数据的数学处理.工学学报,1979:91-106.
    [32]IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Laser Gyro.IEEE Std 647-1995,ISBN:1-55937-587-6.
    [33]Ng L C.On the Application of Allan Variance Method for Ring Laser Gyro Performance Characterization.UCRL-ID-115685,October 15,1993.
    [34]Benson D O Jr.A comparison of two approaches to pure-inertial and Doppler-inertial error analysis.IEEE Transactions on Aerospace and Electronic Systems,1975,11:447-455.
    [35]Bar Itzhack I Y,Goshen Meskin D.Unified approach to inertial navigation system error modeling.Journal of Guidance,Control and Dynamics,1992,15(3):648-653.
    [36]魏春岭.非线性滤波与神经网络在导航系统中的应用研究.北京航空航天大学博士学位论文,2001.
    [37]袁信,俞济祥,陈哲.导航系统.北京:航空工业出版社,1993:48-51.
    [38]张树侠,孙静编著.捷联式惯性导航系统.北京:国防工业出版社.1992.
    [39]San Giovanni C,Levinson E.Performance of a Ring Laser Strapdown Marine Gyrocompass.NAVIGATION,Vol.28,No.4,Winter,1981-82:311-341.
    [40]Levinson E,Majure R.Accuracy Enhancement Techniques Applied to the Marine Ring Laser Inertial Navigator(MARLIN).Navigation,ISSN 0028-1522,Vol.34,No.1,1987:64-86.
    [41]梅硕基主编.惯性仪器测试与数据分析.西安:西北工业大学出版社,1991.
    [42]何铁春,周世勤.惯性导航加速度计.北京:国防工业出版社,1983.
    [43]MARLAND P.The NATO ships inertial navigation system(SINS).Journal of Naval Engineering,33(3),1992:688-700.
    [44]七一四所、七零七所合编.国外舰船惯导图片集.1983:58-65.
    [45]高钟毓.静电陀螺仪技术.北京:清华大学出版社,2004年第1版:173一174.
    [46]袁保伦,饶谷音.光学陀螺旋转惯导系统原理探讨.国防科技大学学报,28(6),2006:76-80.
    [47]蔡焕夫,叶凌风.四频陀螺磁屏蔽罩设计方法.航天工艺,1993(6):38-39.
    [48]王宇.机抖激光陀螺捷联惯导系统的初步探索.国防科技大学博士学位论文,2005年10月.
    [49]徐烽,曲全福,徐晓明等.嵌入式PC/104主板在惯性导航系统中的应用.中国惯性技术学报,Vol.9,2001(2):20-23.
    [50]PC/104 Specification Version 2.4.PC/104 Embedded Consortium,August 2001.
    [51]王玉良,戴志涛,杨紫珊编著.微机原理与接口技术.北京:北京邮电大学出版社.2000:226-227.
    [52]陈隆昌,阎治安,刘新正编著.控制电机.西安:西安电子科大出版社,2000年第三版:53-56.
    [53]周希章,周全编著.如何正确选用电动机.北京:机械工业出版社,2004:391-392.
    [54]万德钧主编.船舶导航仪器设计手册.北京:国防工业出版社,1991:882-927.
    [55]二代龙震工作室编著.Pro/ENGINEER Wildfire 2.0基础设计.北京:电子工业出版社,2004:1-20.
    [56]吴敏镜主编.惯性器件制造技术.北京:宇航出版社,1989:81-86.
    [57]张松林主编.轴承手册.南昌:江西科学技术出版社,2004:324.
    [58]范思冲 主编.机械基础.北京:机械工业出版社,2003:376-382.
    [59]范凯峰,田赤军,牛力.惯性平台中成对角接触球轴承的应用.中国惯性技术学报,Vol.13,2005(6):1-3.
    [60]马美玲,王枫.平台框架轴承预载荷的精确控制.轴承,2004(12):9-10.
    [61]ATmegal 6 Data Sheet.Atmel Corporation,Rev.2466G-10/03,2003.
    [62]马潮,詹卫前,耿德根编著.ATmega8原理及应用手册.北京:清华大学出版社,2003:1-11.
    [63]LMD18245:3A,55V DMOS Full-Bridge Motor Driver.National Semiconductor Corporation,2002.
    [64]谭建成.电机控制专用集成电路.北京:机械工业出版社 1997:391-398.
    [65]秦继荣,沈安俊编著.现代直流伺服控制技术及其系统设计.北京:机械工业出版社,1993:30-57.
    [66]韩壮志,李伟,王田苗等.方便易用的功放集成电路LMDl8245.电子技术应用,2000(4):58-61.
    [67]田玉敏.LMD18245DMOS全桥电机驱动器的原理及应用.国外电子元器件,2001(3):22-24.
    [68]贾智贤.基于LMD18245的二相步进电机细分驱动器设计.电子产品世界,2005(9):100-104.
    [69]Variable Resolution,Monolithic Resolver-to-Digital Converters AD2S81A /AD2S82A.Analog Devices Inc,1998.
    [70]陆永平,岑文远.感应同步器及其系统.北京:国防工业出版社,1982.
    [71]Passive Component Selection and Dynamic Modeling for the AD2S80 Series Resoiver to Digital Converter.Analog Devices Inc,1998.
    [72]熊光亮.AD2S82A在交流伺服控制中的应用.电光系统,2004(2):61-64.
    [73]李年裕,吕强,李光升等.旋转变压器-数字转换器AD2S83在伺服系统中的应用.电子技术应用,2000(21:66.68.
    [74]孟凡涛,梁淼,张广栋等.全数字交流伺服系统中旋转变压器信号的处理.电力电子技术,Vol.36,2002(1):51-53.
    [75]袁保伦,陆煜明,饶谷音.基于AD2S82A的多通道测角系统及与DSP的接口设计.仪表技术与传感器,2007(3):54-55.
    [76]Grewal M S.Application of Kalman filtering to the calibration and alignment of inertial navigation systems.Proceedings of the 20~(th) Conference on Decision and Control,1990.
    [77]娄晓芳 译.捷联惯性导航系统标定方法.导航与控制,2000,2(1):75-78.
    [78]Nebot E,Durrant-Whyte H.Inertial Calibration and Alignment of Low Cost Inertial Navigation Units for Land Vehicle Applications.Journal of Robotics Systems,Vol 16,No 2,1999:81-92.
    [79]Mazzanti M,Camberlein L.Calibration technique for laser gym strapdown inertial navigation system.Symposium Gyro Technology,1985.
    [80]Mark J,Tazartes D,Hilby T.Fast Orthogonal Calibration of a Ring Laser Strapdown System.Litton Industries,Litton Guidance and Control Systems,California,USA,1986.
    [81]张卫东.激光陀螺捷联惯导系统白标定技术研究.国防科技大学硕士学位论文,2000.
    [82]张开东.激光陀螺捷联惯导系统连续自动标定技术.国防科技大学硕士学位论文,2002.
    [83]Chatfield A B.Fundamentals of High Accuracy Inertial Navigation.USA,Published by the American institute of Aeronautics and Astronautics,1997:23-30.
    [84]曹宁生.方向余弦、方向数与捷联组合.惯导与仪表,1997(2):48-55.
    [85]胡晓光,郑元熙,顾文权.三轴转台的数学模型及实例分析.惯导与仪表,1994(2):51-59.
    [86]张树侠,闫威.激光陀螺捷联系统安装误差的标定.中国惯性技术学报,2000,8(1):47-49.
    [87]陈北鸥,孙文胜,张桂宏.捷联组合(设备无定向)六位置测试标定.导弹与航天运载技术,2001(3):23-27.
    [88]黄德鸣,程禄.惯性导航系统.北京:国防工业出版社,1986:152-165.
    [89]万德钧,房建成著.惯性导航初始对准.南京:东南大学出版社,1998:73-82.
    [90]Kong X Y,Nebot E M,Durrant-Whyte H.Development of a nonlinear psi-angle model for large misalignment errors and its application in INS alignment and calibration.Proceeding of the 1999 IEEE International Conference on Robotics &Automation Detroit,Michigan,1999:1430-1435.
    [91]Dmitriyev S P,Stepanov O A,Shepel S V.Nonlinear filtering methods application in INS alignment.IEEE Transactions on Aerospace and Electronic Systems,Vol 33,No 1,1997:260-271.
    [92]Bruno M.Scherzinger.Inertial navigator error models for large heading uncertainty.Proc.of IEEE,1996:477-484.
    [93]付梦印,邓志红,张继伟编著.Kalman滤波理论及其在导航系统中的应用.北京:科学出版社,2003:20-21.
    [94]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理.西安:西北工业大学出版社,1998.
    [95]Lee J G,Park C G,Park H W.Multiposition alignment of strapdown inertial navigation system.IEEE Transactions on Aerospace and Electronic Systems,1993,29(4):1323-1328.
    [96]Chung D H,Lee J G,Park C G,Park H W.Strapdown INS error model for multiposition alignment.IEEE Transactions on Aerospace and Electronic Systems,1996,32(4):1362-1366.
    [97]郑梓祯,刘德耀等编著.船用惯性导航系统海上试验.北京:国防工业出版社,2006:164-166.
    [98]张鹏飞.二频机抖激光陀螺捷联惯导系统及其实时温度补偿方法的研究.国防科技大学博士学位论文,2006.
    [99]谢天怀.中制导捷联系统设计.航天部一院十三所硕士学位论文,1990.
    [100]严恭敏.捷联惯导算法及车载组合导航系统研究.西北工业大学硕士学位论文,2004.
    [101]秦永元,张士邈.捷联惯导姿态更新的四子样旋转矢量优化算法研究.中国惯性技术学报,9(4),2001:1-7.
    [102]Savage P G.Strapdown Inertial Navigation Integration Algorithm Design Par1:Altitude Algorithms.Journal of Guidance,Control,and Dynamics,Vol 21,No 1,1998:19-28.
    [103]Savage P G.Strapdown Inertial Navigation Integration Algorithm Design Par2:Velocity and Position Algorithms.Journal of Guidance,Control,and Dynamics,Vol 21,No 2,1998:208-221.
    [104]吴美平.陆用激光陀螺捷联惯导系统误差补偿技术研究.国防科技大学博士学位论文,2000.
    [105]Matthews A,Welter H.Cost-effective,high-accuracy inertial navigation.Navigation:Journal of The Institute of Navigation,36(2),1989:157-172.
    [106]Upton R W Jr,Miller W G.The next frontier for strapdown RLG inertial systems.IEEE,CH2811-8/90/0000/0537,1990:537-542.
    [107]Hewistion S A,Wang J,Kearsley A H W.Performance Evaluation of Inertial Navigation Systems for Surveying.The 6th International Symposium on Satellite Navigation Technology including Mobile Positioning & Location Services,Australia,2003.
    [108]Pittelkau M E.Kalman Filtering for Spacecraft System Alignment Calibration.Journal of Guidance,Control,and Dynamics,24(6),2001:1187-1195.
    [109]Hadfield M,Stiles T,Seidel D,Miller W,Hensley D.An improved ring laser gyro navigator.SPIE Vol.1478 Sensors and Sensor Systems for Guidance and Navigation,1991:126-144.
    [110]Jacob Reiner.Generic Development Environment for INS Algorithms.AIAA Modeling and Simulation Technologies Conference and Exhibit,August 2000:1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700