用户名: 密码: 验证码:
旋转电弧传感移动焊接机器人机构设计与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶焊接技术是现代造船模式中的关键技术之一,虽然我国已成为世界造船大国,但造船效率低下,自动化程度低。论文结合我国船舶焊接现状,将移动机器人技术与焊缝跟踪技术相结合,利用虚拟样机技术,研制一种多功能的平面弯曲焊缝焊接移动焊接机器人,可应用于船舶等大型结构件的平面V型焊焊缝与各种折角的角焊缝焊接生产中,提高船舶等大型结构件焊接自动化水平及焊接质量,改善工人劳动条件。
     论文系统地阐述移动焊接机器人及虚拟样机技术发展,采用虚拟样机技术一次性成功研制了用于平面弯曲焊缝自动跟踪焊接的移动焊接机器人系统。针对平面弯曲焊缝自动焊接的特点,对移动焊接机器人的移动本体、二维精确运动平台、高速旋转电弧传感器、焊缝跟踪控制算法与控制器、虚拟样机及旋转电弧传感系统与焊缝跟踪实验等关键技术进行了系统的研究;并对基于虚拟样机的大变形且为刚、柔接触的仿真及优化、动平衡仿真与优化进行了研究。
     论文介绍了移动焊接机器人国内外发展现状和应用情况,总结了大型结构件平面弯曲焊缝的形式及焊缝跟踪要求与特点后,提出了以旋转电弧作为焊缝跟踪传感器,以二维精确运动平台为微调机构,两轮差速驱动的移动焊接机器人的结构方案,并采用先进的虚拟样机技术,进行移动焊接机器人的研制。
     首先,研究设计了移动焊接机器人移动机构,并对其工作能力、转弯特性进行了分析,对其传动机构、焊炬支撑板结构等进行了设计。
     在总结旋转电弧传感器国内外发展现状的基础上,研制了一种新型旋转电弧传感器。设计全新循环冷却水路结构及保护气路结构,首次实现了将冷却水、保护气集成于旋转电弧传感器内部;独特的绝缘结构设计,使旋转电弧传感器外壳不带电,提高其使用的安全性;采用虚拟样机技术对其高速旋转时的动平衡进行了优化,使高速旋转时的振动大为降低,不仅提高了焊接质量,而且减小了干扰,为准确提取焊缝偏差信号从而提高焊缝跟踪控制精度提供了保障。
     研制成功全密封二维精确运动平台。采用双圆柱移动导轨,不仅大大降低了滚珠丝杠的受力,而且提高了其强度。设计全密封连接结构,利用虚拟样机技术、多柔性体动力学等,进行优化设计,并获得了最优结构。
     研究了移动焊接机器人的虚拟样机技术,实现虚拟样机技术在移动焊接机器人研制中的应用。研究基于移动焊接机器人虚拟样机的焊缝跟踪控制算法、控制器的设计。该技术不仅使得机器人一次性地研制成功,而且可提供实际样机无法获得的所需参数。
     最后,对轮式移动焊接机器人系统进行性能标定和焊缝跟踪焊接实验,实验结果表明,其性能指标达到设计要求。
     该系统的研制,实现了大型结构件的平面弯曲焊缝特别是狭窄空间焊缝的自动焊接。对于提高我国船舶等大型结构件制造自动化设备使用率,减小制造周期,提高制造质量等有现实意义。
According to the present ship welding situation of our country, this dissertation introduces a type of multi-functional mobile welding robot, which combines mobile robot technology with seam tracking based on using virtual prototyping. It can be applied to the fillet weld seam produce in the domin of plane V-type seam and various fillet welding of the large-sized structural components of the ships, and promote the quality of the automatically welding technology of the large-sized structural components, in order to improve the working condition of this area.
     The author systematically overviews the developing situation of mobile welding robot and virtual prototyping technology, and successfully develops the mobile welding robot system by using the automatical plane bending welding. According to the features of automatical plane bending welding, the paper studies the related key technology, including mobile body structure, two-dimensional mobile platform, high speed rotating arc sensor, seam tracking controlled algorithm and controller, virtual prototype and rotating arc sensor system and seam tracking experiment, etc. It also studies the large deformation, rigid and flexible contact simulation and optimization, and the dynamic balancing simulation and optimization.
     The dissertation introduces the present developing situation at home and abroad and the implementation of mobile welding robot. It concludes the types of plane bending seam of the large-sized structural component and the requirements and features of seam tracking, puts forward the structural scheme of rotating arc as the seam tracking sensor, the precisely two-dimensional platform as the fine adjustment mechanism, and the two differential driving wheels of the mobile welding robot, and uses advanced virtual prototyping technology to develop the mobile welding robot.
     At first, the dissertation studies and designs the mobile mechanism of the mobile welding robot, analyzes its working capability, turning features, and designs its transmission mechanism and welding torch supporting plate.
     Through concluding the present development of rotating arc sensor at home and abroad, the paper develops a new rotating arc sensor. It designs a new circulating cooling water structure and protecting gas transmission structure, firstly realizes the rotating arc sensor integrated the cooling water and protecting gas. Its distinguished insulating structure design makes the rotating arc sensor shell with no electric charges, and improves its safety. The paper uses virtual prototyping technology to optimize the dynamic balance when it is in a high speed rotating, in order to lower the vibration of the high speed rotating. This technology promotes the welding quality, while decreases it interference, which guarantees the improving of the seam tracking control precision by accurately extracting the seam error signal.
     The paper successfully develops a precisely full-closed two-dimensional mobile platform, which uses double cylinder mobile guide, not only decreases force of the ball screw, but also improve its strength. To design the full-closed connecting structure, use the virtual prototyping technology and Flexible Multi-Body Dynamics, this paper optimizes design, and obtains the optimized structure.
     This paper studies the virtual prototyping technology of the mobile welding robot, firstly realizes the implementation of the virtual prototyping technology in the development of the mobile welding robot. This development bases on the seam tracking control algorithm and the controller design of the mobile welding robot's virtual prototype. This technology makes the robot being successfully developed, and provides the parameter which cannot be got from the physical prototype.
     Finally, this paper develops the calibration performance and the seam tracking experiment of the wheeled mobile welding robot system. The result shows its calibration index reaching the design requirements.
     The development of this system realizes automatically seam of the plane bending seam of the large-sized structural component, especially to those in the confined space. It gives a practical significance in promoting the large-sized structural component's manufacture of automatical equipment, decreasing manufacturing period, and improving its quality.
引文
[1]杨宗辉.船舶焊接机器人系统关键技术进展[J].电焊机 2005.6 29~33
    [2]陈志,孙雷.中日韩三国造船业比较及发展战略[J].水运管理 2006.1 9~11,39
    [3]Jerry Banks.Simulation fundamentals.Winter Simulation Conference.Proceedings of the 32nd conference on Winter simulation.2000.6,9~16
    [4]Howse D S,Gerritsen C H J.Welding of structural steel components with high power,fibre delivered Nd;YAG lasers[J].2nd international conference on recent development and future trends in welding technology,2003,(9)116~19
    [5]Joseph Dierksheide,Dennis D Harwig.Tandem spin-arc processs development for agile fillet welding of ship structures[J].EWI materials joining technology,2004,(5);1~14
    [6]Eric Auriol,Richard M Crowder,Rob McKendric et al.Integrating case-based reasoning and hypermedia documentation;an application for the diagnosis of a welding robot at Odense steel shipyard.Engineering Applications of Artificial Intelligence,1999,(12);691~703.
    [7]Byoung Oh Kam,Yang Bae Jeon.Motion control of two wheeled welding Mobile Robot with seam tracking sensor.ISIE,2001;850~856.
    [8]Yasuo Suga,Akifumi Muto.Automatic tracking of welding line by autonomous mobile robot for welding of plates(Tracking of linear and angled welding lines).Transactions of the Japan Society of Mechanical Engineers(Part C),1997,612(63);2918~2924.
    [9]Mikael Fridenfalk.Development of intelligent robot systems based on sensor control[D].PhD thesis,Division of Robotics,Department of Mechanical Engineering Lund Institute of Technology Lund University,2003.
    [10]张轲,吕学勤,吴毅雄,王常建.移动焊接机器人的研究现状及发展趋势[J].焊接,2004(8);5~9
    [11]焦向东,薛龙,蒋力培等.无导轨球罐焊接移动机器人的轨迹预估控制[J].中国机械工程,2003,(2);187~189
    [12]蒋力培,焦向东,薛龙,等.球罐全位置智能焊接机器人研究[J].机器人,2000,22(7);688~691
    [13]潘际銮,阎炳义,高力生,张华等.爬行式全位置弧焊机器人[J].电焊机,2005(6);1~5
    [14]张华,刘伟力,刘国平等.基于PLC控制的爬行式智能弧焊机器人系统的研制[J].中国机械工程.2004.(3);435~441
    [15]刘伟力.爬行式弧焊机器人运动分析与控制系统研究[D].南昌大学,2004
    [16]欧光锋.轮履式移动弧焊机器人控制系统的研究[D].南昌大学,2003
    [17]James C.Schaaf,Jr.Faye Lynn Thompson.System Concept Development withVirtual Prototying.Proceedings of the 1997 Winter Simulation Conference,1998,941~947
    [18]熊光楞,李伯虎,柴旭东.虚拟样机技术.系统仿真学报,2001,13(1);114~117
    [19]路甬祥.工程设计的发展趋势和未来.机械工程学报.1997,(2);1~8
    [20]Gregory Lee.Virtual prototypeing on personal computers.Mechanical Engineering.1995,117(7);70~73
    [21]H.J.Bullingrer,J.Warschat,D.Fischer;Rapid product development-an overview,Computers in Industry,2000,(42);99~108
    [22]Ron MeCoy.Virtual Prototyping;The Practical Solution,Inventor'Digest,May/June 1998
    [23]Stefan Haas;Cooperative Working on Virtual Prototypes.IFIP Workshop on VP,1994
    [24]刘宏增等.虚拟设计[M].机械工业出版社,1999.
    [25]James A.Rowson.Virtual prototypeing.IEEE 1997 Custon Integrated Circuits Conference.1997,89~94.
    [26]Michael Eccleston.Virtual prototypeing.Manfacturing Engineering.1996,129~132.
    [27]Stewart D,Hallenbeck D.Three case histories of virtual prototypes to support concurrent engineering.Electronics Industries Forum of New England,1997.Professional Program Proceedings.85~96.
    [28]Paul Hugang,Pradip Kar,Al Sleder,et al.System design using virtual prototyping techniques.IEEE Spectrum,1998,1;973~978.
    [29]刑俊文.虚拟样机技术在装备研制中的作用与应用研究.车辆与动力技术,2002,(3);58~62
    [30]Packer R J.The role of modeling in system design and acceptance.Radar System Modeling(Ref.No.1998/459),IEE Colloquium on Published.1998,5;1~6.
    [31]U.Jasnoch,H.Kress;Towards a Virtual Prototyping Environment.IFIP Workshop on VP,1994.
    [32]Shizuo Sumida,Masao Nagamatsu,Sigeki Hiramuatsu;Hierarchiacal funcitional model for automobile development,Technical Notes/JSAE Review 19,1998;351~371
    [33]尤小梅,马星国.发动机曲轴动力学仿真研究[J].沈阳工业学院学报 2004.12 4~6,13
    [34]崔清斌,吴大林,康海英.基于ADAMS的齿轮传动系统动态特性仿真[J].军械工程学报,2004.10,9~11,16
    [35]刘文杰,胡基才,肖晓晖,吕家将.基于ADAMS的架空导线非线性振动动态仿真[J].机械与电子,2004.11,67~68
    [36]G Ding,Z Qian,P Feng,et al.Active vibration control of excavator working equipment with ADAMS.2000 North American MDI User Conference Papers.
    [37]张旭,祖旭,薄瑞峰.协同虚拟样机技术及其在工程机械产品中的应用.矿山机械.2004,32(2),44~46
    [38]杜文靖,周德成,罗世魁等.虚拟样机技术的振动压路机起振及换向过程仿真分析.建筑机械技术与管理.2004,17(1),63~65
    [39]刘静,潘双夏,冯培恩.挖掘机器人虚拟样机建模策略与仿真技术研究[J].浙江大学学报(工学版)2004.11 1490~1495
    [40]Charles Deam Haynie.Development of a Nover Zero-Turn-Radius Autonomous Vehicle.Master Thesis,Virginia Polytechnic Institute and State University,1998.
    [41]Yoichiro Endo.Design and implementation of a high speed mobile robot for testing a neural network crash voidance system.Master Thesis,Case Western Reserve University,1998.
    [43]王克争.基于电弧传感器的焊缝自动跟踪系统的研究[J].现代制造工程 2002,7 14~15
    [44]S.L.Dickerson and B.D.Lapin,Control of an Omni-Directional Robotic Vehicle with mecanum Wheels,National Telesystems Conference,1991,Proceeding,1;323~328
    [45]M.J.Jung,H.S.Kim,S.Kim,and J.H.Kim,Omni-Directional Mobile Base OK-Ⅱ,Proceedings of the IEEE internationall Conference on Robotics and Automation,2000,4;3449~3454.
    [46]Y.Mori,E.Nakano,Y.Takahashi,and K.Takayama,Mechanism and Running Modes of New Omni-Directional Vehicle ODV9,JSME International Journal,Series C,1999,42(1);210~217
    [47]K.Watanable,Y.Shiraishi,S.Tzafestas,J.Tang,and T.Fukuda.Feedback Control of an Omni-directional Autonomous Platform for Mobile Service Robots,Journal of Intelligent and Robotic Systems,1998,22;315~330.
    [48]G.Witus,Mobility Potential of a Robotic 6-Wheeled Omni-Directional Drive Vehicle(ODV)with Z-Axis and Tire Inflation Control,Proceedings of SPIE,2000,4024;106~114.
    [49]H.Hoyer,U.Borgolte,A.Jochheim.The OMNI-Wheelchair-State of the Art.CSUN's 1999 Conferencer.
    [50]李磊 移动机器人系统设计与视觉导航控制研究 中国科学院研究生院博士学位论文2003.5.1
    [51]国家863计划智能机器人主题专家组.迈向新世纪的中国机器人.辽宁科学技术出版社,辽宁,2001,2
    [52]McKerrow,P.J.Introduction to Robotics.Addison-Wesley Publishing Co.,Sydney,1991.
    [53]Bekker,M.G.,Introduction to Terrain-Vehicle Systems,The University of Michigan Press,Ann Arbor,MI,1969.
    [54]Critchlow,A.J.,Introduction to Robotics,Macmillan Publishing Co.,New York,1985.
    [55]Angeles,J.,Fundamentals of Robotic Mechanical Systems,Springer,New York,1997.
    [56]Messuri,D.A.and Klein,C.A.,"Automatic Body Regulation for Maintaining Stability of a Legged Vehicle During Rough-Terrain Locomotion",IEEE journal of Robotics and Automation,Vol.RA-1,No.3,September,1985,pp.132~141
    [57]Liu,K.and Lewis,F.L.,Fuaay Logic-Based Navigation Controller for an Autonomous Mobile Robot,Proceedings of the IEEE International Conference on Systems,Man,and Cybernetics,Vol.2,1994,pp.1782~4789
    [58]Borenstein,J.,Control and kinematic Design of Multi-Degree-of-Freedom Mobile Robots with Compliant Linkage,IEEE Transactions on Robotics and Automation,Vol.11,No.1,February,1995.
    [59]Banta,L.E.,Undergraduate Robot Design at West Virginia university,Mobile Robots Ⅹ,SPIE,Vol.2591,October,1995,pp.202~208.
    [60]A.Segovia et,al.Kinematic design and control of a mobile robot.Journal of the Mexican Society of Instrumentation,pp.3~11.
    [61]杨凯,黄亚楼,徐国华.带拖车的轮式移动机器人系统的建模与仿真[J].系统仿真学报2000.143~46
    [62]Scott Jantz,Final Report EEL 5666;Machine Intelligence Laboratory,University of Florida,2000.
    [63]毛志伟,张华,郑国云.旋转电弧传感弯曲焊缝移动焊接机器人结构设计.焊接学报,2005.11 Vol.26 No.11 EI收录
    [64]毛志伟,喻强,张华.用于轮式移动机器人万向轮浮动结构.实用新型(申请号; 200720084305.0)2007.4.24
    [65]潘际銮.现代弧焊控制[M].北京 机械工业出版社,2000
    [66]John L.Bresina,Keith Golden.Increased Flesibility and Robustness of Mars Rovers.Proc.Of the 5th International Symposium on Artificial Intelligence,Robotics and Automation in Space.1999;167~176.
    [67]Mike Abreu.The Lunar Operations Landing Assembly.NASA-CR-192043.1992;44~60
    [68]赵庆平.移动机器人运动系统的设计、动力学分析及控制[D].哈尔滨工业大学硕士学位论文,2004.06
    [69]Liu Zhaodu,Mathematical Models of Tire-Longitudinal Road Adhesion and Their Use in the study of Road Vehicle Dynamics.Journal of Beijing Institute of Technology.1996,(2);192~203
    [70]刘青,郭孔辉.轮胎侧偏特性研究的特点及其发展[J].汽车技术,1997,(10);1~8
    [71]毛鹏军,黄石生.弧焊机器人焊缝跟踪系统研究现状及发展趋势.电焊机,2001,31(10);9~12
    [72]黄石生,高向东.焊缝跟踪技术的研究与展望.电焊机,1995,25(5);1~5
    [73]罗丕华.直线角焊缝的旋转浮头跟踪法[J].工艺技术,2004.6;39~40
    [74]孙松涛,李纵跃,耿昌松等.FWT型自动化焊接系列台车[J],焊接,2000.6;41
    [75]D.E.Hardt.Ultrasonic Measurement of Weld Penetration[J].Welding Journal,1984,Vol.63(9);273s~285s
    [76]王克争 基于电弧传感器的焊缝自动跟踪系统的研究[J].现代制造工程,2002.7 14~15
    [77]熊震宇.旋转电弧传感弧焊机器人焊缝纠偏智能控制系统.[博士论文].南昌;南昌大学,2002.
    [78]野村博一.高速旋转电弧自动角焊法的开发[J].国外焊接 1987(3)21~26
    [79]衫谷佑司等.高速回轉自勤溶接法開發適用[J],溶接技衍,1990,Vol.38 No.2
    [80]Nomuro.H,Narrow Gap Welding Process with High Speed Rotating Arc ⅡW doc.Ⅻ-c-033~82
    [81]吴世德,廖宝剑,潘际銮等.高速旋转电弧传感器.焊接学报,1997(3);61~66.
    [82]费跃农.电弧传感器焊缝自动跟踪系统及电弧传感基础理论研究.清华大学博士学位论文,1990.
    [83]廖宝剑.以电弧为传感器的多自由度智能焊接系统研究.清华大学博士学位论文,1993.
    [84]潘际銮.空心轴电机驱动的扫描焊炬.中国专利,922444765,1992.
    [85]Jeong,S.-K.; Lee,G.-Y.; Lee,W.-K.; Kim,S.-B.Development of high speed rotating sensor and seam tracking controller for welding robots[J].IEEE International Symposium on Industrial Electronics.2001.6 845~850
    [86]毛志伟,张华,彭俊斐.高速旋转扫描焊炬.实用新型(申请号;200720084081.3)2007.4.6
    [87]毛志伟,张华.一种带挡尘盖的旋转扫描焊炬.实用新型(申请号;200720153877.X)2007.5.29
    [88]毛志伟,张华.一种带绝缘、偏心调节结构的旋转扫描焊炬.实用新型(申请号;200720153878.4)2007.5.29
    [89]毛志伟,张华.一种用于旋转扫描焊炬的冷却、保护气室结构.实用新型(申请号;200720084214.7)2007.4.17
    [90]刑俊文,陶永忠译(美)MSC.Software著MSC.ADAMS/VIEW高级培训教程[M]. 北京;清华大学出版社 2004
    [91]毛志伟,张华.全密封二维运动平台.实用新型(申请号;200710051892.8)2007.4.17
    [92]刘喜平.同步带传动中心距早见系数表[J].齐齐哈尔大学学报,2001.3,53~55
    [93]洪嘉振.计算多体系统动力学[M].北京;高等教育出版社,1997
    [94]陈立平,张云清,任卫群等.机械系统动力学分析及ADAMS应用教程[M].北京;清华大学出版社,2005
    [95]刘延柱,洪嘉振,杨海兴.多刚体系统动力学[M].北京;高等教育出版社,1998
    [96]王国平.多体系统动力学数值解法[J].计算机仿真.2006,23(12);86~87
    [97]Robot P.Jndd.Dynamics of Non-rigid Articulated Robot Linkages.IEEE Trans,1995,Ac-30;499~502
    [98]Sunada W.H.Dubowsky S.On the Dynamic Analysis and Behavior of Industrial Robotic Manipualators with Elastic Member[J].ASME J Mech,Tran and Automation in Design,1983,105(3);42~51
    [99]陆佑方.柔性多体系统动力学[M].北京;高等教育出版社,1996
    [100]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安;西北工业大学出版社,2002
    [101]许志华.铰接式自卸车橡胶悬架系统多体动力学分析、试验研究与优化.东南大学博士 学位论文 2005
    [99]李军,邢俊文,覃文浩,等.ADAMS实例教程[M].北京;北京理工大学出版社,2002.7
    [100]王涛,张会明.基于ADAMS和MATLAB的联合控制系统的仿真[J].机械工程与自动化2005.6 79~81
    [101]支龙,昌放辉,陈立平,张云清.汽车半主动悬架的ADAMS和MATLAB联合仿真[J].自动化与仪表 2004.6 43~45
    [102]刘延柱,洪嘉振,杨海兴.多刚体系统动力学[M].北京;高等教育出版社,1999
    [103]刘言松,曹巨江,张元莹.刚柔耦合机械系统动力学仿真[J].陕西科技大学学报,2006,24(3);74~75
    [104]邢俊文.MSC.ADAMS/Flex与AutoFlex培训教程[M].北京;科学出版社,2006;64~65
    [105]郑建荣.ADAMS—虚拟样机技术入门与提高[M].北京;机械工业出版社,2001.
    [106]喻强.水下磁吸附式轮履焊接机器人原理样机研究.南昌大学硕士学位论文,2007.6
    [107]郑国云.移动机器人角焊缝轨迹跟踪仿真及智能控制系统.南昌大学硕士学位论文.2005.5
    [108]李啸,张洪钺,李骥.基于模糊PID的轮式移动人轨迹控制[J].机器人技术与应用.2002.530~33
    [109]李庆中,顾伟康,叶秀清等.移动机器人模糊控制方法研究[J].仪器仪表学报,2002.10,480~483,503
    [110]魏媛媛,魏敏,林松清.模糊控制在机器人柔顺装配中的应用[J].北京科技大学学报,2003.2,74~78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700