用户名: 密码: 验证码:
柔性力敏传感及其应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综合运用多学科交叉和技术集成,充分认识技术动作的人体运动力学特征,开发先进的辅助训练装备,已成为竞技体育科学训练和研究的发展趋势。由于缺乏必要的运动力学信息在线获取方法和技术,以往主要采用影像系统获得训练过程的运动形体信息,通过事后解析进行技术诊断和训练指导。该方法在常规训练中取得了一定成效,但也存在明显局限性:第一,改进动作质量所需的动力学信息缺失,难以深入认识技术动作的动力学成因,无法指导运动员通过改进发力模式来优化动作结构,结果往往是对优秀选手动作外形的模仿;第二,缺少表征技术动作本质规律的现场训练指导系统,依靠事后分析的日常训练机制无法在训练过程中对运动员进行即时反馈和训练指导,训练效果主要取决于教练员的知识经验和运动员多次重复的训练体验。因此,人体运动力学信息在线获取和现场训练指导已成为体育训练和科研亟待突破的两个瓶颈问题。
     本文以步法类运动项目为研究对象,针对上述瓶颈问题开展研究。首先系统研究了大区域空间中人体步态信息的连续在线获取方法与技术,设计研制了大面积、高密度、低成本的柔性阵列压力传感器,提出了相应的标定方法、信号检出与处理技术;在此基础上,构建了面向步法类运动项目步态信息获取需求的数字化场地(跑道)系统;最后,针对跳远项目科学训练需求开展应用技术研究,并取得了良好的应用效果。本文主要研究内容如下:
     (1)在分析柔性压力传感器的敏感机理和步态触觉信息获取技术要求的基础上,提出了柔性阵列压力传感器的结构设计与性能检测方法,探索了大面积柔性阵列压力传感器制备技术及生产工艺;通过对常用测量方法和二次测量方法检测原理的分析比较,提出了大面积柔性阵列压力传感器的信号检出方法;设计研制了大面积、高密度、低成本柔性阵列压力传感器,解决了大区域人-地界面接触力信息获取的关键技术问题。
     (2)在分析传统力敏传感器标定意义及标定方法的基础上,提出了大面积柔性阵列压力传感器的逐点标定和面积标定方法,并研制了面积标定系统,为传感器的静态性能标定提供了技术支撑。
     (3)面向步法类运动项目科学训练需求,首次提出并构建了面积和形状自组态、大区域、无盲区的数字化场地概念,为步法类项目运动学参数和动力学参数同步实时获取提供了技术手段。采用单元模块化结构,提出了数字化场地结构设计方法;解决了高速信息采集、时钟同步、数据压缩等关键技术问题,构建了数字化场地(跑道)系统。
     (4)基于实测数据,提出了一种动静态脚型自动识别算法,重点研究了步法类运动项目步态特征提取方法,在此基础上,完成了数字化场地(跑道)系统的计算机软件架构设计,实现了运动信息的实时采集、分析、显示和存储及拼装配置等功能。
     (5)采用数字化场地(跑道)系统,针对跳远项目展开应用技术研究,从步态特征、速度结构和动力类型等方面,探索研究了跳远项目的运动力学规律。
     本研究突破了大面积足底动力学信息获取的难题,研制的数字化场地(跑道)系统适用于各类步法类运动项目的技术诊断与现场训练需求,在运动生物力学研究与应用方面进行了有意义的探索。
The useful technical attempts, such as the compositive application of multidisciplinary science and technology, the complete understanding on the mechanical characteristics of human motion, and the development of advanced auxiliary training equipment, have become the trend of competitive sports scientific research and training. Due to lack of online acquisition methods and techniques of necessary Kinetic information on sports in the past, sports imaging system was frequently used to obtain the kinematic information of training process, and to diagnose and instruct the daily training by off-line image dissection. This method has achieved some success in conventional training, but there are obvious limitations:first, the lack of kinetic information required to improve the quality of movement, which lead the coach difficultly to understand the dynamic origin of the technical action, and impossibly to guide the athlete to optimize the movement structure through improving muscle function, then the so-called scientific training tend to mimic the action appearance of the outstanding players; Second, the lack of on-site training guidance system that can characterize the essential rules of technical movements, which lead the coach instructions only to rely on post hoc analysis, the athlete's daily training to have no immediate feedback and coaching in the training site, and the training effect to depends mainly on the knowledge and experience of the coach and repeated training experience of the athletes, further more, the training efficient, the athletes fatigue and sports injuries difficultly to control. Therefore, the online acquisition of human motion mechanics information and on-site training guidance have become the bottleneck problems of efficient sports training and research.
     This Dissertation focus on the sports characterized by footwork to research on these bottlenecks. First we systematically studied the continuous on-line acquisition methods and techniques of human gait information in a large area space. Then a flexible array of pressure sensors with large size, low-cost and high-density was designed and developed. And then the specific sensor calibration, signal detection and processing technical methods were researched and resolved to build an innovative sports digital venues that can meet the demand of the sports characterized by footwork to get continues gait information online. And finally, an on-site training guidance system was constructed and applied in daily training testing and analysis, and a good application results was achieved. The main contents of this dissertation are as follows:
     (1) Based on the analysis of the sensing mechanism of the flexible pressure sensor and the technical requirements of the tactile gait information acquisition, a structural design and performance testing method of the sensor was proposed, and the preparation technology and production processes of flexible array pressure sensor in large size was explored. Based on the Comparison and analysis of the detection principle between both of common measurement method and secondary measurement method, a signal detection method for large size flexible array of pressure sensors was proposed. Then we designed and developed a flexible array of pressure sensor, with large size, low-cost and high-density, to solve the key technical issues for the contact force information acquisition on human-environment interface in a rather large area.
     (2) Base on the analysis of the calibration significance and calibration method of traditional force sensor, both calibration methods, point-to-point method and area method, for the flexible array of pressure sensor in large size, were proposed, and the calibration system for the area method was developed.
     (3) An innovative digital sports venues that can meet the scientific training demand of the sports characterized by footwork was proposed and built to synchronously get the continuous kinematic parameters and kinetic parameters of gait online. The design method of the structure of digital venues was defined, the key technical issues, such as high speed data acquisition, clock synchronization and data compression were researched and resolved, and the constructed digital venues was functioned to be self-configurable in shape and area, large size and no measurement blind.
     (4) Based on measured data, a static and dynamic foot-type automatic recognition algorithms was proposed, focusing on gait feature of the footwork sports extraction method, the applied software architecture was completed for the applications of the digital venues, by which, those functions, such as real-time collection of sports information, analysis of sport characteristics, display and storage of the training programs, and the automatic assembled configuration, were realized.
     (5) The digital venues was adopted to research the application technology of long jump. Based on the characteristics of gait, speed structure and power type of the athletes, the technical features and technical capacity of the long jump athlete was researched.
引文
[1]Rosenbaum D, H P B. Plantar pressure distribution Measurements. Technical background and clinical applications. Foot and Ankle Surgery,1997,3(1):1-14.
    [2]Raquel Ramos Pinho, J M R S T. Dynamic Pedobarography Transitional Objects by Lagrange's Equation with FEM, Modal Matching and Optimization Techniques. ICIAR 2004-International Conference on Image Analysis and Recognition,2004.
    [3]Cavanagh P R. Letter to the Editor. Foot and Ankle,1995,16:53.
    [4]Woodburn J, Helliwell P S. Observations on the F-Scan in-shoe pressure measuring system. Clin. Biomech,1996,11:301-304.
    [5]Cavanagh P R, Sims D S, Sanders L J. Body mass is a poor predictor of plantar pressure in diabetic men. Diabetes Care,1991,14:50-755.
    [6]Hennig E, Rosenbaum D. Pressure distribution patterns under the feet of children in comparison with adults. Foot Ankle,1991,11:306-311.
    [7]Elftman H. A cinematic study of the distribution of pressure in the human foot. Anat. Rec, 1934,59:481-491.
    [8]Hughes J, Pratt L, Linge K, et al. Reliability of Pressure measurements:the EMED F system. Clin. Biomech,1991,6:14-18.
    [9]Rosenbaum D, Hautmann S, Gold M, et al. Effects of walking speed on pressure distribution patterns and hindfoot angular motion. Gait Posture,1994,2:191-197.
    [10]Corrigan J P, Moore D P, Stephens M M. Effect of heel height on forefoot loading. Foot Ankle,1993,14:148-152.
    [11]Katoh Y, Chao E Y S, Laughrnan R K, Schneider E, et al. Biomechanical analysis of foot function during gait and clinical applications. Clin. Orthop,1983,177:23-33.
    [12]Hyo-Seon Jeon, J H, Won-Jin Yi, et al. Classification of Parkinson gait and normal gait using Spatial-Temporal Image of Plantar pressure. Engineering in Medicine and Biology Society, EMBS.30th Annual International Conference of the IEEE 20-25 Aug.2008:4672-4675.
    [13]Joonbum Bae, M T. Gait phase analysis based on a Hidden Markov Model. Mechatronics, 2010,21(6):961-970.
    [14]Su Xu, X Z, Yi-Ning Sun. A novel gait analysis system based on adaptive neuro-fuzzy inference system. Expert Systems with Applications,2010,37(2):1265-1269.
    [15]Wu G H J. Ground contact characteristics of Tai Chi gait. Gait Posture,2005,22(1):32-39.
    [16]Caselli A, Pham H, Giurini J M, et al. The fore-foot-to-rearfoot plantar pressure ratio is increased in severe diabetic neuropathy and can predict foot ulceration. Diab Care,2002, 25(6):1066-71.
    [17]Lobmann R, Kasten G, Kasten U, et al. Association of increased plantar pressures with peripheral sensorimotor and peripheral autonomic neuropathy in Type 2 diabetic patients. Diab Nutr Metab Clin Exp,2002,15(3):165-168.
    [18]Clercq D De, T W, Cock A De, et al. The use of plantar pressure measurements in the detection of gait related risk factors for exercise-related lower-leg pain in sports active young adults. Journal of Biomechanics,2006,39(S1):191-192.
    [19]Gang Qian, J Z, A K. People Identification Using Gait Via Floor Pressure Sensing and Analysis. Lecture Notes in Computer Science,2008,5279:83-98.
    [20]Zhi-Ming Yao, X Z, Er-Dong Lin, et al. A novel biometrie recognition system based on ground reaction force measurements of continuous gait. Human System Interactions (HSI), 3rd Conference on 13-15 May 2010:452-458.
    [21]Hughes J, C P, Linge K, et al. "A comparison of two studies of the pressure distribution under the feet of normal subjects using different equipment." Foot Ankle,1993,14(9): 514-519.
    [22]金发庆.传感器技术及其应用[M].北京:机械工业出版社,2004.
    [23]Carola Bertsch, Heidi Unger, Winfried Winkelmann, et al. Evaluation of early walking patterns from plantar pressure distribution measurements. First year.-esults of 42 children. Gait & Posture,2004,19(3):235-242.
    [24]Reinhard Schuh, Jochen Gerhard Hofstaetter, Stefan Gerhard Hofstaetter, et al. Plantar pressure distribution after tibiotalar arthrodesis. Clinical Biomechanics,2011, 26(6):620-625.
    [25]Rouhani H, Favre J, Crevoisier X.Ambulatory assessment of 3D ground reaction force using plantar pressure distribution. Gait & Posture,2010,32(3):311-316.
    [26]Virginie Fernery, Pierre Moretto, Herve Renaut, et al. Measurement of plantar pressure distribution in hemiplegic children:changes to adaptative gait patterns in accordance with deficiency. Clinical Biomechanics,2002,17(5):406-413.
    [27]Clark A L, Herzog W, Leonard T R. Contact area and pressure distribution in the feline patellofemoral joint under physiologically meaningful loading conditions. Journal of Biomechanics,2002,35(1):53-60.
    [28]Aldien Y, Welcome D, Rakheja S, et al. Contact pressure distribution at hand-handle interface:role of hand forces and handle size. International Journal of Industrial Ergonomics, 2005,35(3):267-286.
    [29]杨敏,陈洪,李明海.柔性阵列式压力传感器的发展现状简介[J].航天器环境工程,2009, 26:112-115.
    [30]Kalpen A, Bochdansky T, Seiz P. Measurement of dynamic pressure distribution The way for optimal adjustment of wheelchairs[C]. In:RESNA Conference Workshop M W13, Vancouver,1995.
    [31]Podoloff R M. Automotive seating analysis using thin, flexible, tactile sensor arrays[R]. SAE Technical,1993, Paper No.930112.
    [32]李建设.足底压力测量技术在生物力学研究中的应用与进展[J].北京体育大学学报,2005.28(2):191-193.
    [33]尹彦,曲峰.对乒乓球运动中三种步法的足底压力分析[J].体育科技,2011,32(2):24-29.
    [34]Goldman, Robert J. Capacitive biofeedback sensor with resilient polyurethane dielectric for rehabilitation:US,5449002[P].1995-6-6.
    [35]Cork, Russell. XSENSOR technology:a pressure imaging overview[J]. Sensor Review,2007, 27(1):24-28.
    [36]Novel. The Emed-systems[OL]. http://novel.de/novelcontent/emed.
    [37]川畑贤.表面压力分布传感器:中国,200410033380.5[P].2004-4-7.
    [38]Jagoda A Dobrzynska, Martin A M Gijs. Capacitive flexible force sensor[J]. Procedia Engineering,2010,5:404-407.
    [39]格拉夫森P,本斯莱曼M Y触觉传感器元件和传感器阵列:中国,200380105850.8[P].2003-12-10.
    [40]舒尔茨S C,切尔奈夫斯基A F,吉安B.柔性电容式触觉传感器:中国,02808165.X[P].2002-3-25.
    [41]Tekscan. Products for Pressure Mapping and Force Measurement[OL]. http://www.tekscan.com/products?division=medical.
    [42]Rsscan. Rsscan Products[OL]. http://www.rsscan.com.
    [43]Interlink. Force Sensors[OL]. http://www.interlinkelectronics.com/catalog/Force-Sensors.
    [44]Lim H C, Schulkin B, Pulickal M J, et al. Flexible membrane pressure sensor[J]. Sensors and Actuators A:Physical,2005,119(2):332-335.
    [45]金观昌,于淼.压电薄膜压力分布计算机测试系统研究[J].清华大学学报:自然科学版,1998,2:21-24.
    [46]Yu K H, Yoon M J, Kwon T K. Distributed flexible tactile sensor system[J]. International Journal of Applied Electromagnetics and Mechanics,2003,18(1):53-65.
    [47]Kolesar E S, Reston R R, Ford D G, et al. Multiplexed piezoelectric polymer tactile sensor[J]. Robotic System,1992,9:37-63.
    [48]Choi B, Choi H R, Kang S. Development of tactile sensor for detecting contact force and slip[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, Canada,2005:2638-2643.
    [49]金观昌,张军,张建中等.一种新型人足底压力分布测量系统及其应用[J].生物医学工程学杂志,2005,22(1):133-136.
    [50]Ping Sheng, Sichel E K, Gittleman J I. Fluctuation-Induced Tunneling Conduction in Carbon-Polyvinylchloride Composites[J]. Physical Review Letters,1978,40(18):1997-1200.
    [51]赵兰迎.基于数字跑道的田径训练信息采集和反馈系统[D]:[硕士].合肥:中国科学技术大学,2007.
    [52]撖涛.基于数字跑道的跳远运动生物力学研究[D]:[硕士].合肥:中国科学技术大学,2007.
    [53]马霄珂.基于柔性传感器的数字运动鞋信息反馈系统的设计与应用研究[D]:[硕士].合肥:中国科学技术大学,2009.
    [54]黄宝宏,王卫星,杨先军.跆拳道步法敏捷度训练仪的设计和应用[J].中国体育科技,2009,2:57-60.
    [55]肖丹丹.步法垫测试系统的研制与乒乓球运动员步法运动学特征的初步研究[J].体育科学,2008,28(5):89-97.
    [56]贾伯年,俞朴,宋爱国.传感器技术[M].南京:东南大学出版社,2007.
    [57]王化祥,张淑英.传感器原理及应用[M].天津:天津大学出版社,1992.
    [58]周旭,彭雷,占礼奎,等.一种力学传感器阵列标定装置及其工作方法:中国,200810097896.4[P].2010-06-02.
    [59]刘建和.乒乓球教学与训练[M].北京:人民体育出版社,2004.
    [60]孙涛.跆拳道步法技术在比赛中的重要意义[J].青海体育科技,2007,1:50-51.
    [61]叶青林.击剑步法在比赛中的作用[J].湖北体育科技,2005,24(1):101101.
    [62]尹彦,曲峰.乒乓球步法的生物力学研究现状[J].体育科技,2010,31(3):32-36.
    [63]Caroline Trautmanna, Nicolo Martinellib, Dieter Rosenbauma. Foot loading characteristics during three fencing-specific movements[J]. Journal of Sports Sciences,2011,29(15): 1585-1592.
    [64]滕辉,黄志玲.近20年乒乓球步法科研现状及发展对策研究[J].体育科技,2009,31:505-506.
    [65]赵静,刘文娟,王慧丽.乒乓球步法教学研究[J].武汉体育学院学报,2002,3(6):36-37.
    [66]章司路.乒乓球教学中步法练习的研究[J].上海体育学院学报,2003,27(6):125-126.
    [67]刘小平.跆拳道动作技术学习的运动生物力学原理[J].体育世界:学术版,2011,2:116-117.
    [68]任妮妮.羽毛球运动步法的力学分析[J].华章,2011,21:194-196.
    [69]吴晨燕,余红升.浅析步法在拳击实战中的重要性[J].福建体育科技,2007,26(6):30-31.
    [70]李世明.运动生物力学理论与方法[M].北京:科学出版社,2006.
    [71]杨先军,周旭,刘志,等.基于柔性阵列压力传感器的可拼装式数字化场地及步态训练的方法:中国,ZL200910117111.X[P].2009-6-23.
    [72]孙娜,熊伟,丁宇征.时钟同步的研究与应用[J].计算机工程与应用,2003,27:177-179
    [73]Mills D L. Internet time synchronization:the network time protocol[J]. IEEE Transactions on Communications,1991,39(10):1482-1493.
    [74]Mills D L. Network Time Protocol [Version 3] Specifications, Implcmentation and Analysis[EB]. https://ebook.tools.ietf.org/html/rfc 1305,1992-03.
    [75]Mills D L. Simple Network Time Protocol (SNTP) version 4 for IPv4, IPv6 and OSI[R]. Network Working Group Report RFC-2030, University of Delaware,1996.
    [76]邱芬,陈孝良,马龙华,等.PTP精密时钟同步原理分析.微计算机应用,2009,30(10):18-22.
    [77]IEEE Standard 1588-2002. IEEE Standard for a precision Clock Synchronization Protocol for Networked Measurement and Control Systems[S].2002.
    [78]关松青.工业以太网中IEEE 1588时钟同步技术研究[D]:[硕士].长沙:湖南大学,2010.
    [79]Loschmidt P, Exel R, Nagy A, et al. Limits of synchronization accuracy using hardware support in IEEE 1588[C].2008 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication,2008,12-16.
    [80]Meier S, Weibel H, Weber K. IEEE 1588 synchronization and synchronization functions completely realized in hardware[C].2008 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication,2008,1-4.
    [81]邱芬,陈孝良,马龙华,等.PTP精密时钟同步原理分析[J].微计算机应用.2009,30(10):19-21.
    [82]李聪,高丽.基于IEEE1588的时钟同步技术在分布式系统中的应用[J].电子设计工程,2009,17(12):54-56.
    [83]袁振华,董秀军,刘朝英.基于IEEE1588的时钟同步技术及其应用[J].计算机测量与控制,2006,14(12):1726-1728.
    [84]Khalid Sayood. Introducation to Data Compression[M].3rd ed. San Mateo, CA:Morgan Kaufmann Publishers,1996.
    [85]International Standard Organisation, Road vehicles —interchange of digital information— Controller area network (CAN) for high-speed communication[S]. ISO 11898,1993.
    [86]Cena G, Valenzano A. A protocol for automatic node discovery in CANopen networks[J]. IEEE Transactions on Industrial Electronics,2003,50(3):419-430.
    [87]Nolte T, Nolin M, Hansson H A. Real-time server-based communication with CAN[J]. IEEE Transactions on Industrial Informatics,2005,1(3):192-201.
    [88]Brooks P. Ethernet/IP-industrial protocol[C].2001 8th IEEE International Conference on Emerging Technologies and Factory Automation,2001,2:505-514.
    [89]吴爱国,梁瑾,金文.工业以太网的发展现状[J].信息与控制,2003,32(5):458-461.
    [90]NODES T, GALLAGHER N.Median filters:Some modifications and their properties[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1982,30(5):739-746.
    [91]SINGH K M, BORA P K, SINGH S B.Rank-ordered mean filter for removal of impulse noise from images[C].IEEE ICIT'02 IEEE International Conference on Industrial Technology,Bangkok,Thailand,2002,2:980-985.
    [92]Yong Lee, Kassam S. Generalized median filtering and related nonlinear filtering techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1985, 33(3):672-683.
    [93]张恒,雷志辉,丁晓华.一种改进的中值滤波算法[J].中国图象图形学报,2004,9(4):409-411.
    [94]Pratt WK.数字图像处理(第3版)[M].邓鲁华,张延恒译.北京:机械工业出版社,2005,173-176.
    [95]GROSSMAN A, MORLET J. Decomposition of hardy function into square integrable wavelets of constant shape[J].SIAM Mathematical Analysis,1981,15(4):723-736.
    [96]刘世发.足底压力分布综合分析系统的开发与应用[D]:[硕士].合肥:中国科学技术大学,2009.
    [97]朱玉全,杨鹤标,孙蕾.数据挖掘技术[M].南京:东南大学出版社,2006,139-177.
    [98]Perry J. Gait analysis:normal and pathological function[M]. SLACK incorporated,1992.
    [99]姚志明.基于步态触觉信息的身份识别研究[D]:[博士].合肥:中国科学技术大学,2010.
    [100]李静山,武妮,董保美.对跳远助跑速度理论研究的探讨[J].成都体育学院学报,1997,2: 16-19.
    [101]章碧玉,吴小五,陈美仪,等.对提高我国跳远运动员成绩有效途径的探讨[J].体育科学,1997,17(3):37-40.
    [102]胡宗元,潘慧炬.我国男子跳远技术研究[J].浙江体育科学,1990,12(6):22-24.
    [103]章碧玉.我国男子跳远运动员三维踏跳力量的分析[J].北京体育学院学报,1990,4:18-22.
    [104]马开坪,杨晓兰.对跳远最后几步助跑节奏的探讨[J].成都体育学院学报,1998, 24(2):32-34.
    [105]张胜年,刘宇,杨先军.可移动式数字化跑道系统研发与应用[J].中国体育科技,2011,47(3):25-28.
    [106]付前勇,刘品和.跳远助跑节奏与训练探讨[J].武汉船舶职业技术学院学报,2006,2:87-89.
    [107]陈诺娜.关于跳远训练中助跑节奏的探讨[J].福建体育科技,1999,18(1):61-62.
    [108]Koh J, James G Hay. Landing Leg Motion and Performance in the Horizontal Jumps:The Long Jump Timothy[J]. INTERNATIONAL JOURNAL OF SPORT BIOMECHANICS, 1990,6:343-360.
    [109]Nixdorf E, Bruggeman P. On the preparation for takeoff in the long jump—A biomechanical investigation into the problem of lowering the center of gravity [J]. Die Lehre der Leichtathletik,1983,41:1539-1541.
    [110]JAMES G HAY. Changes in muscle-tendon length during the take-off a running long jump [J]. Journal of Sports Sciences,1999,17:159-172.
    [111]罗西杜利特尔.跳远[J].田径科技信息,1993,11(4-5):51-63.
    [112]冯树勇.中国高水平跳远运动员训练内容体系的研究[D]:[博士].北京:北京体育大学,2001.
    [113]周继和,丁先琼.跳远助跑技术综述[J].成都体育学院学报,2000,5:61-64.
    [114]侯日信,侯金云.助跑——决定跳远成绩的最重要因素[J].田径,1996,4:18.
    [115]文超等.田径运动高级教程[M].北京:人民体育出版社,2004.
    [116]赵国雄.跳远助跑速度利用率的研究[J].四川体育科学,1992,4:22-25.
    [117]赵国雄.跳远助跑最后10米分段速度的研究[J].中国体育科技,1997,Z1.
    [118]杨宁.对跳远起跳技术及专项力量训练方法的思考[J].内蒙古体育科技,2006,19(2):79-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700