用户名: 密码: 验证码:
添加剂对CO_2跨临界热泵膨胀过程及系统性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以带膨胀机的跨临界CO2水水热泵系统为对象,以优化CO2膨胀机的运行、提升系统性能为目的,提出在纯CO2中加入添加剂方案,并通过理论和试验研究,分析了添加剂(氮气、氩气、二甲醚和R32)对CO2水水热泵系统性能、膨胀机及气体冷却器的影响。
     对含添加剂的CO2跨临界带膨胀机循环系统进行了理论分析,结果显示加入氮气和氩气可以提高膨胀机回收功,单位制热量和压缩机比功随着氮气或氩气含量的增加而降低,而COP则随着氮气或氩气含量的增加先增加后降低,系统COP存在最优值。COP随着二甲醚或R32含量的增加而增加,单位制热量和压缩机比功随着二甲醚含量的增加先增加后降低,而随着R32含量的增加而单调增加。
     本文还对膨胀机内的CO2相变过程进行了理论分析,应用微观液体“准晶格”理论分析得出添加剂可以在相变时作为汽化核心,提高核化率。并从宏观上对含添加剂CO2稀溶液和极限过热度进行了分析,结果表明添加氮气和氩气有利于CO2相变,而添加二甲醚和R32则相反。另外对CO2气体冷却器进行理论分析计算,加入氮气和氩气后,气体冷却器性能下降。而含二甲醚和R32的CO2气体冷却器换热性能增强。
     设计加工了CO2快速降压试块,对CO2以及含添加剂的CO2快速降压膨胀过程进行了试验。结果显示,氮气可以促进CO2的相变,但是二甲醚则会延缓其相变。
     最后在带膨胀机的CO2水水热泵系统上进行了含添加剂的试验。试验结果表明,加入氮气和氩气后,膨胀机的回收功增加,制热量随氮气或氩气含量的增加先增加后降低,系统COP在氮气或氩气含量1%时最大。含R32和二甲醚的膨胀机输出功随着添加剂含量的增加先增加后下降,系统COP增加,而且运行压力下降。
Based on CO2transcritical water to water heat pump system with expander, aconcept adding additives into CO2heat pump system is put forward in thisdissertation, in order to optimize the operation of the CO2expander and improvesystem performance. The influence of additives, such as nitrogen, argon, dimethylether (DME) and R32, on the performance of the system, the expander and gas coolerin CO2transcritical heat pump system is investigated.
     The thermodynamics analyses of CO2transcritical cycle with additives areconducted. The recovery power of expander increases using nitrogen and argon asadditives, but the heating capacity and the input power of compressor decrease.However, COP of the system increases first and then decrease with increasing theconcentration of nitrogen or argon, and an optimal COP exists. The heating capacityand the input power of compressor increase at first and then decrease with increasingthe concentration of DME, but for R32, the two parameters monotonically increases.
     The phase change of CO2with additive in the expander is analyzed with theory.According to the quasicrystal structures theory, the nucleation rate of CO2withadditives increases compared with that of pure CO2. The dilute solution’sthermodynamics performance and the superheat limits of CO2with or withoutadditives are also conducted. The phase change is accelerated with the presence ofnitrogen or argon, but the calculation results show the opposite behavior when DMEand R32are considered. The heat transfer characteristic of CO2with additives in thegas cooler is performed. The heat transfer performance of CO2gas cooler decreaseswith the addition of nitrogen or argon, but that increases with DME or R32.
     To observe the process of CO2depressurization, a high-pressure CO2test block isdesigned and produced. The rapid depressurization of pure CO2and CO2withnitrogen and DME are tested. The addition of nitrogen accelerate the phase change ofCO2, to the contrary, the phase change of CO2with DME is postponed.
     At last, the heat pump tests of CO2with and without additives are carried out. Theresults show that the recovery power in the expander of CO2increases with thepresence of nitrogen or argon. The heating capacity increases firstly and then dropwith increasing the concentration of nitrogen and argon. The system gets the maximum COP when the concentration of nitrogen or argon is1%. When R32orDME exists in CO2heat pump system, the recovery power increases at first, and thendescends with increasing the concentration of R32or DME. COP of the systemincreases with the existence of R32or DME.
引文
[1] BP statistical review of world energy,http://www.bp.com/sectionbodycopy.do?categoryId=7500&contentId=7068481
    [2] BP Energy Outlook2030, http://www.bp.com/energyoutlook2030
    [3]统计局公布2012年1-3季度国内生产总值(GDP)情况,http://www.gov.cn/gzdt/2012-10/23/content_2249478.htm
    [4]2011年中国能源消耗总量为,4.8亿吨标准煤,http://www.cinic.org.cn/site951/hangye/hyyw/2012-03-05/540598.shtml
    [5]2010年全国能源消耗总量及构成统计表,http://www.in-en.com/data/html/energy_11021102751267769.html
    [6]中华人民共和国国家统计局,中国能源统计年鉴,北京:中国统计出版社,2011.
    [7] J.G.J. Oliver, G. Janssens-Maenhout, J.A.H.W. Peters,全球二氧化碳排放趋势2012报告,2012
    [8]安玉彬,刘旭东,二十一世纪中国能源发展的总趋势,能源工程,1999,(1):1-4
    [9] J. Perkins. Apparatus for producing ice and cooling fluids: UK. Patent.6662(1834)
    [10] C. W.H., R.W. Waterfill, Comparison of Thermodynamic Characteristics ofVarious Refrigerating Fluids,11th Western Meeting of the American Society ofRefrigerating Engineers (ASRE), Refrigerating Engineering, Cleveland, OH, USA,1924, pp.415-424
    [11] T. Midgley Jr. From the periodic table to production. Industrial EngineeringChemistry,1937,29(2):241-244
    [12] R. Downing. History of the organic fluorine industry. Kirk-Othmer Encyclopediaof Chemical Technology.1966,(9):704
    [13] R. Downing, Development of chlorofluorocarbon refrigerants, ASHRAEtransactions, Atlanta, USA,1984, pp.481-491
    [14] B.A. Nagengast. A History of Refrigerant. ASHRAE Journal,1998.
    [15] R. Downing. Development of chlorofluorocarbon refrigerants, ASHRAEtransactions,1984,90(2B):481-491
    [16] M. Molina, R. F. Stratospheric Sink for Chlorofluoromenthanes: Chorine-atomCatalyzed Destruction of Ozone.Nature,1974:249
    [17] UNEP, Decisions Adopted by the Nineteenth Meeting of the Parties to theMontreal Protocol on Substances that Deplete the Ozone Layer, United NationsEnvironment Programme(UNEP) Ozone Secretariat, Nairobi, Kenya,2007.9.22,
    [18] U. Nations, Kyoto Protocol to the United Nations Framework Convention onClimate Change,1997
    [19] Regulation(EC), No.2037/2000of Europen Parliament and of the Council of29June2000on substances that deplete the ozone layer,Official Journal in,2000.6.29,
    [20]马一太,王伟,制冷剂的替代与延续技术,制冷学报,2010,31(005):11-17
    [21] DuPont. DuPont Fluorochemicals Develops Next Generation Refrigerants—NewSustainable Alternatives Would Offer Practical Solutions, press release,Wilmington, DE, USA,2006(0.9.02.06)
    [22] Honeywell. Honeywell’s Developmental Refrigerant Meets Global WarmingRegulation–Technology Targets Future Auto Applications, Morristown, NJ, USA.2006(16.02.06)
    [23]徐敬东,周贻博.使用异丁烷作电冰箱制冷剂的几个问题,家用电器科技.1998,(2):35-37
    [24]阎琳,丙烷R290在家用空调器中替代R22的研究,南京理工大学学报,1999,23(2):170-173
    [25]唐汝宁,朱雯婕,张于峰等,丙烷(R290)作为空调制冷剂可行性研究,全国暖通空调制冷1998年学术年会论文集(2),1998
    [26]张会勇,李俊明,王补宣.过热度和高压压力对跨临界CO2汽车空调系统的影响.清华大学学报(自然科学版).2005,(11):1573-1576
    [27]王侃宏,CO2跨临界循环的理论分析与实验研究:[博士论文],天津:天津大学,2000
    [28]陈江平,穆景阳,刘军朴,二氧化碳跨临界汽车空调系统开发,制冷学报,2002,3:14-17
    [29] G. Lorentzen. The use of nature refrigerants: a complete solution to theCFC/HCFC predicament. International Journal of Refrigerants,1995,18(3):190-197
    [30] P.Heyl, H. Quack. Free piston expander-compressor for CO2-design, applicationsand results,http://tu-dresden.de/die_tu_dresden/fakultaet_maschinenwesen/iet/kkt/veroeffentlichungen/sydney.pdf.
    [31] J. Nickl, G. Will, W.E. Kraus, et al, Design considerations for a second generationCO2-expander, Preliminary proceedings of the5th IIR-Gustav Lorentzenconference on natural working fluids at guangzhou, Guangzhong China,2002, pp.189-196
    [32] J. Nickl, G. Will, H. Quack, et al. Integration of a three-stage expander into a CO2refrigeration system, International Journal of refrigeration,2005,28(8):1219-1224
    [33]张波,彭学院,张芳玺等,一种新型自由活塞式膨胀机的研制及试验研究,西安交通大学学报,2006,40(7):776-780
    [34] B. Zhang, X. Peng, Z. He, et al. Development of a double acting free pistonexpander for power recovery in transcritical CO2cycle, Applied ThermalEngineering.2007,27(8):1629-1636
    [35] W. Ronald, Applications for the hinge-vane positive displacementcompressor-expander. http//www. egi. kth. se,2001-01-20,2003
    [36] H. Huff, R. Radermacher, M. Preissner, Experimental investigation of a scrollexpander in a carbon dioxide air-conditioning system, Proceedings of the21thInternational Congress of Refrigeration Washington,2003
    [37] M. Fukuta, T. Yanagisawa, O. Kosuda, et al, Performance of scroll expander forCO2refrigeration cycle, International Compressor Engineering Conference,Purdue, USA,2006
    [38] H. Kohsokabe, M. Koyama, K. Tojo, et al. Performance characteristics of scrollexpander for CO2refrigeration cycles. International Compressor EngineeringConference at Purdue, Purdue, USA.2008
    [39] A. Hiwata, A. Ikeda, T. Morimoto, et al. Axial and Radial Force Control for aCO2Scroll Expander. HVAC&R Research.2009,15(4):759-770
    [40] S. Nikola, S.I. K, K. Ahmed. A twin screw combined compressor and expanderfor CO2refrigeration systems. The proceeding of the siteenth internationalcompressor engineering conference at Purdue, Purdue, USA.2002
    [41]马一太,魏东,王景刚等,跨临界制冷循环中应用两相螺杆膨胀机的理论分析,工程热物理学报,2001,22(2):137-140
    [42]马国远,李红旗,旋转压缩机,北京:机械工业出版社,2001
    [43]曾寒松,杨炳春,郭蓓等,跨临界CO2滑片膨胀机的研究与开发,制冷与空调,2007,7,(4):56-58
    [44]杨炳春,郭蓓,彭学院等,CO2滑片膨胀机热力过程的试验研究,西安交通大学学报,2008,42(3):313-317
    [45] Fukuta. M, Yanagisawa T, Ogi Y, et al, Cycle performance of CO2cycle withvane compressor-expander combination, IMechE International Conference onCompressors and Their Systems, London,2001, pp.315-324
    [46]查世彤,二氧化碳跨临界循环膨胀机的研究与开发:[博士论文],天津大学,2002
    [47]马一太,杨昭,吕灿仁,CO2跨临界(逆)循环的热力学分析,工程热物理学报,1998,19(6):665-668
    [48]李敏霞,二氧化碳跨临界循环转子式膨胀机的分析与实验研究:[博士论文],天津:天津大学,2003
    [49] H. Guan, Y. Ma, M. Li. Some design features of CO2swing piston expander.Applied Thermal Engineering.2006,26(2):237-243
    [50]姜云涛,马一太,李敏霞等,二氧化碳跨临界循环系统用新型膨胀机的研发,制冷学报,2010,31(5):1-4
    [51] M. Matsui, M. Wada, T. Ogata, et al. Development of high-efficiency technologyof two-stage rotary expander for CO2refrigerant. International CompressorEngineering Conference at Purdue. Purdue,USA,2008
    [52] A. Subiantoro, K. Ooi. Design analysis of the novel Revolving Vane expander ina transcritical carbon dioxide refrigeration system. International Journal ofrefrigeration.2010,33(4):675-685
    [53] E. Tondell. Impulse expander for CO2, The7thIIR-Gustav Lorentzen Conferenceon Natural Working Fluids, Trondheim, Norway,2006:107-110
    [54] F. Bjorn, Feasibility study of using centrifugal compressor and expander in a carconditioner working with carbon dioxide as refrigerant, ACRC CR-23,2002,
    [55]马娟丽,赵叶,侯予,跨临界CO2制冷系统采用透平膨胀机的可行性分析.低温工程,2010,177(5):26-32
    [56] V.L. Paskov, I.V. Kuraeva, V.S. Protopopv. Heat Transfer and Resistance ofCarbon dioxide being cooled in the supercritical Region. Thermal Engineering.1985,32(3):131-134
    [57] J. Pettersen, R. Rieberer, S.T. Munkejord, Heat Transfer and Pressure Drop forflow of supercritical and subcritical CO2in Microchannel tubes under cooling,Preliminary Proceedings of the4th IIR-Gustav Lorentzen Conference on NuaturalWorking Fluids at Purde,2000,99-106
    [58] G.R. Zakeri, P. NEKSA, H. REKSTAD, et al, Results and experiences with thefirst commercial pilot plant CO2heat pump water heater, Science et technique dufroid,2001:103-108
    [59] S.M.Liao, T.S.Zhao, An experimental investigation of convection heat transfer tosupercritical carbon dioxide in miniature tubes. International Journal of Heat andMass Transfer.2002,45(25):5025-5034
    [60] S.S. Pitla, E.A. Groll, S. Ramadhhyani. New correlation to predict the heattransfer coefficient during in-tube cooling of turbulent supercritical CO2.International Journal of Refrigeration.2002,25(7):887-895
    [61] S.H. Yoon, J.H. Kim, Y.W. Hwang. Heat transfer and pressure dropcharacteristics during the in-tube cooling process of carbon dioxide in thesupercritical region. International Journal of Refrigeration.2003,26(8):857-864
    [62] D. Chaobin, E. Hihara. In-tube cooling heat transfer of supercritical carbondioxide. Part1. Experimental measurement. International Journal of Refrigeration.2004,27(7):736-747
    [63] C. Dang, E. Hihara. In-tube cooling heat transfer of supercritical carbon dioxide.Part2. Comparison of numerical calculation with different turbulence models.International Journal of refrigeration.2004,27(7):748-760
    [64] C. Dang, K. Iino, K. Fukuoka, et al. Effect of lubricating oil on cooling heattransfer of supercritical carbon dioxide. International Journal of refrigeration.2007,30(4):724-731
    [65] D.A. Olson. Heat transfer of supercritical carbon dioxide flowing in a cooledhorizontal tube. Preliminary Proceeding of the4th IIR-Gustav LorentzenConference on Natural Working Fluids at Purdue,2001,99-106
    [66] J. Pettersen, R. Rieberer, A. Leister. Heat transfer and pressure drop charateristicsof supercritical carbon dioxide in micro-channel tubes under cooling. PreliminaryProceeding of the4th IIR-Gustav Lorentzen Conference on Natural WorkingFluids at Purdue.2000:99-106
    [67] O. Hoo-Koo, S. Chang-Hyo. New correlation to predict the heat transfercoefficient in-tube cooling of supercritical CO2in horizontal macro-tubes.Experimental Thermal and Fluid Science.2010,34(8):1230-1241
    [68]魏东,二氧化碳跨临界循环换热与膨胀机理的研究:[博士论文],天津:天津大学.2002
    [69]杨俊兰,CO2跨临界循环系统级换热理论分析与实验研究:[博士论文],天津:天津大学,2005.6
    [70]孙方田,含油超临界CO2冷却换热理论与实验研究:[博士论文],天津:天津大学,2007.5
    [71] P.X. Jiang, Y. Zhang, R.F. Shi. Experimental and numerical investigation ofconvection heat transfer of CO2at supercritical pressures in a vertical mini-tube.International Journal of Heat and Mass Transfer.2008,51(11):3052-3056
    [72] P.X. Jiang, Y.J. Xu, J. Lv, et al. Experimental investigation of convection heattransfer of CO2at super-critical pressures in vertical mini-tubes and in porousmedia. Applied Thermal Engineering.2004,24(8):1255-1270
    [73] P.X. Jiang, R.F. Shi, C.R. Zhao, et al. Experimental and numerical study ofconvection heat transfer of CO2at supercritical pressures in vertical porous tubes.International Journal of Heat and Mass Transfer.2008,51(25):6283-6293
    [74]丁国良,黄冬平,张春路,跨临界二氧化碳汽车空调稳态仿真,中国工程热物理学会论文集,南京,2000
    [75]杨亮,丁国良,黄冬平等,超临界二氧化碳流动和换热研究进展,制冷学报,2003,(2):51-56
    [76]张丽娜,刘敏珊,董其伍,超临界二氧化碳细管内流动与换热特性分析研究,郑州大学学报(工学版),2009,30(4):69-72
    [77] G. Lorentzen, J. Pettersen, New possibilities for non-CFC refrigeration, in:Proceedings from International Symposium on Refrigeration, Energy andEnvironment, Trondheim,1992, pp.147-163
    [78] J.M. Yin, C.W. Bullard, P.S. Hrnjak. R-744gas cooler model development andvalidation. International Journal of refrigeration.2001,24(7):692-701
    [79] C.Y. Park, P. Hrnjak. Effect of heat conduction through the fins of amicrochannel serpentine gas cooler of transcritical CO2system. InternationalJournal of refrigeration.2007,30(3):389-397
    [80] M.-H. Kim, J. Pettersen, C.W. Bullard. Fundamental process and system designissues in CO2vapor compression systems. Progress in energy and combustionscience.2004,30(2):119-174
    [81] F. Mitsuhiro, H. Masashi, Y. Tadashi, et al, Observation of CO2trans-criticalexpansion process, The12th International Conference of Air-conditioning andRefrigeration, Purdue, USA,2008, pp.2374
    [82] F. Mitsuhiro, Y. Tadashi, H. Masashi, Performance of Vane-Type CO2Expanderand Characteristics of Transcritical Expansion Process[J], HVAC&R ResearchVolume15, Issue4,2009
    [83]鲁钟琪,两相流与沸腾传热,北京:清华大学出版社,2002.1.
    [84] Jun Li, Henrique A. Matos, Two phase homogeneous model for particleformation from gas-saturated solution processes, Journal of Supercritical Fluids,2004,32:275-286.
    [85] W. Tong, A.B. Cohen, T.W. Simon, S.M. You, Contact angle effects on boilingincipience of highly-wetting liquids, International Journal of Heat and MassTransfer33(1990)91e103.
    [86]管海清,CO2跨临界循环膨胀机理与转子式膨胀机-压缩机研究:[博士论文],天津:天津大学,2005
    [87] T. Hua, M. Yitai, L. Minxia, et al. Influence of a non-condensable gas on theperformance of a piston expander for use in carbon dioxide trans-critical heatpumps. Applied Thermal Engineering.2011,31(11):1943-1949
    [88]何茂刚,李铁辰,刘志刚,二甲醚作为冰箱制冷剂的实验研究,西安交通大学学报,2004,38(3):221-225
    [89]刘敬辉,陈江平,鲁雪生等,二甲醚制冷性能分析及其lgP-h图,能源技术,2004,25(6):238-242
    [90] H.M. Afroz, A. Miyara, K. Tsubaki. Heat transfer coefficients and pressure dropsduring in-tube condensation of CO2/DME mixture refrigerant. InternationalJournal of refrigeration.2008,31(8):1458-1466
    [91] Y. Onaka, A. Miyara, K. Tsubaki. Experimental study on evaporation heattransfer of CO2/DME mixture refrigerant in a horizontal smooth tube.International Journal of refrigeration.2010,33(7):1277-1291
    [92] H.M.M. Afroz, A. Miyara. Binary mixtures of carbon dioxide and dimethyl etheras alternative refrigerants and their vapor-liquid equilibrium data prediction.International Journal of Engineering, Science and Technology.2011,3(1):10-21
    [93]毕胜山,陈强,吴江涛等,CO2/二甲醚混合制冷剂跨临界制冷循环性能分析,工程热物理学报,2009,30(11):1807-1810
    [94]刘佳,张信荣,徐建阳,CO2/DME混合工质在水平管内对流换热的数值研究,湘潭大学自然科学学报,2011,33(3):110-114
    [95] S. Koyama, N. Takato, K. Kuwahara, et al, Experimental study on theperformance of a refrigerant mixture CO2/DME system, in: Proceedings of22ndInternational Congress of Refrigeration, Beijing,2007
    [96] S. Ro, J. Kim, D. Kim. Thermal conductivity of R32and its mixture with R134a.International journal of thermophysics.1995,16(5):1193-1201
    [97]朱明善,史琳,在家用/商用空调中用R32替代R22的探索,制冷与空调,2009,9(006):31-34
    [98]史琳,朱明善,家用/商用空调用R32替代R22的再分析,制冷学报,2010,31(1):1-5
    [99]韩晓红,徐英杰,仇宇等,制冷剂R32的循环性能实验研究,制冷与空调,2010,10(2):68-70
    [100]于渌,郝柏林,相变与临界现象,北京:科学出版社,1984
    [101] Sukop M C, Daniel T, D., Lattice Boltzmann Modeling: An Introduction forGeoscientists and Engineering New York:Springer,2006
    [102]王正烈,周亚平,物理化学,北京:高等教育出版社,2001.12
    [103] J. Kesin. A course in thermodynamics. New York: McGraw-Hill,1979
    [104]马德良,高明侠,液体过热亚稳态极限的计算,徐州师范大学学报(自然科学版),1999,17(2):39-41
    [105] K. Nishigaki, Y. Saji. Superheat limit of He4and its quantum deviation fromclassical behavior. Journal of the Physical Society of Japan.1983,52(6):2293-2296
    [106]曾丹苓,敬成君,利用涨落理论确定液体的极限过热度,中国科学(A辑).1996,25(10):1075-1081
    [107]刘朝,明向军,曾丹苓,液体理论极限过热度的确定,工程热物理学报,1997,18(3):265-269
    [108] C.T. Avedisian. The homogeneous nucleation limits of liquids. J. Phys. Chem.Ref. Data,1985,14(5):695-729
    [109] S. Angus, B. Armstrong, K.M.d. Reuck. International Thermodynamic Table ofthe Fluid State Carbon Dioxide, International Union of Pure and AppliedChemistry.1976
    [110] V. Vesovic, W.A. Wakeham, G.A. Olchowy, et al. The transport properties ofcarbon dioxde. Journal of Physics Chemistry Reference Data.1990,19(3):763-808
    [111] R. Span, Wagner. A new equation of state for carbon dioxide covering the fluidregion from the tri-point temperature to1100K at pressure up to800MPa. Journalof Physics Chemistry Reference Data.1996,25(6):1509-1597
    [112] NIST. Reference Fluid Thermodynamic and Transport Properties-REFPROP,NIST Standard Reference Database23,USA.2010
    [113]陈学俊,陈立勋,周芳德,气液两相流与传热基础,北京:科学出版社,1995
    [114]章熙民,任泽霈,梅飞鸣,传热学,北京:中国建设出版社,2001.12
    [115] E.N. Sieder, G.E. Tate. Heat transfer and pressure drop of liquids in tubes. IndEng Chem.1936,28(12):1429-1435
    [116] P. B.S. Heat transfer and friction in turbulent pipe flow with variable physicalproperties. Advances in Heat transfer.1970,6:503-564
    [117] GNIELNSKIV. New equations for heat and mass transfer in turbulent pipe andchannel flow. Int Chem Eng.1976,16(2):359-368
    [118]李敏霞,马一太,杨俊兰,CO2跨临界水水热泵气体冷却器研究,太阳能学报,2008,29(12):1510-1514
    [119]陈卓如,金朝铭,王洪杰,工程流体力学,北京,高等教育出版社,2004
    [120] Zukaus.A, J. Karmi. High-performance Single-phase Heat exchanger. New YorkHemisphere Corporation,1989
    [121] Filonenko G K. Hydraulic Resistance in Pipes. Teploergetica1954, I(4):40-44
    [122]邢子文,吴华根,束鹏程,螺杆压缩机设计理论与关键技术的研究和开发.西安交通大学学报,2007,41(7):755-763
    [123]安青松,CO2滚动转子膨胀机内部相变膨胀过程机理分析与可视化:[博士论文],天津:天津大学,2008
    [124]姜云涛,CO2跨临界水-水热泵及两缸滚动活塞膨胀机的研究:[博士论文],天津:天津大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700