用户名: 密码: 验证码:
股骨近端结构形态对其强度影响的生物力学数值仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
股骨作为支撑上半身体重、连接躯干与下半身、完成行走步态的最重要骨骼,其发生骨折的几率是相当大的,尤其是在患有骨质疏松症的老龄人群中。在医疗条件飞速发展的今天,人们已经不满足于单纯地提高医疗技术来治疗骨折。更多人开始寻找影响骨折风险的因素,制定预防措施来阻止可能会发生的骨折。能够影响骨折风险最重要的因素是骨结构的力学性能及其形态特征。然而在体骨骼的力学性能无法通过力学实验测试得到。逆向工程技术和非线性有限元分析技术恰好可以解决这个问题。对此,本研究建立了一套新的方法测量股骨近端三维形态参数,然后对股骨近端进行有限元分析模拟骨的损伤过程。对股骨近端三维形态参数和预测的骨强度进行统计分析,研究三维形态参数对股骨近端强度的影响。另外,本研究借助Micro-CT影像技术和显微有限元方法,对股骨头内部松质骨的力学性能进行预测,在细观水平上研究股骨近端骨折的发生机制。本研究主要可以分为以下三个部分:
     第一部分建立了股骨近端三维形态参数的测量方法。应用此方法测量了50名66-75岁健康男性的股骨近端三维形态参数,并且分析了形态参数之间的内在联系,以及年龄对形态参数的影响。首先利用逆向工程软件MIMICS根据QCT影像重建出股骨近端三维模型。然后在快速成型制造软件MAGICS中对股骨近端模型进行旋转与平移来统一体位。在统一体位后的股骨模型上进行切割获取模型的特征点坐标,导入我们自行研发的股骨近端三维形态参数测量程序中进行计算,得出8个股骨近端三维形态参数,分别是股骨头直径(HD)、股骨头的高(HH)、偏心距(OFF)、颈干角(NSA)、股骨头中心到大转子顶点高度差(TRH)、股骨干的厚度(TOF)、股骨颈直径(ND)、股骨颈的长(NL)。随机选取5例样本制造出实体模型进行手工测量三维形态参数,并与计算机辅助测量的参数进行配对T检验以验证我们制定的算法的可靠性。将三维模型投影到冠状面上模拟X射线平片并且测量股骨近端平面形态参数。对两种形态参数进行配对T检验分析两种测量方法的差异。将测量的三维形态参数按年龄段划分为两个组(66-70岁为A组,71-75岁为B组),分析股骨近端形态参数随着年龄增长的变化趋势。结果显示:(1)手工测量方法和计算机辅助测量方法之间没有显著性差异,说明我们制定的股骨近端三维形态参数测量方法是可靠的。(2)ND、NSA、TRH三个参数在平面和三维两种测量方式下表现出显著差异,说明平面参数的误差较大。(3)除TOF外,BMD与其他形态参数均不显著相关,说明单独依靠BMD预测骨折风险是不准确的。(4)HD、ND、NL在两个年龄段之间具有显著性差异。
     第二部分在测量过形态参数的股骨模型中随机选取14例(A组7例,B组7例)进行有限元分析预测其强度。复杂的骨材料属性以及屈服和断裂准则在UMAT子程序中编写代码来实现。由于骨是一种非均匀的拉、压不对称材料,因此在每个载荷增量加载之前需要判断每个单元的拉、压状态及损伤程度,并赋予对应的屈服准则和断裂准则。在股骨头的顶端建立简易压头模型保证载荷能够均匀施加在股骨头表面。在压头顶端施加竖直向下5mm位移边界条件进行计算。结果显示预测的股骨近端损伤过程与实验数据是吻合的。股骨近端强度与股骨近端三维形态参数中的TRH、NSA、TOF显著相关(P<0.05)。A组受试者股骨近端强度与B组受试者股骨近端强度未显示出显著性差异。
     第三部分在细观水平上借助Micro-CT影像技术和显微有限元分析技术预测股骨近端骨折患者的股骨头内部松质骨强度,以及分析骨小梁三维形态特征对松质骨力学性能的影响。选取7例股骨近端骨折患者进行全髋关节置换术后取下的股骨头作为实验样本,进行micro-CT扫描并重建出股骨头模型。将每个股骨头模型依照骨小梁的主要生长方向及区域特征划分为3个区域12个子区域。在每个子区域提取出一个125mm3的立方体骨块。测量骨块的骨小梁形态参数,包括骨小梁分离度(Tb.Sp)、骨小梁厚度(Tb.Th)、骨体积分数(BV/TV)、骨表面积密度(BS/BV)、结构模型指数(SMI)、各向异性度(DA)。对不同区域的骨小梁形态参数进行二独立样本非参数检验,分析骨小梁形态参数的区域差异。对每一个骨块分别沿三个正交方向模拟压缩工况进行有限元分析。计算每个骨块沿三个正交方向的表观弹性模量和骨块内部平均应力。结果显示骨块沿主要受力方向表现出的力学性能显著优于其他两个非主要受力方向,两个非主要受力方向的力学性能没有显著性差异。松质骨沿主要受力方向计算出的力学参数显示出显著的区域差异性,其中外侧区域的力学参数显著高于中间区域和内侧区域。
     本研究改进了股骨近端形态参数的测量方法和股骨近端的损伤算法,在宏观和细观两方面阐述了结构形态特征对骨强度的影响作用。为临床工作者尽早发现骨折风险,预防骨折的发生提供更为直观的依据。
Femur, as the most important bone of bearing the weight of upper body andforming gait process, is susceptible to fracture, especially for theelderly people with serious osteoporosis. With the rapid development ofmedical standards, people are not satisfied with curing the fracture onlydepending on the improvement of medical technology. More and more peoplestarted to investigate the factors which can affect the fracture risk andspecified precautions to prevent fractures. Mechanical properties andmorphological features of bones are two most important factors that affectthe fracture risk. However, in vivo mechanical experiments for livingskeleton could not be performed by mechanical test machine. This problemcan be solved by incorporating reverse engineering technology withnon-linear finite element analysis technology. Accordingly, in this studya suite of new measurement of3D proximal femoral morphological parameterswas established and the damage processes of proximal femurs were simulatedwith finite element analysis. Statistical analyses were performed on theproximal femoral morphological parameters and femoral strengths toanalyze the effect of3D morphological parameters on proximal femoralstrengths. In addition, mechanical properties of trabecular bone insidethe femoral heads were investigated by combining micro-CT imagingtechnology with micro-finite element method. The fracture mechanism ofproximal femur was studied at the tissue level. This study was mainlycomposed of three sections:
     In section one, the method of measuring3D proximal femoral morphologicalparameters was established.51healthy elderly males with the age rangeof66-75were measured with this method, and the effects of age on themorphological parameters were analyzed. First,3D proximal femoral models were reconstructed from QCT images using reverse engineering softwareMIMICS. Models were performed a series of translation and rotation tounify the positions in rapid prototype software MAGICS. Coordinates offeature points were obtained from the surface and interior of the models.
     In section two, finite element analyses were performed on14randomlyselected proximal femoral models (7samples from group A and7samplesfrom group B) to predict the proximal femoral strength. Complex bonematerial properties, yield criterion and fracture criterion were compiledin UMAT subroutines. As bone was a kind of inhomogeneous and asymmetricalmaterial in tension and compression, at the beginning of each loadincrement, the corresponding yield criterion and fracture criterion weregiven to each element after judging the damage degree and tension orcompression status. A simple load cap was established to make sure thatthe load could be applied to the surface of femoral head uniformly.5mmvertically downward displacement was exerted on the top of the cap.Results revealed that the predicted damage process of proximal femur wasconsistent with experimental data. The predicted strength of proximalfemur significantly related to the morphological parameters TRH, NSA andTOF (P<0.05). There were no statistical difference in strengths betweengroup A and group B.
     In section three, the strength of cancellous bone inside femoral headsfrom proximal femoral fracture patients were analyzed using micro-CTimaging technology in combination with micro-finite element analysis atthe tissue level, as well as the effects of3D trabecular morphologicalfeatures on the trabecular mechanical properties.7femoral heads fromproximal femoral fracture patients were performed micro-CT scanning toreconstruct the femoral head models. Every femoral head models weredivided into3regions and12sub-regions according to the trabecularorientations. One125mm3trabecular cube was extracted from eachsub-region.6trabecular morphological parameters were measured on each cube including trabecular separation (Tb.Sp), trabecular thickness(Tb.Th), bone volume friction (BV/TV), specific area density (BS/BV),structural model index (SMI) and degree of anisotropy (DA). Twoindependent samples tests were performed on trabecular morphologicalparameters from different regions to analyze regional differences oftrabecular morphological parameters. Finite element analyses wereperformed on each cube along three orthogonal directions, respectively.The apparent Young’s modulus and average von Mises stress were calculatedon each cube along three orthogonal directions. The results showed thatthe mechanical properties along the principal loading direction were muchbetter than the other two non-principal loading directions. There was nosignificant difference between two non-major loading directions. Therewere significant differences in mechanical parameters of cancellous bonealong the principle loading direction between regions. The mechanicalparameters in the lateral region were significantly different from middleregion and medial region.
     This study improved the measurement of proximal femoral morphologicalparameters and proximal femoral damage algorithm. The effects ofmorphological features on bone strength were elaborated at macro and mesolevels, which provided more evidence for clinicians to prevent fractures.
引文
[1] Kanis J A, Oden A, McCloskey E V, et al. A systematic review of hipfracture incidence and probability of fracture worldwide [J].Osteoporosis International,2012,23(9):2239-2256.
    [2] Gullberg B, Johnell O, Kanis J A. World-wide projections for hipfracture [J]. Osteoporosis International,1997,7(5):407-413.
    [3]李绍光.老年髋部骨折后过高死亡风险分析与应用COX-2抑制剂抗炎治疗改善预后的临床观察[D].北京:解放军总医院,2013.
    [4]姜文学. Charnley型人工全款置换术后10年以上随访的X线分析[J].中国矫形外科杂志,2003,11(3-4):155-159.
    [5] Schwartz A V, Kelsey J L, Maggi S, et al. International variationin the incidence of hip fractures: cross-national project onosteoporosis for the world health organization program for researchon aging [J]. Osteoporosis International,1999,9(3):242-253.
    [6] Xu L, Lu A M, Zhao X H, et al. Very low rates of hip fracture in Beijing,People’s Republic of China. The Beijing Osteoporosis Project [J].American Journal of Epidemiology,1996,144(9):901-907.
    [7] Yan L, Zhou B, Prentice A, et al. Epidemiological study of hipfracture in Shenyang, People’s Republic of China [J]. Bone,1999,24(2):151-155.
    [8] Zhang L, Cheng, A G, Bai Z Q, et al. Epidemiology of cervical andtrochanteric fractures of the proximal femur in1994in Tangshan,China [J]. Journal of bone and mineral metabolism,2000,18(2):84-88.
    [9] Xia W B, He S L, Xu L, et al. Rapidly increasing rates of hip fracturein Beijing, China [J]. Journal of bone and mineral research,2012,27(1):125-129.
    [10] Kanis J A. Assessment of fracture risk and its application toscreening for postmenopausal osteoporosis: Synopsis of a WHO Report[J]. Osteoporosis International,1994,4(6):368-381.
    [11] Ulrich D, Rietbergen B V, Laib A, Ruegsegger P. The ability ofthree-dimensional structural indices to reflect mechanical aspectsof trabecular bone [J]. Bone,1999,25(1):55-60.
    [12] Goulet R W, Goldstein S A, Ciarelli M J, et al. The relationshipbetween the structural and orthogonal compressive properties oftrabecular bone [J]. Journal of Biomechanics.1994,27(4):375-389
    [13] Pasco J A, Seeman E, Henry M J, et al. The population burden offractures originates in women with osteopenia, not osteoporosis [J].Osteoporosis International,2006,17(9):1404-1409.
    [14] Ill L J M, Atkinson E J, O’Connor M K, et al. Bone density and fracturerisk in men [J]. Journal of bone and mineral research,1998,13(12):1915-1923.
    [15] Yang L, Burton A C, Bradburn M, et al. Distribution of bone densityin the proximal femur and its association with hip fracture risk inolder men: the osteoporotic fractures in men (MrOS) study [J].Journal of bone and mineral research,2012,27(11):2314-2324.
    [16] Aaron J E, Shore P A, Shore R C, et al. Trabecular architecture inwomen and men of similar bone mass with and without vertebral fracture:II. Three-dimensional histology [J]. Bone,2000,27(2):277-282.
    [17] Bouxsein M L. Mechanisms of osteoporosis therapy: a bone strengthperspective [J]. Clinical Cornerstone,2003, S2: S13-S21.
    [18] Cummings S R, Karpf D B, Harris F, et al. Improvement in spine bonedensity and reduction in risk of vertebral fractures during treatmentwith antiresorptive drugs. The American Journal of Medicine,2002,112(4):281-289.
    [19] Hochberg M C, Greespan S, Wasnich R D, et al. Changes in bone densityand turnover explain the reductions in incidence of nonvertebralfractures that occur during treatment with antiresorptive agents [J].Journal of Clinical Endocrinology&Metabolism,2002,87(4):1586-1592.
    [20] El-Kaissi S, Pasco J A, Henry M J, et al. Femoral neck geometry andhip fracture risk: the Geelong osteoporosis study [J]. OsteoporosisInternational,2005,16(10):1299-1303.
    [21] Faulkner K G, Cummings S R, Black D, et al. Simple measurement offemoral geometry predicts hip fracture: the study of osteoporoticfractures [J]. Journal of bone and mineral research,1993,8(10):1211-1217.
    [22] Seeman E. Pathogenesis of bone fragility in women and men [J]. Lancet,2002,359(9320):1841-1850.
    [23]杨茂有,于远望.解剖生理学[M].北京:中国中医药出版社,2012.
    [24] Ponseti I V. Growth and development of the acetabulum in the normalchild. Anatomical, histological, and roentgenographic studies [J].Journal of bone joint surgery Am,1978,60(5):575-585.
    [25] Ganz R, Parvizi J, Beck M, et al. Femoroacetabular impingement:acause of osteoarthritis of the hip. Clinical orthopaedics,2003,417:112-120.
    [26] Fagerson T L. The hip handbook [M]. Boston, MA: Butterworth-heinemannpress,1998.
    [27] Radin E L. Biomechanics of human hip [J]. Clinical orthop relat res,1980,(152):28-34.
    [28] Nicholas J A, Hershman E B. The lower extremity&spine in sportsmed.2ndedition [M]. SaintLouis, MO: Mosby,1995.
    [29] Ralphs J R, Benjamin M. The joint capsule: structure, composition,ageing and disease [J]. Journal of anatomy,1994,184(Pt3):503-509.
    [30]原林.髋关节的解剖和生物力学[J].中国创伤骨科杂志,2001,2:71-72.
    [31] Dewberry M J, Bohannon R W, Tiberio D, et al. Pelvic and femoralcontributions to bilateral hip flexion by subjects suspended froma bar [J]. Clinical biomechanics,2003,18:494-499.
    [32] Nordin M, Frankel V H. Basic biomechanics of the musculoskeletalsystem3rdedition [M]. Baltimore: Lippincott Williams&Wilkins,2001.
    [33]傅明,廖威明,何爱珊等.髋臼发育不良全髋置换术中髋臼假体选择与安放[J].中山大学学报,2007,28(3S):110-113.
    [34] Sugano N, Noble P C, Kamaric E, et al. The morphology of the femurin developmental dysplasia of the hip [J]. The Bone and Joint Journal,1998,80-B(4):711-719.
    [35] Cummings S R, Black D M, Nevitt M C, et al. Bone density at varioussites for prediction of hip fractures [J]. The Lancet,1993,341(8837):72-75.
    [36] Boonen S, Koutri R, Dequeker J, et al. Measurement of femoral geometryin type I and type II osteoporosis: differences in hip axis lengthconsistent with heterogeneity in the pathogenesis of osteoporoticfractures [J]. Journal of Bone and Mineral Research,1995,10(12):1908-1912.
    [37] Gnudi S, Ripamonti C, Gualtieri G, Malavolta N. Geometry of proximalfemur in the prediction of hip fracture in osteoporotic women [J].The British Journal of radiology,1999,72(860):729-733.
    [38] Faulknet K G, McClung M, Cummings S R. Automated evaluation of thehip axis length for predicting hip fracture [J]. Journal of Bone andMineral Research,1994,9(7):1065-1070.
    [39] Pocock N A, Noakes K A, Majerovic Y, Griffiths M R. Magnificationerror of femoral geometry using fan beam densitometers [J]. CalcifiedTissue International,1997,60(1):8-10.
    [40] Mahaisavariya B, Sitthiseripratip K, Tongdee T, Bohez E L J, et al.Morphological study of the proximal femur: a new method ofgeometrical assessment using3-dimensional reverse engineering [J].Medical Engineering and Physics,2002,24(9):617-622.
    [41] Dong X, Zheng Guoyan. Fully automatic determination of morphologicalparameters of proximal femur from calibrated fluoroscopic imagesthrough particle filtering [J]. Lecture notes in computer science,2006,4142:535-546.
    [42] Schumann S, Tannast M, Nolte L, Zheng G Y. Validation of statisticalshape model based reconstruction of the proximal femur-A morphologystudy [J]. Medical Engineering and Physics,2010,32(6):638-644.
    [43] Cerveri P, Marchente M, Bartels W, et al. Automated method forcomputing the morphological and clinical parameters of the proximalfemur using heuristic modeling techniques [J]. Annals of biomedicalengineering,2010,38(5):1752-1766.
    [44] Rubin P J, Leyvraz P F, Aubaniac J M, et al. The morphology of theproximal femur: A three-dimensional radiographic analysis [J].Journal of Bone and Joint Surgery [Br].1992,74-B(1):28-32.
    [45] Yan K, Engelke K, Kalender W A. A new accurate and precise3-Dsegmentation method for skeletal structures in volumetric CT data[J]. IEEE transactions on medical imaging,2003,22(5):586-599.
    [46] Khoo, B C C, Brown K, Cann C, et al. Comparison of QCT-derived andDXA-derived areal bone mineral density and T scores [J]. OsteoporosisInternational,2009,20(9):1539-1545.
    [47] Prior J C, Vigna Y M, Wark J D, et al. Premenopausalovariectomy-related bone loss: A randomized, double-blind, one-yeartrial of conjugated estrogen or medroxyprogesterone acetate [J].Journal of bone and mineral research,1997,12(11):1851-1863.
    [48] Evans F G, Pedersen H E, Lissner H R. the role of tensile stress inthe mechanism of femoral fractures [J]. The journal of bone and jointsurgery,1951,33(2):485-501.
    [49] Evans F G, Lebow M. Regional differences in some of the physicalproperties of the human femur [J]. Journal of applied physiology,1951,3(9):563-572.
    [50] Evans F G, Lebow M. the strength of human compact bone as revealedby engineering technics [J]. The American journal of surgery,1952,83(3):326-331.
    [51] Evans F G, Lissner H R. Biomechanical studies on the lumber spineand pelvis [J]. The Journal of bone and joint surgery.1959,41(2):278-290.
    [52] Evans F G. Mechanical properties and histology of cortical bone fromyounger and older men [J]. The Anatomical record,1976,185(1):1-11.
    [53] Evans F G, Lebow M. strength of human compact bone under repetitiveloading [J]. Journal of applied physiology,1957,10(1):127-130.
    [54] Evans F G. Relationships between the microscopic structure andtensile strength of human bone [J]. Cells tissues organs,1958,35(4):285-301.
    [55] Evans F G, Bang S. Differences and relationships between the physicalproperties and the microscopic structure of human femoral tibial andfibular cortical bone [J]. American Journal of anatomy.1967,120(1):79-88.
    [56]张瑞萍,吴文周.密质骨损伤机理的实验研究[J].医用生物力学,1996,11(2):83-86.
    [57]李毅中,庄华烽,林金矿等.骨质疏松性股骨颈骨折的皮质骨改变[C].中华医学会第六次全国骨质疏松和骨矿盐疾病学术会议,2011,1:68-69.
    [58] Parsamian G P. Damage mechanics of human cortical bone [D]. Collegeof engineering and mineral resources, West Virginia University,2002.
    [59]吴淑琴.股骨皮质骨生物力学特性研究[J].中北大学学报,2012,33(2):216-220.
    [60]徐秀林,薛文东,戴尅戎.正常人皮质骨压缩力学性能实验研究[J].医用生物力学,1996,11(1):26-29.
    [61] Evans F G, King A L. Regional differences in some physical propertiesof human spongy bone [J]. Biomechanical studies of themusculo-skeletal system.1961:49-61.
    [62] Brown T D, Ferguson A B. Mechanical property distributions in thecancellous bone of the human proximal femur [J]. Acta Orthopaedica.1980,51(1-6):429-437.
    [63] Brown T D, Way M E, Ferguson A B. Mechanical characteristics of bonein femoral capital aseptic necrosis [J]. Clinical Orthopaedics andRelated Research.1981,156:240-247.
    [64] Brown T D, Ferguson A B. the development of a computational stressanalysis of the femoral head. Mapping tensile, compressive and shearstress for the varus and valgus positions [J]. The Journal of boneand joint surgery.1978,60(5):619-629.
    [65] Gibson L J. The mechanical behavior of cancellous bone [J]. Journalof biomechanics.1985,18(5):317-328.
    [66] Silva M J, Gibson L J. Modeling the mechanical behavior of vertebraltrabecular bone: effects of age-related changes in microstructure[J]. Bone.1997,21(2):191-199.
    [67] Goldstein S A. the mechanical properties of trabecular bone:dependence on anatomic location and function [J]. Journal ofbiomechanics,1987,20(11-12):1055-1061.
    [68] Choi K, Kuhn J L, Ciarelli M J, Goldstein S A. The elastic moduliof human subchondral, trabecular, and cortical bone tissue and thesize-denpendency of cortical bone modulus [J]. Journal ofbiomechanics,1990,23(11):1103-1113.
    [69] Kuhn J L, Goldstein S A, Choi R, et al. Comparison of the trabecularand cortical tissue moduli from human iliac crests [J]. Journal oforthopaedic research,1989,7(6):876-884.
    [70] Goldstein S A, Coale E, Weiss A C, et al. Patellar surface strain[J]. Journal of orthopaedic research,1986,4(3):372-377.
    [71]欧阳钧,杨桂通,吴文周等.人体腰椎松质骨的生物力学性质[J].中国生物医学工程学报,1997,16(4):289-293.
    [72]陈国荣.有限单元法原理及应用[M].北京:科学出版社,2009.
    [73] Tumer M S, Martin H C. Stiffness and deflection analysis complexstructure [J].Journal of the aeronautical sciences,2012,1956,23(9):805-823.
    [74]冯康.有限元法讲座[J].力学情报,1977,1:1-9.
    [75] Argyris J H, Dunne P C, Angelopoulos T. Non-linear oscillations usingthe finite element technique [J]. Computer methods in appliedmechanics and engineering,1973,2(2):203-250.
    [76] Zienkiewicz O C, Taylor R L. The finite element method volume2solidmechanics [D]. USA: Butterworth-Heinemann press,2000.
    [77]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,2009.
    [78] Brekelmans W A M, Poort H W, Slooff T. A new method to analyze themechanical behaviour of skeletal parts [J]. Acta orthopaedica,1972,43(5):301-317.
    [79] Rybicki E F, Simonen F A, Weis E B. On the mathematical analysis ofstress in the human femur [J]. Journal of biomechanics,1972,5(2):203-215.
    [80] Bergot C, Bousson V, Meunier A, et al. Hip fracture risk and proximalfemur geometry from DXA scans [J]. Osteoporosis International,2002,13(7):542-550.
    [81] Mourtada F A, Beck T J, Hauser D L, et al. Curved beam model of theproximal femur for estimating stress using dual-energy x-rayabsorptiometry derived structural geometry [J]. Journal oforthopaedic research,1996,14(3):483-492.
    [82] Beck T J, Mourtada F A, Ruff C B, et al. Experimental testing of aDEXA-derived curved beam model of the proximal femur [J]. Journalof orthopaedic research,1998,16(3):394-398.
    [83] Belytschko T, Lu Y Y, Gu L. Element-free galerkin method [J].International journal for numerical methods in engineering,1994,37(2):1994.
    [84] Nalla R K, Kinney J H, Ritchie R O. Mechanistic fracture criteriafor the failure of human cortical bone [J]. Nature materials,2003,2(3):164-168.
    [85] Niebur G L, Feldstein M J, Yuen J C, et al. High-resolution finiteelement models with tissue strength asymmetry accurately predictfailure of trabecular bone [J]. Journal of biomechanics,2000,33(12):1575-1583.
    [86] Pugh J W, Rose R M, Radin E L. A structural models for the mechanicalbehavior of trabecular bone [J]. Journal of biomechanics,1973,6(6):657-670.
    [87] Schileo E F, Taddei F, Cristofolini L, Viceconti M. Subject-specificfinite element models implementing a maximum principal straincriterion are able to estimate failure risk and fracture locationon human femurs tested in vitro [J]. Journal of biomechanics,2008,41(2):356-367.
    [88] Gong H, Zhang M, Fan Y B, et al. Relationships between femoralstrength evaluated by nonlinear finite element analysis and BMD,material distribution and geometric morphology. Annals ofbiomechanical engineering,2012,40(7):1575-1585.
    [89] Crawford R P, Cann C E, Keaveny T M. Finite element models predictin vitro vertebral body compressive strength better thanquantitative computed tomography [J]. Bone,2003,33(4):744-750.
    [90] Cody D D, Gross G J, Hou F J, et al. Femoral strength is betterpredicted by finite element models than QCT and DXA [J]. Journal ofbiomechanics,1999,32(10):1013-1020.
    [91] Cody D D, Hou F J, Divine G W, et al. Femoral structure and stiffnessin patients with femoral neck fracture [J]. Journal of orthopaedicresearch,2000,18(3):443-448.
    [92] Bessho M, Ohnishi I, Matsuyama J, et al. Prediction of strength andstrain of the proximal femur by a CT-based finite element method [J].Journal of biomechanics,2007,40(8):1745-1753.
    [93] Schileo E, Dall’Ara E, Taddei F, et al. An accurate estimation ofbone density improve the accuracy of subject-specific finite elementmodels [J]. Journal of biomechanics,2008,41(11):2483-2491.
    [94] Helgason B, Taddei F, Palsson H, et al. A modified method forassigning material properties to FE models of bones [J]. Medicalengineering and physics,2008,30(4):444-453.
    [95] Grassi L, Schileo E, Taddei F, et al. Accuracy of finite elementpredictions in sideways load configurations for the proximal humanfemur [J]. Journal of biomechanics,2012,45(2):394-399.
    [96] Schneider R, Faust G, Hindenlang U, et al. Inhomogeneous, orthotropicmaterial model for the cortical structure of long bones modeled onthe basis of clinical CT or density data [J]. Computer methods inapplied mechanics and engineering,2009,198(27-29):2167-2174.
    [97] Yang H S, Ma X, Guo T T. Some factors that affect the comparisonbetween isotropic and orthotropic inhomogeneous finite elementmaterial models of femur [J]. Medical engineering and physics,2010,32(6):553-560.
    [98] Koivumaki J E M, Thevenot J, Pulkkinen P, et al. CT-based finiteelement models can be used to estimate experimentally measuredfailure loads in the proximal femur [J]. Bone,2012,50(4):824-829.
    [99] Koivumaki J E M, Thevenot J, Pulkkinen P, et al. Does femoral straindistribution coincide with the occurrence of cervical versustrochanteric hip fractures? An experimental finite element study [J].Medical&biological engineering&computing,2010,48(7):711-717.
    [100] Koivumaki J E M, Thevenot J, Pulkkinen P, et al. Cortical bone finiteelement models in the estimation of experimentally measured failureloads in the proximal femur [J]. Bone,2012,51(4):737-740.
    [101] Hambli R. Apparent damage accumulation in cancellous bone usingneural networks [J]. Journal of mechanical behavior of biomedicalmaterials,2011,4(6):868-878.
    [102] Hambli R, Bettamer A, Allaoui S. Finite element prediction ofproximal femur fracture pattern based on orthotropic behaviour lawcoupled to quasi-brittle damage [J]. Medical Engineering&Physics,2012,34(2):202-210.
    [103] Hambli R. Multiscale prediction of crack density and crack lengthaccumulation in trabecular bone based on neural networks and finiteelement simulation [J]. Numerical methods in biomedicalengineering,2011,27(4):461-475.
    [104] Hambli R. A quasi-brittle continuum damage finite element model ofthe human proximal femur based on element deletion [J]. Medical&biological engineering&computing,2013,51(1-2):219-231.
    [105] Hambli R, Benhamou C L, Jenane R, et al. Combined finite elementmodel of human proximal femur behaviour considering remodeling andfracture [J]. IRBM,2013,34(2):191-195.
    [106] Hambli R, Philipp J T. Finite element prediction with experimentalvalidation of damage distribution in single trabeculae duringthree-point bending tests [J]. Journal of the mechanical behaviorof biomedical materials,2013,27:94-106.
    [107] Hambli R. Micro-CT finite element model and experimental validationof trabecular bone damage and fracture [J]. Bone,2013,56(2):363-374.
    [108] Cong A, Buijs J O, Dragomir-Daescu D. In situ parameteridentification of optimal density-elastic modulus relationships insubject-specific finite element models of the proximal femur [J].Medical Engineering and Physics,2011,33(2):164-173.
    [109] Gong H, Zhang M, Yeung H Y, Qin L. Regional variations inmicrostructural properties of vertebral trabeculae with aging [J].Journal of Bone and Miner Metabolism,2005,23(2):174-180.
    [110] Judex S, Boyd S, Qin Y X, et al. Combining high-resolutionmicro-computed tomography with material composition to define thequality of bone tissue [J]. Current Osteoporosis Report,2003,1(1):11-19.
    [111] Niebur G L, Feldstein M J, Yuen J C, et al. High-resolution finiteelement models with tissue strength asymmetry accurately predictfailure of trabecular bone [J]. Journal of Biomechanics,2000,33(12):1575-1583.
    [112] Verhulp E, Rietbergen B, Huiskes R. Comparison of micro-level andcontinuum-level voxel models of the proximal femur [J]. Journal ofBiomechanics,2006,39(16):2951-2957.
    [113] Baum T, Carballido-Gamio J, Huber M B, et al. Automated3Dtrabecular bone structure analysis of the proximalfemur-prediction of biomechanical strength by CT and DXA [J].Osteoporosis International,2010,21(9):1553-1564.
    [114] Delaere O, Dhem A, Bourgois R. Cancellous bone and mechanicalstrength of the femoral neck [J]. Archives of Orthopaedic and TraumaSurgury,1989,108(2):72-75.
    [115] Lai Y M, Qin L, Yeung H Y, et al. Regional differences in trabecularBMD and micro-architecture of weight-bearing bone under habitualgait loading-a pQCT and microCT study in human cadavers [J]. Bone,2005,37(2):274-282.
    [116] Martens M, Audekercke R V, Delport P, et al. The mechanicalcharacteristics of cancellous bone at the upper femoral region [J].Journal of Biomechanics,1983,16(12):971-983.
    [117] Werner C, Iversen B F, Therkildsen M H. Contribution of thetrabecular component to mechanical strength and bone mineralcontent of the femoral neck. An experimental study on cadaver bones[J]. Scandinavian Journal of Clinical&Laboratory Investigation,1988,48(5):457-460.
    [118] Kalender W A, Felsenberg D, Genant H K, et al. The European phantom-atool for standardization and quality control in spinal bone mineralmeasurements by DXA and QCT [J]. European journal of radiology,1995,20(2):83-92.
    [119] Jergas M, Breitenseher M, Cluer C C, et al. Estimates of volumetricbone density from projectional measurements improve thediscriminatory capability of dual X-ray absorptiometry [J].Journal of bone and mineral research,1995,10(7):1101-1110.
    [120] Krischak G D, Augat P, Wachter N J, et al. Predictive value of bonemineral density and singh index for the in vitro mechanicalproperties of cancellous bone in the femoral head [J]. Clinicalbiomechanics,1999,14(5):346-351.
    [121] Brenneman S K, Barrett-Connor E, Sajjan S, et al. Impact of recentfracture on health-related quality of life in postmenopausal women[J]. Journal of Bone and Mineral Research,2006,21(6):809-816.
    [122] Gong H, Zhang M, Qin L, Hou Y J. Regional variations in the apparentand tissue-level mechanical parameters of vertebral trabecularbone with aging using micro-finite element analysis [J]. Annals ofBiomedical Engineering,2007,35(9):1622-1631.
    [123] Nazarian A, Muller J, Zurakowski D, Muller R, Snyder B D,Densitometric, morphometric and mechanical distributions in thehuman proximal femur [J]. Journal of Biomechanics,2007,40(11):2573-2579.
    [124] Singh M, Nagrath A R, Maini P S. Changes in trabecular pattern ofthe upper end of the femur as an index of osteoporosis [J]. Journalof Bone&Joint Surgery (Am),1970,52(3):457-467.
    [125] Ulrich D, Rietbergen B, Laib A, Ruegsegger P. The ability ofthree-dimensional structural indices to reflect mechanical aspectsof trabecular bone. Bone,1999,25(1):55-60.
    [126] Jiang Y B, Zhao J, Liao E Y, et al. Application of micro-CTassessment of3-D bone microstructure in preclinical and clinicalstudies [J]. Journal of bone and mineral research,2005,23(1):121-131.
    [127] Kuhn J L, Goldstein S A, Feldkamp L A, et al. Evaluation of amicrocomputed tomography system to study trabecular bone structure[J]. Journal of orthopaedic research,1990,8(6):833-842.
    [128] Bourne B C, Meulen M C. Finite element models predict cancellousapparent modulus when tissue modulus is scaled from specimenCT-attenuation [J]. Journal of Biomechanics,2004,37(5):613-621.
    [129] Harrison N M, McDonnell P F, O’Mahoney D C, et al. Heterogeneouslinear elastic trabecular bone modeling using micro-CT attenuationdata and experimentally measured heterogeneous tissue properties[J]. Journal of Biomechanics,2008,41(11):2589-2596.
    [130] Jaasma M J, Bayraktar H H, Niebur G L, Keaveny T M. Biomechanicaleffects of intraspecimen variations in tissue modulus fortrabecular bone [J]. Journal of Biomechanics,2002,35(2):237-246.
    [131] Linden J C, Birkenhager-Frenkel D H, Verhaar J A, Weinans H.Trabecular bone’s mechanical properties are affected by itsnon-uniform mineral distribution [J]. Journal of Biomechanics,2001,34(12):1573-1580.
    [132] Feldkamp L A, Goldstein S A, Parfitt A M, et al. The directexamination of three-dimensional bone architecture in vitro bycomputed tomography [J]. Journal of bone and mineral research,1989,4(1):3-11.
    [133] Engelke K, Song S M, Gluer C C, et al. A digital model of trabecularbone [J]. Journal of bone&mineral research,1996,11(4):480-489.
    [134] Ruegsegger P, Koller B, Muller R. A microtomographic system for thenondestructive evaluation of bone architecture [J]. Califfiedtissue international,1996,58(1):24-29.
    [135] Miao D, He B, Jiang Y, et al. Osteoblast-derived PTHrP is a potentendogenous bone anabolic agent that modifies the therapeuticefficacy of administered PTH1-34[J]. Journal of clinicalinvestigation,2005,115(9):2402-2411.
    [136] Takeshita S, Namba N, Zhao J J, et al. SHIP-deficient mice areseverely osteoporotic due to increased numbers of hyper-resorptiveosteoclasts [J]. Nat Med,2002,8(9):943-949.
    [137] Bergo M O, Gavino B, Ross J, et al. Zmpste24deficiency in micecauses spontaneous bone fractures, muscle weakness, and a prelaminA processing defect [J]. Proceedings of National Academy of ScienceUSA,2002,99(20):13049-13054.
    [138] Lane Ne, Balooch M, Zhao J E A. Glucocorticoids induce changesaround the osteocyte lacunae that reduces bone strength and bonemineral content independent of apoptosis [J]. Journal of bone&mineral research,2004,19(suppl):434-435.
    [139] Jiang Y, Zhang J J, Mangadu R E A. Assessment of3D cortical andtrabecular bone microstructure and erosion on micro CT images ofa murine model of arthritis [J]. Journal of bone&mineral research,2004,19(suppl): S474.
    [140] Cui W Q, Won Y Y, Baek M H, et al. Age-and region-dependent changesin three-dimensional microstructural properties of proximalfemoral trabeculae [J]. Osteoporosis International,2008,19(11):1579-1587.
    [141] Djuric M, Djonic D, Milovanovic P, et al. Region-specificsex-dependent pattern of age-related changes of proximal femoralcancellous bone and its implications on differential bone fragility[J]. Calcified Tissue International,2010,86(3):192-201.
    [142] Ascenzi M G, Hetzer N, Lomovtsev A, et al. Variation of trabeculararchitecture in proximal femur of postmenopausal women [J]. Journalof Biomechanics,2011,44(2):248-256.
    [143] Wu Z H, Laneve A J, Niebur G L. In vivo microdamage is an indicatorof susceptibility to initiation and propagation of microdamage inhuman femoral trabecular bone [J]. Bone,2013,55(1):208-215.
    [144] Vale A C, Pereira M F C, Mauricio A, et al. Micro-computed tomographyand compressive characterization of trabecular bone [J]. Colloidsand surfaces A: Physicochemical and engineering aspects,2013,438:199-205.
    [145] Hilderband T, Liab A, Muller R, et al. Direct three-dimensionalmorphometric analysis of human cancellous bone: microstructuraldata from spine, femur, iliac crest, and calcaneus [J]. Journal ofBone and Mineral Research,1999,14(7):1167-1174.
    [146] Li B, Aspden R M. Composition and mechanical properties ofcancellous bone from the femoral head of patients with osteoporosisor osteoarthritis [J]. Journal of Bone and Mineral Research,1997,12(4):641-651.
    [147] Ohman C, Baleani M, Perilli E, et al. Mechanical testing ofcancellous bone from the femoral head: experimental errors due tooff-axis measurement [J]. Journal of Biomechanics,2007,40(11):2426-2433.
    [148] Tanck E, Bakker A D, Kregting S, et al. Predictive value of femoralhead heterogeneity for fracture risk [J]. Bone,2009,44(4):590-595.
    [149] Mori S, Harruff R, Ambrosius W, Burr D B. Trabecular bone volumeand microdamage accumulation in the femoral heads of women with andwithout femoral neck fractures [J]. Bone,1997,21(6):521-526.
    [150] Stauter M, Rapillard L, Lenthe G H V, et al. Importance of individualrods and plates in the assessment of bone quality and theircontribution to bone stiffness [J]. Journal of Bone and MineralResearch,2006,21(4):586-595.
    [151] Skedros J G, Baucom S L. Mathematical analysis of trabecular‘trajectories’ in apparent trajectorial structures: theunfortunate historical emphasis in the human proximal femur [J].Journal of theoretical biology,2007,244(1):15-45.
    [152] Liu X S, Sajda P, Saha P K, et al. Complete volumetric decompositionof individual trabecular plates and rods and its morphologicalcorrelations with anisotropic elastic moduli in human trabecularbone [J]. Journal of Bone and Mineral Research,2008,23(2):223-235.
    [153] Brown S J, Pollintine P, Powell D E, et al. Regional differencesin mechanical and material properties of femoral head cancellousbone in health and osteoarthritis [J]. Calcified TissueInternational,2002,71(3):227-234.
    [154] Keyak J H. Improved prediction of proximal femoral fracture loadingusing nonlinear finite element models [J]. Medical Engineering andPhysics,2001,23(3):165-173.
    [155] Bayraktar H H, Morgan E F, Niebur G L, et al. Comparison of elasticand yield properties of human femoral trabecular and cortical bonetissue [J]. Journal of Biomechanics,2004,37(1):27-35.
    [156] Currey J D. Bones: structure and mechanics [M]. PrincetonUniversity Press, Princeton,2002.
    [157] Cowin S C. Bone mechanics handbook [M]. CRC Press, Boca Raton.2001.
    [158] Kaneko T S, Pejcic M R, Tehranzadeh J, Keyak J H. Relationshipsbetween material properties and CT scan data of cortical bone withand without metastatic lesions [J]. Medical Engineering and Physics,25(6):445-454.
    [159] Kotha S P, Guzelsu N. Tensile damage and its effects on corticalbone [J]. Journal of biomechanics,36(11):1683-1689.
    [160] Keaveny T M, Wachtel E F, Kopperdahl D L. Mechanical behavior ofhuman trabecular bone after overloading [J]. Journal of orthopadicResearch,1999,17(3):346-353.
    [161] Parsamian G P. Damage mechanics of human cortical bone [D]. Collegeof Engineering and Mineral Resources, West Virginia University,2002.
    [162] Wolfram U, Wilke H J, Zysset P K. Damage accumulation in vertebraltrabecular bone depends on loading mode and direction [J]. Journalof Biomechaics,2011,44(6):1164-1169.
    [163] Keyak J H, Falkinstein Y. Comparison of in situ and in vitro CTscan-based finite element model predictions of proximal femoralfracture load [J]. Medical Engineering and Physics,2003,25(9):781-787.
    [164] Fondrk M T, Bahniuk E H, Davy D T, Michaels C. Some viscoplasticcharacteristics of bovine and human cortical bone [J]. Journal ofbiomechanics,1988,21(8):623-630
    [165] Fondrk M T, Bahniuk E H, Davy D T. Inelastic strain accumulationin cortical bone during rapid transient tensile loading [J].Journal of biomech Eng,1999,121(6):616-621.
    [166] Chaboche J L. Continuous damage mechanics-A tool to describephenomena before crack initiation [J]. Nuclear Engineering andDesign,1981,64(2):233-247.
    [167] Lemaitre J. A continuous damage mechanics model for ductilefracture [J]. Journal of Engineering Materials and Technology,1985,107(1):83-89.
    [168] Hambli R, Allaoui S. A robust3D finite element simulation of humanproximal femur progressive fracture under stance load withexperimental validation [J]. Annals of biomedical engineering,2013,41(12):2515-2527.
    [169] Keyak J H, Rossi S A, Jones K A, Skinner H B. Prediction of femoralfracture load using automated finite modeling [J]. Journal ofbiomechanics,1997,31(2):125-133.
    [170] Morgan E F, Bayraktar H H, Keaveny T M. Trabecular bonemodulus-density relationships depend on anatomic site [J]. Journalof biomechanics,2003,36(7):897-904.
    [171] Snyder S M, Schneider E. Estimation of mechanical properties ofcortical bone by computed tomography [J]. Journal of orthopedicresearch,1991,9(3):422-431.
    [172] Homminga J, McCreadie B R, et al. Cancellous bone mechanicalproperties from normal and patients with hip fractures differ onthe structural level, not on the bone hard tissue level [J]. Bone,2002,30(5):759-764.
    [173] Lochmuller E M, Matsuura M, et al. Site-specific deterioration oftrabecular bone architecture in men and women with advancing age[J]. Journal of bone and mineral research,2008,23(12):1964-1973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700