用户名: 密码: 验证码:
高瓦斯煤层锚固特性及瓦斯对巷道支护效果影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以晋煤集团寺河矿高瓦斯煤层为工程背景,采用现场调查与测试、实验室试验、理论分析、数值模拟相结合的研究方法开展研究。主要研究内容包括:含瓦斯煤在卸围压条件下的瓦斯渗流及煤岩变形破坏规律试验,高瓦斯煤层锚固性能、巷道围岩变形破坏规律,以及瓦斯渗流与锚杆支护相互作用规律研究。研究主要得出以下结论:(1)不同瓦斯压力对煤体渗透率的影响不同,瓦斯压力越大煤体内的瓦斯渗透率越大;煤体内瓦斯渗透率随着围压的增大而降低;卸围压速度越大,瓦斯解吸速度越快,煤体渗透率越大;(2)不同瓦斯压力对煤体强度影响不同,瓦斯压力越大,煤体强度越低,发生破坏失稳前的时间越短;围压越大,煤体强度越高;卸围压速度越快,煤体发生破坏失稳需要的时间越短;(3)在高瓦斯煤层中,瓦斯压力越大对煤体的破坏作用越明显,瓦斯抽采后煤体的宏观力学性能劣化程度更高,锚固性能越低;(4)瓦斯压力越大,巷道围岩塑性区范围越大;地应力越大,巷道围岩塑性区范围越大;巷道半径越大,围压塑性区范围越大;支护阻力越大,巷道塑性区范围越小;(5)高瓦斯煤层巷道围岩开挖初期是最不稳定的阶段,容易发生煤与瓦斯突出;巷道开挖后,煤体内吸附瓦斯逐渐解吸,吸附瓦斯产生的膨胀应力逐渐降低,煤岩体有效应力逐渐增加,煤层产生收缩变形使锚杆轴力出现一定的损失,锚杆上轴力随着瓦斯压力增大呈线性衰减,需提高锚杆预应力以补偿瓦斯渗流造成的预应力损失;(6)端部锚固和加长锚固锚杆钻孔中容易聚集高浓度的瓦斯,引起瓦斯燃烧等灾害;(7)高预应力锚杆支护能有效改善巷道围岩应力状态,控制巷道围岩变形,降低锚固区煤体孔隙率,控制煤层瓦斯涌出,减少巷道瓦斯涌出量;(8)在高瓦斯煤层进行巷道掘进时,应及时采用高预应力全长锚固支护方式加强巷道支护,控制围岩的初期变形,增加煤体自身承载能力,保证巷道围岩稳定。
This paper, taking the high gas-containing coal seam of Sihe coal mine of Jincheng CoalGroup as the engineering background, carries out research using the research method whichincludes live survey and test, laboratory test, numerical simulation and theoretical analysis.The paper mainly discusses the gas seepage and the coal deformation failure law test ofgas-containing coal when unloading confining pressure of coal seam, the anchorageperformance of high gas-containing coal seam, the roadway surrounding rock failure law andthe interaction law of gas seepage and bolt supporting. It concludes as follows:(1) Gaspressure, crustal stress and the speed of unloading confining pressure have an effect on thecoal permeability. The permeability rises with the increase of gas pressure or speed ofunloading pressure, but it falls with the decrease of confining pressure.(2) Gas pressure,crustal stress and the speed of unloading confining pressure have an effect on the coaldeformation failure. The coal strength falls with the increase of gas pressure or the decrease ofconfining pressure. The time before coal damage reduces with the increase of gas pressure orspeed of unloading pressure.(3) Gas pressure has an effect on the anchorage performance ofcoal. The anchorage performance degrades with the increase of gas pressure. Themacro-mechanical properties of coal will degrade after gas drainage, causing anchorageperformance to degrade.(4) The plastic zone, decreasing with the increase of supportingresistance, augments with the increase of gas pressure, crustal stress or the radius of roadway.(5) The early excavation of high gas-containing coal seam is the most unstable moment,which causing coal and gas outburst easily. After excavation of roadway, the effective stressof coal increases gradually with the decrease of swelling stress due to gas desorption. Theshrinkage of coal reduces the axial stress of rock bolt which presents liner attenuation with theincrease of gas pressure.(6) The end anchorage and the elongation of rock bolt will producehigh concentration gas when the drilling work is done, which may cause disaster (such as gascombustion).(7) High pre-stressed bolt support can effectively improve the stress state andsurrounding rock deformation of roadway, control and reduce the coal porosity of boltingzone, control of coal seam gas emission.(8) The anchorage of full length with high preload is needed to strengthen roadway supporting when driving into the high gas-containing coal seam.Then the desorption speed of gas and the initial deformation of coal can be controlled toensure roadway stable.
引文
[1] Levine J R. Model study of the influence of matrix shrinkage on absolute permeability of coal bedreservoirs[J]. Coal bed methane and coal geology.1996,109:197-212.
    [2] Farhang. Improving Coal Mine Safety by Identfying Factors that Infulence the Sudden Release of Gases inOutburst Prone Zones[D]. Wollgong: University of Wollgong,2005.
    [3] Langmuir. The adsorption of gases on plane surface of glass[J]. Mica and Platenum,Amer.Chem.1918,40:1361-1403.
    [4] Briggs H, Sinha R P. Expansion and contraction of coal caused respectively by the sorption and discharge ofgas[J]. Proceedings of the royal society of.1933,53:48-53.
    [5] Kvalnes, Gaddy. The compressibility isotherms of methane at pressures to1000atmospheres and attemperatures from-70°to200°[J]. Journal of the American Chemical Society.1931,53:394-399.
    [6] Moffat D H, Weale K E. Sorption by coal of methane at high pressures[J]. Fuel.1955,34:449-462.
    [7] Audibert E. Ann. min.[J]. Paris series14.1942,1:71.
    [8] Hargraves A J. Instantaneous outbursts of coal and gas[D]. University of Sydney,1963.
    [9] Gunter J. Investigation of the relationship between coal and the gas contained in it[J]. Revue de l’IndustrieMinerale.1968,47(10):693-708.
    [10] Czaplinski A. Simultaneous testing of kinetics of expansion and sorption in coal of carbon dioxide[J].Archivwum Gornickwa.1971,16:227-231.
    [11] Lama R D, Bodziony J. Management of outburst in underground coal mines[J]. Coal and rock inunderground.1998,35:83-115.
    [12] Ettinger I L. Swelling stress in the gas-coal system as an energy source in the development of gasoutbursts[J]. Soviet mining science.1977,15(5):494-501.
    [13] Reucroft P J, Patel K B. Surface area and swellability of coal[J]. Fuel.1983,62:279-284.
    [14] Gray I. Stress, gas, water and permeability-their interdependence and relation to outbursting[C].Wollongong:1995,331-334.
    [15] Sethuraman A R. Gas and vapour induced coal swelling[J]. American Chemical Society.1987,32:259-264.
    [16] Stefanska C G. Influence of carbon dioxide and methane on changes of sorption, and dilatometric propertiesof bituminous coals[J]. Archiwum Gornictwa.1990,35:105-113.
    [17] Harpalani S. Permeability changes resulting from gas desorption[J]. Quarterly Journal Of EngineeringGeology And Hydrogeology.1989:58-61.
    [18] Milewska-Duda J, Cegarska-Stefanska G, Duda J. A comparison of theoretical and empirical expansion ofcoals in the high-pressure sorption of methane [J]. Fuel.1994,73:971-974.
    [19] Seidle J P, Huitt L G. Experimental measurement of coal matrix shrinkage due to gas desorption andimplications for cleat permeability increases[C]. Beijin:575-582,1995.
    [20] St. George J D, Barakat M A. The change in effective stress associated with shrinkage from gas desorptionin coal[J]. International Journal of Coal Geology.2001,45:105-113.
    [21] Chikatamarala L, Xiaojun C, Bustin R M. Implications of volumetric swelling/shrinkage of coal insequestration of acid gases[C]. Tuscaloosa:2004.
    [22]唐书恒,杨起,汤达祯.二元混合气体等温吸附实验结果与扩展Langmuir方程预测值的比较[J].地质科技情报.2003,22(2):68-69.
    [23]钟玲文,郑玉柱,吴争荣等.煤在温度和压力综合影响下的吸附性能及气含量预测[J].煤炭学报.2002,27(2):581-584.
    [24]张庆玲,崔永君,曹利戈.煤的等温吸附实验中各因素影响分析[J].煤田地质与勘.2004,32(2):16-19.
    [25]崔永君,张庆玲,杨锡禄.不同煤的吸附性能及等量吸附热的变化规律[J].天然气工业.2003,23(4):130-132.
    [26]梁冰,刘建军.煤和瓦斯突出发生过程中的温度作用机理研究[J].中国地质灾害与防治学报.2000,11(1):79-82.
    [27]刘保县.电场对煤瓦斯吸附渗流特性的影响[J].重庆大学自然科学版.2006(2):83-85.
    [28]刘保县,鲜学福,徐龙君,等.交变电场作用下煤吸附甲烷特性的研究[J].煤炭转化.2000(3):36-39.
    [29]何学秋,张力.外加电磁场对瓦斯吸附解吸的影响规律及作用机理的研究[J].煤炭学报.2000(6):614-618.
    [30]何学秋.交变电磁场对煤吸附瓦斯特性的影响[J].煤炭学报.1996,25(1):63-67.
    [31]姜永东,鲜学福,易俊等.声震法促进煤中甲烷气解吸规律的实验及机理[J].煤炭学报.2008,33(6):675-680.
    [32]易俊.声震法提高煤层气抽采率的机理及技术原理研究[D].重庆大学.2007.
    [33]李祥春,聂百胜,何学秋,等.瓦斯吸附对煤体的影响分析[J].煤炭学报,2011,36(2):2035-2038.
    [34]张世杰,李成武,丁翠,等.煤表面分子片段模型与瓦斯吸附分子力学模拟[J].矿业研究与开发.2010(1):88-89.
    [35]张占存,马丕梁.水分对不同煤种瓦斯吸附特性影响的实验研究[J].煤炭学报.2008,33(2):144-147.
    [36]高延法,张庆松.矿山岩体力学[M].徐州:中国矿业大学出版社,2000.
    [37] Czaplinski A, Holda S. Changes in compressive strength of sandstones from the Nowwa Ruda Mine underthe influence of the action of liquids and gases[J]. Archiwum Gornictwa.1985,30:391-399.
    [38] Jackson L J. Outbursts in coal mines[C]. London:1984,25.
    [39] Hiramatsu Y, Saito T, Oda N. Studies on mechanism of gas and coal burst in Japanese coalmine[J].Melbourne:1983,7-10.
    [40] Czaplinski A, Holda. Changes in mechanical properties of coal due to sorption of carbon dioxide vapour[J].Fuel.1982,6:1281-1282.
    [41] Aziz N I, Ming-Li W. The effect of sorbed gas on the strength of coalan experimental study[J].Geotechnical and Geological Engineering.1999,17:387-402.
    [42] Ates Y A. The effect of gas sorption on the strength of coal[J]. Mining Science and Technology.1987,6:291-300.
    [43] Hirt A S. Determination of Unconfined Compressiv strenbth of Coal for Pillar Design[J]. MiningEngineering.1992,8:1037-1041.
    [44] Medhurst E T B. A study of the Mechanical Behavior of coal for Pillar Design[J]. Int.J.Rock.Min.Sci.1998,35(8):1087-1104.
    [45]孟召平,彭苏萍,凌灿标.不同侧压下沉积岩石变形与强度特征[J].煤炭学报.2000,25(1):15-18.
    [46]刘宝琛.岩石抗压强度的尺寸效应[J].岩石力学与工程学报.1998,17(6):611-614.
    [47]魏锦平,张建平,靳钟铭.裂隙煤体压裂机理的分形研究[J].矿山压力与顶板管理.2005(2):112.
    [48]杨永杰.煤岩强度、变形及微震特征的基础试验研究[D].山东科技大学.2006.
    [49]尹光志,蒋长宝,许江.含瓦斯煤热流固耦合渗流实验研究[J].煤炭学报.2011,36(9):1496-1500.
    [50]尹光志,蒋长宝,王维忠,等.不同卸围压速度对含瓦斯煤岩力学和瓦斯渗流特性影响试验研究[J].岩石力学与工程学报.2011,30(1):71-77.
    [51]江许,彭守建,尹光志,等.含瓦斯煤热流固耦合三轴伺服渗流装置的研制及应用[J].岩石力学与工程学报.2010,29(5):907-914.
    [52]尹光志,振王,张东明.有效围压为零条件下瓦斯对煤体力学性质影响的实验[J].重庆大学学报.2010,33(11):129-133.
    [53]李小双,尹光志,赵洪宝.含瓦斯突出煤三轴压缩下力学性质试验研究[J].岩石力学与工程学报.2010,29(1):3350-3358.
    [54] Aziz N, Ming-Li. The effect of absorbed gas on the strength of coal an experimental study[J]. Geotechnicaland geological engineering.1999,17(3):387-402.
    [55] Wang Y, Yang Q. Prediction of outburst hazard of coal and gas [C]. Beijing:1987,347-355.
    [56]赵瑜,李晓红,卢义玉,等.瓦斯压力对非均质煤岩抗压强度尺寸效应的影响[J].煤炭学报.2009,34(8):1081-1085.
    [57]刘延宝.基于细观力学试验的含瓦斯煤体变形破坏规律研究[D].重庆大学.2009.
    [58] Terzaghi. Theoretical Soil Mechaincs[M]. New york;Wiley:1943.
    [59] Biot M A. Theory of elasticity and consolidation for a porous anisotropic solid [J]. Journal of the MineVentilation Society of South Africa.1954(26):182-191.
    [60] Harpalani, Mopherson. The effect of gas evacation on coal permeability tests peciments[J].Int.J.Rock.Meth.Min.Sci&Geomech.Abstr.1975,12(2):151-158.
    [61] J. Liu D E. Linking stress~dependent effective porosity and hydraulic conductivity fields to RMR[J].Int,J.Rock Min Sci.1999,36:581-596.
    [62] Dana F S. Gas relative permeability and pore structure of sandstones[J]. Int.J.Rock Min Sci.1999,36:613-625.
    [63] B B, Panda. Relation between fracture tensor parameters and jointed rock hydraulics[J]. Journal ofEngineering Mechanics.1999,1:53-59.
    [64] Oda M, Takemura T, Aoki T. Damage growth and permeability change in triaxial compression tests ofInada granite[J]. Mechanics of Materials.2002,34(6):313-331.
    [65] Heiland, Raab S J. Experimental investigation of the influence of differential stresspermeability of a lowerpermian(Rotliegend)sandstone deformed in the brittle deformation field[J]. Physics and Chemistry of theEarth,Part A:Solid Earth and Geodesy.2001,26(2):33-38.
    [66] Schulze O, Popp T K. Development of damage and permeability in deforming rock salt[J]. EngineeringGeology.2001,61(2):163-180.
    [67] Shi J Q, Durucan S. Modelling of enhanced methane recovery and CO2sequestration in deep coal seams:the impact of coal matrix shrinkage/Swelling on cleat permeability[C]. Tuscaloosa, Alabama:2003.
    [68] Wallace J A. Coalbed methane production-an operator's perspective, Coalbed methane in Alberta what's itall about[D]. Alberta Canada:1990.
    [69] Jones. Fractured vertical wells versus horizontal boreholes for methane drainage in advance of mining U.S.coals[C]. Wollongong:1982.
    [70] Guney M. Investigation of methane in carboniferous rocks[J]. Journal of the Mine Ventilation Society ofSouth Africa.1975,28(7):101-111.
    [71] Ramani R V, Owili-Eger A. Engineering aspects of coal mine ventilation systems, American ChemicalSociety[J]. Division of Fuel Chemistry.1973,18(3):158-164.
    [72] Somerton. Effect of stress on permeability of coal[J]. Int.J.Rock Meck.Mech.Min.Sci.&Geomech.Abstr.1975,12(2):151-158.
    [73] Hayes P J. Factors affecting gas release from the working seam[C]. University of Wollongong, Wollongong:1982.
    [74] Lingard P S, Phillips H R, Doig I D. The permeability of some Australian coals[C]. University ofWollongong, Wollongong:1982.
    [75]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [76]梁冰,章梦涛,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J].岩石力学与工程学报.1996,15(2):135-142.
    [77]俞启香,王凯,杨胜强.中国采煤工作面瓦斯涌出规律及其控制研究[J].中国矿业大学学报.2000,29(1):9-14.
    [78]靳钟铭,魏锦平,弓培林,等.顶煤压裂损伤参数研究[J].煤炭学报.2001,26(4):356-359.
    [79]靳钟铭,康天合,弓培林,等.煤体裂隙分形与顶煤冒放性的相关研究[J].岩石力学与工程学报.1996,15(2):143-149.
    [80]赵阳升,胡耀青,杨栋,等.三维应力下吸附作用对煤岩体气体渗流规律影响的实验研究[J].岩石力学与工程学报.1999,18(6):651-653.
    [81]赵阳升,段康廉,胡耀青,等.块裂介质岩石流体力学研究新进展[J].辽宁工程技术大学学报.1999,18(5):459-462.
    [82]速宝玉,詹美礼.裂隙渗流与应力耦合特性的实验研究[J].岩土工程学报.1997,33(4):73-77.
    [83]曹树刚,鲜学福.煤岩固—气耦合的流变力学分析[J].中国矿业大学学报.2001,30(4):362-365.
    [84]朱珍德,孙钧.裂隙岩体非稳态渗流场与损伤场耦合分析模型[J].水文地质于工程地质.1999(2):35-41.
    [85] Shiping L, Yushou L, Yi L, et al. Permeability~strain equations corresponding to the complete stress~strainpath of Yinzhuang Sandstone[J]. International Journal of Rock Mechanics&Mining Sciences.1994,34(4):383-391.
    [86]李树刚,钱鸣高,石平五.煤样全应力应变中的渗透系数~应变方程[J].煤田地质与勘探.2001,29(1):22-24.
    [87]李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究[J].岩土工程学报.2001,23(1):68-70.
    [88]李树刚,钱鸣高.综放开采覆岩离层裂隙变化及空隙渗流特性研究[J].岩石力学与工程学报.2000,19(5):604-607.
    [89] Yang T H, Tham L G, Tang C A, et al. Tsui,Y.Influence of heterogeneity of mechanical properties onhydraulic fracturing in permeable rocks[J]. Rock Mechanics and Rock Engineering.2004,37(4):251-275.
    [90]杨天鸿,唐春安,李连崇,等.非均匀岩石破裂过程渗透率演化规律研究[J].岩石力学与工程学报.2004,23(5):758-762.
    [91]杨天鸿,唐春安,朱万成,等.岩石破裂过程渗流与应力耦合分析[J].岩土工程学报.2001,23(4):489-493.
    [92]程远平,俞启香,袁亮,等.煤与远程卸压瓦斯安全高效共采试验研究[J].中国矿业大学学报.2004,33(2):132-136.
    [93]夏红春,程远平,柳继平.远程覆岩卸压变形及其渗透性研究[J].西安科技大学学报.2006,26(1):112-113.
    [94]李玉寿,马占国,贺耀龙,等.煤系地层岩石渗透特性试验研究[J].实验力学.2006,21(2):129-133.
    [95]杨永杰,宋扬,陈绍杰.三轴压缩煤岩强度及变形特征的试验研究[J].煤炭学报.2006,31(2):150-153.
    [96]夏筱红,杨伟峰.采场底板岩石渗透性试验研究[J].矿业安全与环保.2006,33(2):20-22.
    [97]陶云奇,江许,彭守建,等.含瓦斯煤孔隙率和有效应力影响因素试验研究[J].岩土力学.2010,31(11):3417-3422.
    [98]王振.原煤渗透率影响因素的实验研究[J].煤矿安全.2011,42(3):4-6.
    [99]隆清明,赵旭生,孙东玲.吸附作用对煤的渗透率影响规律实验研究[J].煤炭学报.2008,33(9):1031-1034.
    [100]李晓泉,尹光志.含瓦斯煤的有效体积应力与渗透率关系[J].煤炭学报.2011,34(8):103-108.
    [101]蒋长宝,黄滚,黄启翔.含瓦斯煤多级式卸围压变形破坏及渗透率演化规律实验[J].煤炭学报.2011,36(12):2039-2042.
    [102]彭永伟,齐庆新,邓志刚,等.考虑尺度效应的煤样渗透率对围压敏感性试验研究[J].煤炭学报.2008,33(5):509-513.
    [103]李宏艳,齐庆新,梁冰,等.煤岩渗透率演化规律及多尺度效应分析[J].岩石力学与工程学报.2010,29(6):1192-1197.
    [104]王明恕.全长锚固锚杆机理的探讨[J].煤炭学报.1983,8(1):12-15.
    [105]杨更社.软岩巷道锚喷支护施工的实践[J].河北煤炭.1990(3):5-8.
    [106]葛友庭,丁自强.预应力桁架拱渡槽原型试验与分析[J].郑州工学院学报.1985(2):52-58.
    [107]李新平,代翼飞,刘金焕.地下洞室锚固结构的力学特性与锚固机理研究[J].金属矿山.2009(9):11-15.
    [108]张发明,陈祖煜,刘宁.岩体与锚固体间粘结强度的确定[J].岩土力学.2001,22(4):470-473.
    [109]张贵,汪劭祎,庞国栋,等.锚固非连续岩体抗剪特性影响因素的数值模拟研究[J].公路交通科技.2008(2):71-73.
    [110]丁秀丽,盛谦,韩军,等.预应力锚索锚固机理的数值模拟试验研究[J].岩石力学与工程学报.2002,21(7):980-985.
    [111]程东幸,炜潘,刘大安.锚固节理岩体等效力学参数三维离散元模拟[J].岩土力学.2006,27(12):2127-2131.
    [112]顾金才,郑全平,沈俊,等.预应力锚索对均质岩体的加固效应模拟试验研究[J].华北水利水电学院学报.1994(3):22-26.
    [113]廖心北,陈勇,朱明.喷锚支护结构设计及其在成都地区深基坑护壁工程中的应用[J].中国地质灾害与防治学报.1998,9(1):108-114.
    [114]付宏渊,蒋中明,李怀玉,等.锚固岩体力学特性试验研究[J].中南大学学报.2011,42(7):2095-2101.
    [115]郭颂.水平应力对采准巷道围岩稳定性的新认识[J].煤矿开采.1998(4):14-16.
    [116]康红普,王金华.煤巷锚杆支护理论与成套技术[M].煤炭工业出版社.2007(11).
    [117]康红普,姜铁明,高富强.预应力在锚杆支护中的作用[J].煤炭学报.2007,32(7):680-685.
    [118]康红普,王金华,林健.煤矿巷道锚杆支护应用实例分析[J].岩石力学与工程学报.2010,29(4):649-664.
    [119]康红普,林健,吴拥政.全断面高预应力强力锚索支护技术及其在动压巷道中的应用[J].煤炭学报.2009,22(9):1153-1159.
    [120]康红普,林健,杨景贺,等.松软破碎硐室群围岩应力分布及综合加固技术[J].岩土工程学报.2011,33(5):808-814.
    [121]康红普,林健,张冰川.小孔径预应力锚索加固困难巷道的研究与实践[J].岩石力学与工程学报.2003,22(3):387-390.
    [122]康红普,牛多龙,张镇,等.深部沿空留巷围岩变形特征与支护技术[J].岩石力学与工程学报.2010,29(10):1977-1987.
    [123]康红普,王金华,林健.高预应力强力支护系统及其在深部巷道中的应用[J].煤炭学报.2007,32(12):1233-1238.
    [124] Cevine M. Comparison of Ground Conditions and Ground Control Practices in the United States andAustralia[D]. West Virginia University:1998.
    [125] Bigby D N. Development in British Rock Bolting Technology[J]. Coal International, RockboltingTechnology.1997(5):111-114.
    [126] Bigby D. Coal Mine Roadway Support System Handbook[C].2004.
    [127] Gale W J. Geology Roof Control and Mine Design[J]. Coal Age.2001,12:29-31.
    [128] Peng S. Coal Mine Ground Control[J]. John Wiley&Sons.1984:131-173.
    [129] Gale W J, Fabjanczyk M W, Terrant G C. Optimization of Reinforcement Design of Coal MineRoadways[J]. Proceeding of11th Conference on Ground Control in Mining,Wollonong,Australia.1992:212-219.
    [130] Cevine M. Design of Roof Bolt System[J]. NIOSH Proceedings: New technology for Coal Mine RoofSupport, Information Circular.2000,111-131.
    [131]王金华.我国煤巷机械化掘进机现状及锚杆支护技术[J].煤炭科学技术.2004,32(1):6-10.
    [132]王金华,赵森林.邢台矿综放面全煤巷道组合锚杆支护技术[J].煤炭科学技术.1999,27(1):14-17.
    [133]赵森林,黄献平.邢台矿务局巷道支护改革[J].中国煤炭,1997,25(5):19-22.
    [134]胡学军,范世民.煤巷锚杆支护成套技术在潞安矿区的应用[J].煤炭科学技术.2003,31(6):33-35.
    [135]朱晓明,姜铁明,赵军.晋城矿区煤巷锚杆支护的实践[J].煤炭工程.2003(2):4-6.
    [136]郝海金.晋城矿区煤巷锚杆支护技术试验研究的现状及发展方向[J].煤矿开采.2003,8(4):46-48.
    [137]秦斌青.西山矿区煤巷锚杆支护技术的应用[J].煤炭科学技术.2000,28(6):4-5.
    [138]鞠文君.冲击矿压巷道锚杆支护原理分析[J].煤矿开采,2009,14(3):59-61.
    [139]刘东才.铁法局锚杆支护力学研究与实践[D].辽宁工程技术大学.2001.
    [140]王怀新.高强锚杆支护材料在深井的开发应用[J].矿山压力与顶板管理.2002,19(1):30-31.
    [141]魏东.松软煤层锚杆支护技术研究与应用[J].矿山压力与顶板管理.2003,20(1):56-58.
    [142]万志军,李学华,刘长友,等.深井复杂条件下回采巷道高强度锚杆支护技术[J].煤炭科学技术.2004,32(6):15-17.
    [143]武华太.高瓦斯突出煤层巷道锚杆支护作用研究及应用[D].煤炭科学研究总院.2010.
    [144] Tian Q H,Xu Z W,Zhou G Q,et al. Coefficients of earth pressureat rest in thick and deep soils[J]. MiningScience and Technology,2009,19(2):252–255.
    [145] Zhou X P,Qian Q H,Zhang Y X. The constitutive relation ofcrack-weakened rock masses underaxial-dimensional unloading[J].Acta Mechanica Solida Sinica,2008,21(3):221–231.
    [146] Sun J S,Zhu Q H,LU W B. Numerical simulation of rock burst incircular tunnels under unloadingconditions[J]. Journal of ChinaUniversity of Mining and Technology,2007,17(4):552–556.
    [147] Wang D Y,Ma W,Chang X X. Analyses of behavior ofstress-strain of frozen Lanzhou loess subjected toK0consolidation[J].Cold Regions Science and Technology,2004,40(1):19–29.
    [148]苏承东,翟新献,李永明,等.煤样三轴压缩下变形和强度分析[J].岩石力学与工程学报,2006,25(增1):2963–2968.
    [149]黄启翔,尹光志,姜永东.地应力场中煤岩卸围压过程力学特性试验研究及瓦斯渗透特性分析[J].岩石力学与工程学报,2010,29(8):1639-1646.
    [150]蒋长宝,尹光志,黄启翔,等.含瓦斯煤岩卸围压变形特征及瓦斯渗流试验[J].煤炭学报.2011,36(5):802-807.
    [151]赵洪宝,王家臣.卸围压时含瓦斯煤力学性质演化规律试验研究[J].岩土力学.2011,32(S1):270-274.
    [152] Bieniawski A T, Denkhaus H G,VoglerU W. Failure of fracture rock[J]. Int. J. Rock Mech. Min. Sci.1969,6:323-334.
    [153]兰永伟.钻孔卸压防治煤矿冲击地压的研究[D].辽宁工程技术大学,2005.
    [154]吴世跃,赵文.含吸附煤层气煤的有效应力分析[J].岩石力学与工程学报.2005,24(10):1674-1678.
    [155]吴拥政,何杰,高来举.全长预应力结构防止钻孔瓦斯积聚技术研究[J].煤矿开采.2011,16(3):128-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700