用户名: 密码: 验证码:
多层混凝土砌块结构性态抗震研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土小型空心砌块具有节土、节能、环保、自重轻等优势,已经成为替代实心粘土砖的首选墙体材料,在我国具有极其广阔的应用前景。随着抗震设计理论的不断发展,性态抗震设计思想不仅考虑保障人身安全,还考虑控制建筑破坏所造成的经济损失,当前已成为地震工程研究的热点之一。鉴于国内有关性态抗震研究很少涉及混凝土砌块结构,本文以我国目前量大、面广的多层芯柱-构造柱砌块结构为对象,进行性态抗震研究,以便为其性态抗震设计提供参考依据。
    本文由两大部分所组成:第一部分主要是关于结构性态抗震设计和混凝土砌块结构抗震性能的一些基础性研究。其中,第一章着重介绍了国内外关于结构性态抗震设计和混凝土砌块结构的抗震研究和应用状况。第二章,基于我国现有的大量混凝土砌块墙片试验资料的整理、总结和深入分析,提出了混凝土空心砌块墙片抗震剪切承载力的通用计算公式;给出了各类砌块墙体的开裂和极限剪切角与延性比;依据墙体的宏观破坏程度划分为五个破坏等级,建立了与破坏等级相对应的四折线恢复力特性简化模型,并给出了各特征点的参数值。第三章,根据混凝土砌块结构模型振动台试验破坏特征的分析,并参考有关结构性态水准划分标准,将混凝土砌块结构划分为五个性态水准,给出了各级性态水准下结构破坏程度的具体描述,以及用层间位移角表示各级性态水准的定量指标。论文的第四章和第五章是关于实现结构性态设计的一个基本方法——静力非线性分析的两个基本环节:Pushover 分析和目标位移的确定。第四章介绍了Pushover 分析的基本原理、方法等,着重讨论了该方法中的侧力分布这一关键环节,并根据试验数据拟合了一种多项式侧力分布模式。第五章对现有单自由度体系最大非弹性位移的各种近似估计方法进行了比较全面的分析和对比,发现现有的几种方法都可以表示成位移修正系数的形式。对比分析表明,这几种方法当周期大于1 秒时所给出的最大非弹性位移都非常接近于时程分析结果;当周期小于1 秒时这些方法都具有相当的误差。
    第二部分主要是依据第一部分建立(提出)的一些原则方法、基本关系和参数进行了算例计算与分析。第六章通过一个七层混凝土砌块住宅模型振动台试验与非线性动力时程分析结果的对比,验证了动力分析中所用的结构计算模型、恢复力模型和参数以及自编计算程序是可行的。在此基础上又分别以六、七和八
A study on the seismic performance of multistory small hollow concrete block (CB) buildings with core-and tie-columns which are widely used in China is presented in the thesis.
    In the thesis two major parts are included. In the first part several fundamental aspects concerning the performance-based design of structures and confined CB buildings are described. Chapter 1 gives an overview of the performance-based design and the seismic investigations and application of the CB buildings at home and abroad. Based on the analysis of data collected from the experimental studies performed in China a general expression for estimating the shear strength of hollow CB walls is suggested in chapter 2. Values of shift angle at cracking and ultimate stages and the ductility for different kind of CB walls are provided; the CB walls are classified into five categories according to their damage level. A four-linear skeleton curve corresponding to the damage category is developed. Meanwhile, the values of each characteristic point on the skeleton curve are also suggested. In Chapter 4 based on the damage feature observed from the shacking table tests of CB building models,with reference to the general standard of classification relevant to performance level of structures, a five-performance level classification for CB structures is established, and correspondingly a description of damage and the damage index in terms of interstory drift are given. Chapters 4 and 5 are devoted to the pushover analysis and the estimation of the target displacement, which represent the two basic components of the nonlinear static analysis (NSA) in implementing the structural performed-based design. Chapter 4 introduces fundamentals and methodologies of the pushover analysis focusing on lateral load pattern. A polynomial distribution is formulated from the curve-fitting of the test data collected. The approaches for approximate estimating the maximum nonlinear displacement of SDOF system proposed by different researchers are discussed and compared. It is found they all can be expressed in the form of the displacement modification factor. Numerical comparison shows all approaches yield results with minor difference and approximating to those obtained from the nonlinear time history analysis (NTHA) for elastic period over 1sec, while relatively large errors
    for the period within 1sec. In the second part principals,methods, basic relationship and parameters developed/provided in the first part are applied to numerical examples. A comparison of results of shacking table tests and the NTHA of a seven-story CB residential building model the availability of the analysis model, hysteretic model and relevant parameters adopted, and the computation program developed are verified in Chapter 6. Furthermore, NTHA for three typical CB buildings, one six-, one seven-and one eight-story, were conducted. Factors considered in the analyses include: site condition, peck acceleration level and direction of the input ground motions. The results of these analyses provide basis for comparison for the next chapter. From the NTHA it is shown that for the six-story building considered the aseismic requirement for the transversal direction can be basically satisfied, while that for the longitudinal direction under earthquake that occurs rarely can not be satisfied in most cases. For seven-and eight-story CB buildings the requirement of the seismic fortification intensity VII can be met. It seems an appropriate increase in the maximum story number and the maximum total height of CB buildings with core-and tie-columns is permissible. Chapter 7 illustrates the NSA for the same three typical CB buildings as used in the above chapter. In the analyses three lateral load patterns were adopted, and the results by using NSA is compared with those by NTHA. It is shown that: (1) The capacity curves obtained from NSA consist of three linear segments with two remarkable turning points, which represent the slight and the moderate damage characteristic points, respectively. (2) The capacity curve obtained from the inverse triangular pattern is in general more close to that of the NTHA than other two patterns. (3) The target displacement obtained from the pushover analysis by using the inverse triangular pattern combining with the improved capacity spectra method is relatively close to that from NTHA in most cases for site conditions I, II and III categories with error less than 25%;and higher error for site condition IV. (3) Due to the inherent approximation the NSA underestimates both the maximum interstory drift and the maximum inert-story shear forces. Therefore, it could overestimate the seismic reliability of structures. Finally, seismic deformation evaluation for two CB buildings is illustrated in Chapter 8. The methods used in the evaluation include: the NTHA, NSA and the
    methods specified in the China《Code for seismic design of buildings》(GB50011-2001) and the 《General rule for performance-based design of buildings》(CECS 160:2004). The results indicate that there are some differences in the aseismic performance levels predicted by different methods. Moreover, it is found the requirement for a structure, which is satisfied under minor and fortification earthquake, could not be met under major earthquake event. It is also shown that through details of seismic design made according to the《Code for seismic design of buildings》requirement for masonry buildings no collapse occurring under major earthquake could not be ensured. Therefore to evaluate deformation of CB buildings under major earthquake is necessary. Finally, the limitations both of the《Code for seismic design of buildings》and the《General rule for performance-based design of buildings》in estimating the aseismic performance were identified.
引文
1. 八度区混凝土空心砌块抗震性能研究成果鉴定资料集[S].1988.
    2. 北方交通大学铁道建筑系.结构矩阵分析[M].中国建筑工业出版社.1974.
    3. 陈玲俐,朱伯龙,施卫星.混凝士空心小砌块结构弹塑性地震反应实用分析方法[J].建筑结构,2000,30(8):8—10.
    4. 陈勤,钱稼茹,李耕勤.剪力墙受力性能的宏模型静力弹塑性分析[J].土木工程学报,2004,37(3):35—43.
    5. 程斌,薛伟辰.基于性能的框架结构抗震设计研究[J].地震工程与工程振动,2003,23(4):50 一55.
    6. 程耿东、李刚.《基于功能的结构抗震设计的一些问题探讨》[J].建筑结构学报,2000,2l(1):5 一11.
    7. 丁大钧.墙体改革与可持续发展[J].建筑结构,2004,34(3):56—62.
    8. 董宏英,曹万林,霍达等.钢筋混凝土带暗支撑低矮剪力墙非线性有限元分析[J].地震工程与工程振动,2002,22(5):66—70.
    9. 冯建国.配筋砌体抗剪强度[A].中国抗震防灾论文集(下)[C].1986:137一144.
    10.冯建平等.设置芯柱墙体的变形[R].八度区混凝十空心小砌块建筑抗震性能研究成果鉴定资料集.1986.8
    11.高小旺,龚思礼,苏经宇,易方民.建筑抗震设计规范理解与应用[M].北京:中国建筑工业出版社,2002.
    12.高政国,邬瑞锋.基于不同破坏准则的组合墙房屋抗震可靠性分析[J].建筑结构,2000,30(10),:50—53 北京:
    13.郝红伟,施光凯.0rigin6.O 实例教程[M].北京:中国电力出版社,2000.
    14.何政.钢筋混凝土结构非线性分析及地震损伤性能设计与控制[D].哈尔滨工业大学博士论文,2000.
    15.候钢岭.结构可靠指标矢量、概率PUSHOVER 分析与体系可靠度[D].哈尔滨工业火学博士论文,2001.
    16.侯爽,欧进萍.结构Pushover 分析的侧向力分布及高阶振型影响[J].地震工程与工程振动,2004,24(3):89—97.
    17.胡聿贤.地震工程学[M].北京:地震出版社,1988.
    18.黄维平,邬瑞锋.周期反复荷载作用下组合墙结构的抗震性能研究[J].建筑结构,2000,30(8):20 -23.
    19.混凝土砌块组合墙研究组.粉煤灰混凝士空心砌块组合墙与其它砌体组合墙的抗侧承载力试验研究报告[R].2000.
    20.混凝土砌块组合墙研究组.粉煤灰混凝土空心砌块组合墙抗侧承载力试验研究报告[R].2000.
    21.金伟良,徐铨彪,潘金龙等.不同构造措施混凝土空心小型砌块墙体的抗侧力性能试验研究[J].建筑结构学报,2001,22(6):64—72.
    22.金伟良,潘金龙,徐铨彪等.不同构造措施混凝土小型空心砌块单片墙力学性能分析[J].建筑结构.2003,33(7):70—72.
    23.李力群,刘伟庆.约束混凝土小型空心砌块砌体抗震性能试验研究[J].南京建筑工程学院学报,2001,2:19—26.
    24.李力群,刘庆伟.设置构造柱的混凝土小型空心砌块砌体抗震性能研究[J].工程抗震,2001,2l(4):16—20.
    25.李陵,叶燎原. push—over 分析法及其与非线性动力分析法的对比[J].世界地震工程,1999,15(2):34—39.
    26.李晓安,唐岱新.带边框火山渣混凝土砌块墙体抗震性能试验研究[J].哈尔滨建筑工程学院学报,1993,26(1):63—73.
    27.李岳生,黄友谦.数值逼近[M].北京:人民教育出版社,1978.
    28.李振威,刘伟庆,蓝宗建等.设置芯柱的混凝十小型空心砌块墙体抗震性能研究[J].工程抗震,1999,2:8—11.
    29.辽宁省地方标准.L 型混凝土小型空心砌块组合墙结构设计规程.2002
    30.刘军进,张晋,吕志涛.静力弹塑性分析(Push—over)方法在模拟伪静力试验方面的应用[J].建筑结构,2002,32(8):63—65.
    31.刘彤程,周炳章.空心混凝土小砌块构造柱、芯柱组合砌体试验研究[A].混凝土小砌块结构规程讨论文集[C].成都,2002.10:213—236.
    32.刘先明,陈忠范,刘宏欣等.粉煤灰砌块剪力墙抗震性能的试验研究[J].工程抗震,200l,3:9 一15
    33.刘永仁.结构分析中的程序设计[M].上海:同济大学出版社,1992.
    34.吕西林,朱伯龙.五层砌块模型房屋的振动台试验研究[J].同济大学学报,1986,14(1): 13—26.
    35.马玉宏.基于性态的抗震设防标准研究[D].中国地震局工程力学研究所博士论文,2000.
    36.苗启松,何西岭,周炳章等.小型混凝l 十空心砌块九层模型房屋抗震性能试验研究[J].建筑结构学报,2000,21(4):13—21.
    37.钱稼茹,罗文斌.静力弹塑性分析一基于性能/位移抗震设计的分析工具[J].建筑结构,2000,30(6):23—26.
    38.钱稼茹,罗文斌.建筑结构基于位移的抗震设计[J].建筑结构,2001,31(4): 3—6
    39.钱义良,吴明舜.18 层混凝土小型砌块配筋砌体房屋的静力和抗震试验研究[c]。西班牙配筋砌体研讨会论文集[A],2000.
    40.邱战洪,赵成文,薛克峰等.配筋混凝土小砌块简力墙的延性和动力特性[J].沈阳建筑工程学院学报,2001,17(3):176—179.
    41.屈成忠.中高层砌块砌体结构性态参数及性态设计研究[D].中国地震局工程力学研究所博士学位论文,2003.
    42.曲牧,宫照坤,张永洲.承重双排孔混凝士空心砌块组合墙体抗侧承载力试验研究报告[R].1999.
    43.曲牧,张永洲,宫照坤.约束砌块砌体结构抗侧力性能试验研究报告[R].1998.
    44.全成华.配筋砌块砌体剪力墙抗剪静动力性能研究[D].哈尔滨工业大学博士论 文,2002.
    45.R.W.克拉夫, J.彭津.结构动力学[M].王光远等译.北京:科学出版社1981.
    46.沈蒲生.结构分析的计算机方法[M].长沙:湖南科学技术出版社,1994.
    47.沈全锋.高层组合墙体结构可靠性研究[D].大连理工大学博士论文,1997.
    48.施楚贤,谢小军.混凝士小型空心砌块砌体受力特性[J].建筑结构,1999,29(3):10 一12.
    49.施楚贤,杨伟军.配筋砌块砌体剪力墙的受剪承载力及可靠度分析[J].建筑结构,2001,31(3):41-44.
    50.施楚贤.我国砌体结构设计规范的发展[J].建筑结构,第34 卷2 期,2004年2 月:7l 一72.
    51.施卫星,徐磊.七层混凝土小型空心砌块房屋振动抬试验研究[J].工程抗震,1999,3:22—25.
    52.孙景江.钢筋混凝土结构非线性地震反应分析和试验的若干研究[D].中国地震局工程力学研究所博士论文,2001.
    53.T.鲍雷,M.J.N 普里斯特利.钢筋混凝十和砌体结构的抗震改计[M].北京:中国建筑工业出版社,1999.
    54.唐岱新,龚绍熙,周炳章.砌体结构设计规范理解与应用[M].北京:中国建筑工业出版社,2002.
    55.田玉滨.配筋砌块砌体剪力墙砌块连梁的抗震性能研究[D].哈尔滨工业大学博士论文,2002.
    56.王东升、翟桐、郭明珠.利用Push—over 方法评价桥梁的抗震安全性[J].世界地震工程,2000,16(2):47—51.
    57.王亚勇.我国2000 年工程抗震设计模式规范基本问题研究综述[J].建筑结构学报,2000,21(1):2—4.
    58.王燕,李擎明.混凝土小型空心砌块大开间多层房屋的设计和抗震试验[A]. 现代砌体结构[C].北京:中国建筑工业出版社,2000:315—318.
    59.王艳晗,艾军等.低周反复荷载作用预应力混凝士砌块墙试验研究[J].建筑结构,2003,33(4):3—7.
    60.王跃方,谷滨,李海江.框架结构地震反应Push—over 研究[J].大连理工大学学报,2002,42(6):709—713.
    61.王振东.钢筋混凝土与砌体结构[M].北京:中国建筑工业出版社,1991.
    62.王宗纲,查支详,聂建国.构造柱一圈梁体系外多孔砖内混凝士小型空心砌块六层足尺房屋抗震性能试验研究[J].地震工程与工程振动,2002,22(4):90 -96.
    63.汪梦甫,周锡元.高层建筑结构抗震弹塑性简化方法的研究及应用[J].计算力学学报,2002,19(4):482~487.
    64.魏巍.几种PUSH—OVER 分析方法对比研究[D].中国地震局工程力学研究所硕士论文[D],2001.
    65.邬瑞锋,奚肖凤.组合墙的强度和刚度简化计算公式.钢筋混凝十一砖组合墙结构研究[R].1990.
    66.邬瑞锋,奚肖风.双排孔混凝十空心砌块组合墙抗侧承载力和抗侧刚度计算公式[R].1999.
    67.夏敬谦,高连玉等.粉煤灰加气混凝十砌块承重房屋抗震性能研究[R].加 气混凝士砌块承重多层房屋的研究鉴定材料之五、之六,1989.
    68.夏敬谦等.L 型混凝土空心砌块结构模型模拟地震振动台试验研究[R].L型混凝十小型空心砌块组合墙结构抗压承载力及抗震性能研究鉴定材料之入,2001.
    69.小古俊介.日本基于性能结构抗震设计方法的发展[J].建筑结构,2000,30(6):3—9.
    70.谢剑,赵彤,李浩菊.碳纤维布加固修复混凝十小型空心砌块开裂墙体的试验研究[J].建筑结构学报,2003, 24(5):36—41.
    71.谢礼立,张晓志,周雍年.论工程抗震设防标准[J].地震二工程与工程振动,1996,16(1):
    72.谢礼立.基于抗震性态设计思想的抗震设防标准[J].世界地震工程.2000,16(1):97—105.
    73.谢礼立.抗震性态设计平Il 基于性态的抗震设防[R].人型复杂结构设计地震动及基于抗震性态的设防标准研究报告,2000.
    74.解明雨,奚晓凤等. L 型混凝土空心砌块组合墙抗侧承载力和抗剪刚度计算公式[R].L 型混凝土小型空心砌块组合墙结构抗压承载力及抗震性能研究鉴定材料之四,1999.
    75.熊立红.新型混凝土砌块房屋抗震性能研究[J].地震工程与工程振动,2003, 23(3): 132—137.
    76.熊立红,张敏政.设置芯柱一构造柱混凝土砌块墙体抗震剪切承载力计算[J].地震工程与工程振动,2004,24(2):82—87.
    77.徐明. Fortran PowerStation Version 4.O[M].北京:清华大学出版社,2000.
    78.徐铨彪,余祖国,金伟良等.基于温度效应的混凝土砌块建筑抗裂结构设计方法研究[J].建筑结构学报,2003,24(5):42—49.
    79.杨德建,高永孚,孙锦镖等.构造柱一芯柱体系混凝土砌块砌体抗震性能试验研究[J].建筑结构学报,2000,21(4):22—27.
    80.杨德健.国内小型混凝土砌块建筑抗震研究现状与展望[J].天津城市建设学院学报,2001,7(1):10—13.
    81.杨建江,高永孚,赵彤.带构造柱加圈梁混凝十砌块砌体抗剪强度分析[J].建筑结构学报,1998,19(3):64—69.
    82.杨溥,李英民等.结构静力弹塑性分析(push—over)方法的改进[J].建筑结构学·报,2000,2i(1):44—50.
    83.杨伟军,施楚贤.配筋砌块砌体剪力墙抗剪承载力研究[J].建筑结构,2001,31(9):25-27.
    84.杨伟军.配筋砌块砌体剪力墙的研究和应用[J]丁业建筑.2002,32(9):64—66.
    85.叶燎原,潘文.结构静力弹塑性分析(push—over)的原理和计算实例[J].建筑结构学报,2000,21(1):37—43.
    86.尹华伟,汪梦甫,周锡元.结构静力弹塑性分析方法的研究和改进EJ].工程力学,2003,2(4):45—49.
    87.于福臻,唐岱新,张国祥.水平配筋火山渣混凝士砌块墙体抗震剪切强度的试验研究[J].建筑科学,1999,15(4):33—36.
    88.于福臻.无筋砖墙抗震剪切强度计算公式的研究[J].哈尔滨建筑大学学 报.1999,32(4):43-46.
    89.苑振芳.混凝土砌块建筑发展现状及展望[A].现代砌体结构[C].北京:中国建筑工业出版社,2000:431-441.
    90.翟希梅.砌块空腔墙体与约束配筋砌块结构的抗震性能研究[D].哈尔滨工业大学博士论文,200i.
    91.张敏政.跨世纪地震工程研究[A].现代地震_丁程进展[C].南京:东南火学出版社,2002:7l 一76.
    92.张毅斌,张前国,邬瑞锋等.混凝土小型空心砌块组合墙抗侧力试验研究[J].世界地震工程,200l,17(2):98—103.
    93.张永洲.L 型混凝土空心砌块组合墙抗侧承载力试验研究报告[R].L 型混凝土小型空心砌块组合墙结构抗压承载力及抗震性能研究鉴定材料之四.1999.
    94.周炳章,郑伟,关启勋等.小型混凝土空心砌块六层模型房屋抗震性能试验研究[J].建筑结构学报,2000,21(4):2—12.
    95.周炳章.砌体结构抗震的新发展[J].建筑结构,2002,32(5):69—72.
    96.周抚生,郭迅等.大开间小型混凝土砌块十层模型房屋抗震性能试验研究(I)[J].地震工程与工程振动,2002,24(2):82—87.
    97.周云,安宇,梁兴文.基于性能的抗震设计理论和方法的研究与发展[J].世界地震工程,2001,17(2):1-7.
    98.中华人民共和国国家标准.建筑抗震设计规范(GB 50011-2001)[S].北京:中国建筑工业出版社,2001.
    99.中华人民共和国国家标准.砌体结构设计规范(GB 50003—2001)[S].北京:中国建筑工业出版社,2002.
    100.中华人民共和国国家标准.混凝土结构设计规范(GB 50010—2002)[S].北京:中国建筑工业出版社,2002.
    101.中华人民共和国行业标准.设置混凝十构造柱多层砖房抗震技术规程(JGJ/T13—94)[S].北京:中国建筑工业出版社,1994.
    102.中华人民共和国行业标准.混凝十小型空心砌块建筑技术规程(JGJ/T1495)[S].北京:中国建筑工业出版社,1995.
    103.中国工程标准化协会标准.建筑工程性态抗震设计通则.北京:中国计划出版社,2004.
    104.朱伯龙等.墙体延性与滞回抗震性能分析[R].混凝土小型空心砌块新型墙体大开间少内纵墙住宅结构试验研究及试点工程鉴定资料之二、之四,2000.
    105.朱江杰,吕西林.复杂体系高层结构的推覆分析方法和应用[J].地震.工程与工程振动,2003,23(2):26—36.
    106.朱江杰, 吕西林.钢筋混凝土框架一剪力墙结构推覆分析[J].地震工程与工程振动,2003,23(4):56—63.
    107.ATC-34. Critical Review of Current Approaches to Earthquake-Resistant Design[R].Applied Technology Council, Redwood City, 1995.
    108.ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings[R]. Applied Technology Council. Red wood City, California, 1996.
    109.Bertero RD and Bertero VV. Application of comprehensive approach for the
    performance-based earthquake-resistant design of buildings[A].
    Twelfth World Conference on Earthquake Engineering[C]. paper no.0847,
    2000, 8p.
    110.Chopra AK and Goel RK. A modal pushover analysis procedure to evaluate seismic demands for buildings: Theory and preliminary evaluation[J]. PEER Report 2001/03.
    111.Colangelo F. Seismic-damage quantification or brick infill of RC frames[A]. Earthquake Resistant Engineering Structures[C]. Ill, Editors: C.A.Brebbi and A. Corz, WIT Press. 2001.315-324.
    112.Doherty KT, Rodolico B, Lam N, Wilson JL and Griffth MC. The modeling of earthquake induced collapse of un-reinforced masonry walls combining force and displacement principals[A]. Twelfth World Conference on Earthquake Engineering[C].2OO2. paper no. 1645, 8p.
    113.EC8, Eurocode -Design ofstructures for earthquake resistance, May 2001 draft.
    114. El-Attar M and Ghobarah A. Performance based evaluation of reinforced concrete buildings[J]. European Earthquake Engineering, 1998, 2: 22-29.
    115. Fajfar P and Gaspersic P. The N2 method for the seismic damage analysis of RC buildings[J]. Earthquake Engineering and Structural Dynamics, 1996, 25: 31 -46.
    116. Fajfar P. A nonlinear analysis method for performance-based seismic design[J]. Earthquake Spectra, 2000, 16 (3): 573-592.
    117. FEMA 273. NEHRP Commentary on the Guidelines for the Rehabilitation of Buildings[R]. Federal Emergency Management Agency, Washington, D.C., 1996.
    118. FEMA 274. NEHRP Guidelines for the Rehabilitation of Buildings[R]. Federal Emergency Management Agency, Washington, D.C., 1996.
    119. Fierro E.A and Perry C.L. Performance design parameters: strength vs. Ductility demand[A]. Twelfth World Conference on Earthquake Engineering[C]. 2000, paper no. 1704, 8p.
    120. Freeman S.A., Nicoletti JP and Tyrell. Evaluation of existing buildings for seismic risk-A case study of Puget Sound Naval Shipyard Bremerton[A]. Proceedings of Is' U.S. National Conference on Earthquake Engineering[C]. Washington, Earthquake Engineering Research Institution. 1975: pi 13-122.
    121. Goel RK and Chopra AK. Evaluation of mofdal and FEMSA pushover analysis:SAC buildings. Earthquake Spectra, 2004, 20 (1): 225-254.
    122. Gulkan P. and Sozen M. Inelastic response of RC structures to earthquake motions, ACI Journal 1974; 71:604-610.
    123. Iwan W.D., estimating inelastic response spectra from elastic spectra. Earthquake Engineering and Structural dynamics, 1980, 8:375-388
    124. Kappos A.J. Evaluation of behavior factors on the basis of ductility and over-strength studies[J]. Engineering Structures, 1999, 21: 823-835.
    125. Kappos AJ and Manafpour A. Seismic design of R/C buildings with the aid of advanced analytical techniques[J]. Engineering Structure. 2001, 23: 319-333.
    126. Koji YOSHIMURA, Kenji KIKUCHI. Effect of wall reinforcements, applied lateral forces and vertical axial loads seismic behavior of confined concrete masonry walls[A]. 12WCEE[A], 2000.
    127. Kowalsky M.J. Displacement-based design 梐methodology for seismic design applied to RC bridge columns, Master's Thesis, University of California at San Diego. La Jolla, California, 1994.
    128. Krawinkler H. and Seneviratna G.D.P.K. Pros and cons of a pushover analysis of seismic performance evaluation[J]. Engineering Structures, 1998, 20(4-6): 452-464.
    129. Kumazawa F. and Ohkubo M., Nonlinear characteristics of confined masonry wall with lateral reinforcement in mortar joints[A]. Twelfth World Conference on Earthquake Engineering[C], 2000, paper no.0743, 8p.
    130. Magenes G and Calvi G.M., In-plan seismic response of brick masonry walls[J]. Earthquake Engineering and Structural Dynamics, 1997, 26: 1091-1112.
    131. Magenes G., A method for pushover analysis in seismic assessment of masonry buildings[A]. Twelfth World Conf. on Earthquake Engineering[C], New Zealand, 2002, paper no.0984, 8p.
    132. Manos G.C., Yasin B. and Triamataki M, Experimental and numerical simulation of the influence of masonry infill on the seismic response of reinforced concrete framed structures.
    133. Manos G.C., Yasin M, Thawabteh J, Kourtides V. and Stylianides K., The performance of reinforced masonry piers subjected to horizontal cyclic loading[A]. Earthquake Resistant Engineering Structures[C], vol. III, Editors: C.A.Brebbia and A.Corz, WIT Press, 2001 pp.283-292.
    134. Meli R., Behavior of masonry walls under lateral Ioads[A]. Proc. of Fifth World Conf on Earthquake Engineering[C], Rome, 1973,1: 853-862.
    135. Miranda, E. and Ruiz-Garcia, J., Evaluation of approximate methods to estimate maximum inelastic displacement demands [J]. Earthquake Engineering and Structural Dynamics, 2002, 31: 539-560.
    136. Mwafy AM. and Elnashai AS. Static pushover versus dynamic collapse analysis of RC buildingfJ]. Engineering Structures, 2001, 23: 407-424.
    137. Nassar AA and Krawinkler H. Seismic demands for SDOF and MDOF systemsfR]. Report No. 95, The John A. Blume Earthquake Engineering Center, 1991, Stanford University, Stanford, California.
    138. Nassar AA, Osteraas, JD and Krawinkler, H. Seismic design based on strength and ductility demandsfA]. Proc. !(f World Conf. on Earthquake Engineering[C], Madri, Span, vol. 9 pp.5861-5866, 1992.
    139. Negro Paolo, Performance-based seismic design of buildings: current status of practice/research in European Union[A].
    International Workshop on Performance-Based Building Structural
    Design[C]. November 13-15, 2000, Tsukuba, Japan.
    140. Newmark N.M. and Hall W.J., Earthquake Spectra and Design, Earthquake Engineering Research Institute, Berkeley, CA. 1982.
    141. Otani S., New seismic design provision in Japan[A]. The Second U.S.-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Concrete Structures[C], PEER Report 2000/10.
    142. Priestley MJN. Performance based seismic design[A]. Twelfth World Conference on Earthquake Engineering^}, paper no.2831, 2002, 22p.
    143. Priestley MJN and Kowalsky MJ. Direct displacement-based seismic design of concrete buildings[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2000, 33 (4): 421-444.
    144. Rosenblueth E. and Herrera I. On a kind of hysteretic damping, Journal of Engineering Mechanics Division ASCE 1964; 90:37-48
    145. Ruiz-Garcia, J and Eduardo Miranda, Evaluation of maximum inelastic displacement demands on SDOF systems using approximate methods[A]. Proc. 7th National Conf. on Earthquake Engineering[C], 2002
    146.SEAOC Vision 2000 Committee,Performance-Based Seismic Engineering of Buildings[R]. Report Prepared by Engineers Association of California,1995, Sacramento, California, USA.
    147. Tomazevic M, Zarnic M. The effect of horizontal reinforcement on strength and ductility of masonry walls[R]. (part one), 1985
    148. Tomazevic M. Seismic resistance verification of masonry buildings: following the new trends[A]. Proc. of the International Workshop on Seismic Design Metiiodologies for the Next Generation of Codes[C]. Fajfar and Krawinkler (eds.), Balkema, Rotterdam, 1997, pp. 323-334.
    149. Tomazewic M, Klemenc I, Seismic behavior of confined masonry buildings:an experimental study,Proc. lllh international Brick/Masonry Conf. Tongji University, Shanghai China, 14-16 October 1997, vol.1, pp. 542-551.
    150. Tomazewic M and Lutman M. Seismic behavior of masonry walls: modeling of hysteretic rules[J]. Structural. Engineering. 1996,122: 1048-1054
    151. Tomazewic M and Zarnic R., The effect of horizontal reinforcement on strength and ductility of masonry walls[R]. Part I. Report ZRMK/IKPI-84/04, Ljubljana: Institute for Testin and research in Material and Structures, 1984.
    152. Vidic T, Fajfar P and Fischinger M. Consisten inelastic design spectra: strength and displacement]. Earthquake Engineering and Structural Dynamics, 23: 507-521,1994.
    153. Wakabayashi M and Nakamura T. Reinforcing principle and seismic resistance of brick masonry walls[A]. Proc. of Eighth World Conference on Earthquake Enginreering, SanFrancisco[C], 1984, V: 661-668.
    154. Yoshimura K, Kikuchi K, Kubori M, Liu L and Ma L. Effect of wall reinforcements, applied lateral forces and vertical axial loads on seismic behavior of masonry walls[A]. Twelfth World Conference on Earthquake Engineering[C]. 2002, paper no. 1886, 8p.
    155.Zamfirescu D. and Peter Fajfar, Comparison of simplified procedures fro nonlinear seismic analysis of structures, The US-Japan Workshop on Performance-Based Earthquake Engineering Methodology for RC Building Structures. 16-18 Aug. 2001. Seattle, Washington. PEER Report 2002/02, July 2002.
    156.Zarnic R and Tomazevic M. An experimentally obtained method for evaluation of the behavior of masonry infilled R/C frames[A]. Proc. of Ninth World Conference on Earthquake Enginreering[C].Tokyo-Kyoto, Japan, 1998 vol.: 163-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700