用户名: 密码: 验证码:
栉孔扇贝Cf-foxl2基因的克隆、表达模式及功能初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
FOXL2是叉头框转录因子家族成员之一,迄今已在多个物种中获得了该基因的序列,然而较深入和系统的研究仅在高等哺乳动物中进行,并确定其参与哺乳动物的卵巢早期发育、分化以及成体卵巢的功能维持,属于雌性相关基因。目前,无脊椎动物中该基因的系统研究还很有限,且尚未见该基因作为无脊椎动物雌性特异基因的相关报道。
     本研究以重要的经济养殖物种——栉孔扇贝(Chlamys farreri)为研究对象,克隆获得了foxl2的cDNA全长序列,分析了它的序列特征;半定量RT-PCR揭示了增殖期栉孔扇贝各组织中的空间表达;定量RT-PCR和原位杂交技术分析了该基因在个体发育过程及成体性腺周期中的表达特征;定量RT-PCR技术分析了外源17β-雌二醇对该基因表达的影响;初步探讨了该基因在贝类中可能的功能。
     本研究获得的栉孔扇贝foxl2(Cf-foxl2) cDNA序列全长1824bp,编码369个氨基酸,具有保守的叉头框DNA结合区。保守区C端含NTL(细胞核定位信号)序列(RRRRRMKR),蛋白三维结构预测显示,Cf-FOXL2叉头框含3个α螺旋及2个翼状结构。
     RT-PCR结果显示其主要在卵巢中表达;其次在肝脏中有很微弱地表达;在精巢及其他组织中无可见表达;初步显示其在精卵巢中的二态性表达特征。
     定量RT-PCR研究发现,Cf-foxl2呈母源性表达;在幼虫结构迅速建立的D形期幼虫表达量较高,之后随着幼虫的发育,表达量显著下降;至个体性别分化后表达量明显上升。原位杂交结果显示阳性信号在担轮幼虫之前皆均匀分布;担轮幼虫出现信号集中,主要集中在腹面的口凹附近,对称存在于虫体两侧;D形幼虫时信号强度明显增强,除集中于内脏团外,在外套膜边缘也有强信号出现,之后信号渐弱直至消失;当个体发育到9mm幼贝时,此时从性腺组织学上刚刚可以分辨雌雄,Cf-foxl2阳性信号仅在雌性生殖细胞及周围的体细胞中出现,在同时期的精巢中未见表达;暗示该基因可能是栉孔扇贝雌性性别表型形成的早期标记基因,可能参与扇贝卵巢的分化。
     比较Cf-foxl2mRNA在栉孔扇贝成体性腺发育周期中精卵巢的定量RT-PCR结果发现,Cf-foxl2在各时期卵巢中的表达均显著高于同时期精巢中的表达,呈明显的性别二态性表达模式,其中增殖期卵巢是精巢表达量的63倍。在卵巢中,增殖期卵巢的表达量明显高于生长期和成熟期,前者是后两者的3倍,该表达规律与小鼠及青鳉等物种中foxl2的表达规律类似,推测与其在卵巢发育过程中的作用相关相关;在精巢中,Cf-foxl2mRNA仅在成熟期有非常微弱的表达,增殖期与生长期的精巢中无明显表达。成体性腺的原位杂交结果显示,Cf-foxl2的阳性信号在各时期卵巢中的分布位点与其在幼贝雌性性腺中相同,但在成熟个体的精巢中除精子外的其它细胞(生殖细胞和体细胞)中也有微弱信号出现;有趣的是,与胚胎、幼虫和幼体不同,阴性探针在成体两性性腺中均有表达信号,推测成体性腺中可能存在反义RNA,以调控foxl2基因的表达。
     采用闭壳肌注射外源17β-雌二醇的方法,检测其对Cf-foxl2表达的诱导发现,成体卵巢与精巢中的Cf-foxl2表达量较对照组都有明显提高(p<0.05),推测17β-雌二醇对该基因有反馈作用。
     综上,在结构上,Cf-foxl2基因的叉头框与已报道其它物种的foxl2基因叉头框部位高度保守;其在个体发育中的表达图式显示该基因呈母源性表达,是卵巢表型形成的早期标记基因;其在成体中的表达模式与已报道的脊椎动物一样,呈现明显的性别二态性表达;进一步发现,外源17β-雌二醇可诱导Cf-foxl2mRNA的体内合成。该基因在栉孔扇贝卵巢中的功能以及与卵子发育的相关性尚需进一步研究。
FOXL2is one of the forkhead box transcription factor family members, whichhas been detected in many species. However, studies in depth and systematicness onfoxl2only have been carried out in higher mammals, and revealed that FOXL2isinvolved in ovarian determination and/or differentiation as well as functionalmaintenance. Until now, limited data were reported on foxl2genes in invertebrates,and no data indicated the gene is female-related gene in invertebrate.
     In this study, scallop Chlamys farreri, a commercially important aquatic productwas chosen as the expereimental animal. The full-length cDNA sequences of the C.farreri foxl2(Cf-foxl2) was cloned and its sequence characteristics was analysed.Furthermore, RT-PCR was used to detected the spatial expression in different tissuesof adult at proliferative stage; real-time PCR and in situ hybridization were employedto analyse the expression pattern in C. farreri during ontogenesis and gonadicreproductive cycle. Moreover, effect of exogenous estradiol-17β on the Cf-foxl2expression level was detected. Finally, Cf-folx2function in mollusks was probedprimarily.
     The full-length sequence of Cf-foxl2cDNA has1824bp with an open readingframe of1107bp encoding369amino acid residues containing the conserved domainforkhead box, a putative NLS sequences was characterized by RRRRRMRR and thethree-dimensional protein structure was predicted, containing three α-helices and twowing-like structure.
     RT–PCR showed that Cf-foxl2is specifically expressed in ovary of theproliferative stage and a weakly expression in hepatopancreas, but is not detected inother organs including the testis. The result showed primarily that the Cf-foxl2expresses in a sexually dimorphic pattern.
     Using quantitative real-time PCR, it was found that Cf-foxl2mRNA is amaternal product and the highest expression during the development is detected inD-shaped larvae in which the larval structure is rapidly established, and then itdeclines significantly. Until the sex of the juvenile is differentiated, the expression ofCf-foxl2is increased significantly. In situ hybridization revealed that Cf-foxl2mRNAare evenly distributed at various stages before trochophore, then concentrate in theventral surface near the mouth concave and exists symmetrically in trochophore.Intensity of the signals enhances significantly in D-shaped larvae, focuses on thevisceral mass and the mantle margin, after that the signals are weakened to disappear.When the shell height reaches to9mm, male and female can be distinguished basedon the histological structure, the signals are located in the cytoplasm of follicle cellsand germ cells in the ovary, but no signal is detected in testis. The result waspresumed that Cf-foxl2is the early marker gene of the ovary phenotype formation inscallop, and participates in regulation of ovary differentiation.
     Using quantitative real-time PCR, the Cf-foxl2mRNA expression was comparedbetween the ovary and the testis during the reproductive cycle. The result showed thatthe expression level in the ovary is significantly higher than that in the testis at thesame stage, and Cf-foxl2presents a significant sexually dimorphic expression pattern,such as the highest expression is detected in the ovary of proliferative stage, about62-fold higher than that in the testis; in ovary, about2-fold higher in that ofproliferative stage than in that of growing and mature stages. The expression pattern issimilar to that in mouse (Mus musculus) and medaka (Oryzias latipes). In situhybridization of adult scallop revealed that Cf-foxl2mRNA is located in the same locias that of the juvenile, but weak signals are also detected in testis except in thespermatozoa. Interestingly, Signals of sense probes are presented in the same loci asthat of antisense probes in the adult ovary and testis, which is different from the resultin the embryos, the larvae and the juveniles. It was hypothesized that antisense RNAof Cf-foxl2might be present in adult scallop, and might act in vivo as a factor toinvolve in the regulation of Cf-foxl2in the adult scallop.
     By injecting estradiol-17β into adductor muscle of the scallop, the effect of the estradiol-17β on Cf-foxl2mRNA expression level is detected. The result showed theCf-foxl2mRNA expression levels in ovary and testis are significantly increased. Theresult implied that estradiol-17β can promote the Cf-folx2expression at mRNA leveland a feedback relationship may exist.
     In summary, the forkhead box of Cf-foxl2is high conservative with that in otherspecies. Its expression pattern during the development indicated that Cf-foxl2ismaternal gene and is the early marker gene in the formation of ovary phenotype. AndCf-foxl2presents a sexually dimorphic expression pattern in adult scallop which isconserved with vertebrate. Exogenous estradiol-17β can promote the Cf-foxl2RNAsynthesis. More extensive studies should be performed to conclude the function ofCf-foxl2in ovary and oogenesis of the scallop.
引文
Aaltonen J, Laitinen MP, Vuoiolainen K, et al. Human growth differentiation factor (GDF-9) andits novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J CliEndo Metab,1999,84:2744-2750.
    Achermann JC, Ito M, Hindmarsh PC, et al. A mutation in the gene encoding steroidogenicfactor-1causes XY sex reversal and adrenal failure in humans. Nat Genet,1999,22:125-126.
    Adell T, Muller WEG. Isolation and characterization of five Fox (Forkhead) genes from thesponge Suberites domuncula. Gene,2004,334:35-46.
    Alam MA, Kobayashi Y, Horiguchi R, et al. Molecular cloning and quantitative expression ofsexually dimorphic markers Dmrt1and Foxl2during female-to-male sex change inEpinephelus merra. Gen Comp Endocrinol,2008,157:75-85.
    Benayoun B A, Batista F, Auer J, et al. Positive and negative feedback regulates the transcriptionfactor FOXL2in response to cell stress: evidence for a regulatory imbalance induced bydisease-causing mutations. Hum Mol Genet,2009,18(4):632-644.
    Bageri-Fam S, Sim H, Harley VR, et al. Loss of Fgfr2leads to partial XY sex reversal. Dev Biol,2008,314:71-83.
    Baron D, Cocquet J, Xia X, et al. An evolutionary and functional analysis of FoxL2in rainbowtrout gonad differentiation. J Mol Endocrinol.2004,33:705-715.
    Batista F, Vaiman D, Dausset J, Fellous M, et al. Potential targets of FOXL2, a transcription factorinvolved in cranipfacial and follicular development, indentified by transcriptomics. Pro NatlAcad Sci USA,2007,104:3330-3335.
    Benayoun B A, Auer J, Caburet S, et al. The posttranslational modification profile of the forkheadtranscription factor FOXL2suggests the existence of parallel processive/concertedmodification parhways. Proteomics,2008,8(15):3118-3123.
    Benayoun BA, Dipietromaria A, Bazin C, Veitia RA. FOXL2: at the crossroads of female sexdetermination and ovarian function. Adv Exp Med Biol,2009,665:207-226.
    Bennett CP, Docherty Z, Robb SA, et al. Deletion9p and sex reversal. J Mes Genet,1993,30:518-520.
    Beysen D, Moumne L, Veitia R, et al. Missense mutations in the forkhead domain of FOXL2leadto subcellular mislocalisation, protein aggregation and impaired transactivarion. Hum MolGenet,2008,17(13):2030-2038.
    Bitgood MJ McMahon AP. Hedgehogand Bmp genes are coexpressed at many diversesites ofcell-cell interaction in the mouse embryo. Dev Biol,1995,172(1):126-138
    Caburet S, Georges A, L'h te D, et al. The transcription factor FOXL2: At the crossroads ofovarian physiology and pathology. Mol Cell Endocrinol,2011, in press.
    Capel B. Cell signaling pathways in testis development. The48th NIBB Conference, OkazakiJapan,2002.
    Charnier M. Action de la temperature sur la sex-ratio.chez l'embryon d'Agama agama (Agamidae,Lacertilien). C R Soc Biol Paris,1996,160:620-622.
    Chassot AA, Ranc F, Gregoire EP, et al. Activation of bate-catenin signaling by Rspo1controlsdifferentiation of the mammalian ovary. Human Molecular Genetics,2008,17(9):1264-1277.
    Ciofi C, Swingland I R. Environmental sex determination in reptiles. Appl Anim BehavSci,1997,51:251-265.
    Clark BJ, Wells J, King SR, et al. The purification, cloning, and expression of a novel luteinizinghormone-induced mitochondrial protein in MA-10mouse Leydig tumor cells.Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem,1994,269:28314-22.
    Cocquet J, Pailhoux E, Jaubert F, et al. Evolution and expression of Foxl2. J Med Genet,2002,39:916-921.
    Cocquet J, De Baere E, Gareil M, et al. Structure, evolution and expression of the FOXL2transcription unit. Cytogenet Genome Res.2003,101:206-211.
    Cocquet J, Pannerier M, Fellous M, et al. Sense and antisense Foxl2transcripts in mouse.Genomics,2005,85(5):531-541.
    Colvin JS, Green RP, Schmahl J, et al. Male-to-female sex reversal in mice lacking fibroblastgrowth factor9. Cell,2001,104:875-889.
    Crews D, Bergeron JM, Bull JJ, et al. Temperature-dependent sex determination in retiles:Proximate mechanisms, ultimate outcomes, and practical applications. Deve Genet,1994,15:297-312.
    Crisponi L, Deiana M, Loi A, et al. The putative forkhead transcription factor FOXL2is mutatedin blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet,2001,27:159-166.
    DiNapoli L, Capel B. SRY and the standoff in sex determination. Mol Endocrinol,2008,22(1):1-9.
    Durlinger ALL, Kramer P, Karels B, et al. Control of primeordial follicle recruitment byanti-Mullerian hormone in the mouse ovary. Endocrinology,1999,140:5789-5796.
    Elbrecht A, Smith R G, Aromatase enzyme activity and sex determination in chicken. Science,1992,1255:467-470.
    Ellisen LW. Regulation of gene expression by WT1in development and tumorigenesis. Int JHemetol,2002,76:110-116.
    Ellsworth BS, Egashira N, Haller JL, et al. FOXL2in the Pituitary: Molecular, Genetic, andDevelopmental Analysis. Mol Endocrinol,2006,20(11):2796-2805.
    Elvin JA, Yan C, Matzuk MM. Growth differentiation factor-9stimulates progesterone synthesisin granulosa cells via a prostaglandin E2/EP2receptor pathway. Proc Natl Acad Sci USA,2000,97(18):10288-10293.
    Fabioux C, Huvet A, Lelong C, et al. Oyster vasa-like gene as a marker of the germline celldevelopment in Crassostrea gigas. Biochem Bioph Res Co,2004,320(2):592-598.
    Fan JY, Han B, Qiao J, et al. Functional study on a novel missense mutation of the transcriptionfactor FOXL2causes blepharophimosis-ptosis-epicanthus inversus syndrome (BPES).Mutagenesis,2011,26(2):283-289
    Fenske M,Segner H.Aromatase modulation alters gonadal differentiation in developing zebrafish(Danio rerio). Aquat Toxicol,2004,67:105–126.
    Froster JW, Granes JA. An SRY-related sequence on the marsupial X chromosome: implicationsfor the evolution of the mammalian testis-determining gene. Proc Natl Acad Sci USA,1994,91:1927-1931.
    Fujii T, Pichel JG, Taira M, et al. Expression patterns of the murine LIM class homeobox genelim1in the developing brain and excretory system. Dev Dyn,1994,199(1):73-83.
    Goodfellow PN, Camerino G. DAX-1, an antitestis gene. Cell Mol Life Sci,1999,6-7:857-863.
    Govoroun M S, Pannetier M, Pailhoux E, et al. Isolation of chicken homolog of the FOXL2geneand comparison of its expression patterns with those of aromatase duing ovariandevelopment. Dev Dyn,2004,231:859-870.
    Gubbay J, Collignon J, Koopman P, et al. A gene maping to the sex-Detemaining region of themouse Y chromosome is a member of a novel family of embryonically expressed genes.Nature,1990,346:245-250.
    Guiguen Y, Fostier A, Piferrer F, et al. Ovarian aromatase and estrogens: Apivotal role forgonadal sex differentiation and sex change in fish. Gen Comp Endocr,2010,165:352-366.
    Hannenhalli S, Kaestner KH. The evolution of Fox genes and their role in development anddisease. Nat Rev Genet,2009,10(4),233-240.
    Hreinsson JG, Scott JE, Rasmussen C, Swahn ML, et al. Growth differentiation factor9promotesthe growth, development, and suvrival of human ovarian follicles in ogran culutre. J ClinEndocrinol Metab,2002,87(1):316-321.
    Hudson Q J, Smith CA, Sinclair AH. Aromatase inhibition reduces expression of FOXL2in theembryonic chicken ovary. Dev Dynam,2005,3:1052-1055.
    Jiang WB,Yang YH, Zhao DM,et al. Effects of sexual steroids on the expression of foxl2inGobiocypris rarus. Comp Biochem Physiol B,2011,160(4):187-193.
    Josso N. Anti-mullerian hormone: new perspecyives for a sexist molecular. Endocr Rev,1986,7:421-433.
    Kalderon D, Richardson WD, Markham AF, et al. Sequence requirements for nuclear location ofsimian virus40large-T antigen. Nature,1984,311:32-38.
    Kamata T, Katsube K, Michikawa M, et al. R-spondin, a novel gene with thrombospondin typ Idomain, was expressed in the dorsal neural tube and affected in Wnts mutants. Biophys Acta,2004,1676(1):51-62.
    Kato Y, Kobayashi K, Oda S, et al. Molecular cloning and sexually dimorphic expression ofDM-domain genes in Daphnia magna.Genomics,2008,91:94–101.
    Katoh-Fukui Y, Tsuchiya R, Shiroishi T et al. Male-to-female sex reversal in M33mutant mice.Nature,1998,393(6686):688-692.
    Kim J, Prawitt D, Bardeesy N, et al. The Wilms’ tumor suppressor gene (wt1) product reglatesDax-1gene expression during gonadal differentiation. Mol Cell Biol.1999,19(3):2289-2299.
    Kim Y, Capel B. Balancing the bipotential gonad between alternative organ fates: A newperspective on an old problem. Deve Dynam,2006,235:2292-2300.
    Kim S, Bardwell V J, Zarkower D. Cell type-autonomous and non-autonomous requirements forDmrt1in postnatal testis differentiation. Developmental Biology,2007,307:314-327.
    Kiyoshi S. Sex determination and sex differentiation. Avian Poult Biol Rev,2002,13(1):1-14.
    Koopman P, Gubbay J, Vivian N, et al. Male development of chromosomally female micetransgenic for Sry. Nature,1991,351(6322):117-121.
    Kry IN, Sablin EP, Moore J, et al. Structural analyses reveal phosphatidyl inositols as ligands forthe NR5orphan receptors SF-1and LRH-1. Cell,2005,120(3):343-355.
    Labrie F, Luu-The V, Lin SX, er al. Intracrinology: role of the family of17beta-hydroxysteroiddehydrogenases in human physiology and disease. J Mol Endocrinol,2000,25:1-16.
    Laitinen M, Vuojolainen K, Jaatinen R, et al. A novel grwth differentiation factor (GDF-9) relatedfactor is co-expressed with GDF-9in mouse oocytes during folliculogenesis. Mech Dev,1998,78:135-140.
    Lephart E D. A review of brain aromatase cytochrome P450. Brain Res Rev,1996,22:1-26.
    Liu Z, Wu F, Jiao B, Molecular cloning of doublesex and mab-3-related transcription factor1,forkhead transcription factor gene2, and two types of cytochrome P450aromatase inSouthern catfish and their possible roles in sex differentiation. J Endocrinol,2007,194:223-241.
    Loffler K A, Zarkower D, Koopman P. Etiology of ovarian failure in blepharophimosis ptosisepicanthus inversus syndrome: FOXL2is a conserved, early-acting gene in vertebrateovarian development. Endocrinoloy,2003,144:3237-3243.
    Lovell-Badge R. H ow does SRY act in mammalian sex determination. The48th NIBBConference, Okazaki,2003.
    Luckenbach J A, Godwin J, Daniels H V, et al. Gonadal differentiation and Effects of temperatureon sex determination in southern flounder (Paralichthys lethostigma). Aquaculture,2003,216:315-327.
    Magie CR, Pang K, Martindale MQ. Genomic inventory and expression of Sox and Fox genes inthe cnidarian Nematostella vectensis. Dev Genes Evol,2005,215:618-630.
    Matsuda M, Nagahama Y, Shinomiya A, et al. DMY is a Y-specific DM-domain gene required formale development in the medaka fish. Nature,2002,417:559-563.
    Matsumoto T, Osada M, Osawa Y, et al. Gonadal Estrogen profile and ImmunohistochemicalLocalization of Steroidogenic Enzymes in the Oyster and Scallop during Sexual MaturationComp Biochem Physiol B,1997,118B:811-817.
    Mazet F, Yu JK, Liberles DA, et al. Phylogenetic relationships of the Fox (Forkhead) gene familyin the Bilateria. Gene,2003,316:79-89.
    McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell,1992,68:283.
    McGrath SA, Esquela AF, Lee SJ. Oocytee-specific expression of growth differentiation factor-9.Mol Endoc,1995,9:131-136.
    McPherron AC, Lee SJ. GDF-3and GDF-9: two new members of the transforming growthfactor-beta superfamily containing a novel pattern of cysteines. J Biol Chem,1993,268:3444-3449.
    Meeks JJ, Weiss J, Jameson J. Dax1is required for tesists detmination. Nature Genet,2003,34:32-33.
    Mittwoch U. Sex-determining mechanisms in animals. TREE,1996,2:63-67.
    Miyamoto N, Yoshida M, Kuratani S, et al. Defects of urogenital development in mice lackingEmx2. Development,1997,124(9):1653-1664.
    Moumne L, Fellous M, Veitia R A. Deletions in the polyAlanine-containing transcription factorFOXL2lead to intranuclear aggregation. Hum Mol Genet,2005,14:3557-3564.
    Moumne L, Batista F, Benayoun B A, et al. The mutations and potential targets of the forkheadtranscription factor FOXL2[J]. Mol Cell Endocrinol,2008,(282):2-11.
    Nagahama.Y Molecular mechanisms of sex determination and gonadal sex differentiation in fish.Fish Physiol Biochem,2005,31:105-109.
    Naimi A, Martinez AS, Specq ML, et al. Molecular cloning and gene expression of Cg-Foxl2during the development and the adult gametogenetic cycle in the oyster Crassostrea gigas.Comp Biochem Physiol B,2009a,154:134-142.
    Naimi A, Martinez A S, Specq M L, et al. Identification and expression of a factor of the DMfamily in the oyster Crassostrea gigas. Comparative Biochemistry and Physiology,2009b,152:189-196
    Nakajin S, Hall PF. Microsomal Cytochrome P-450from Neonatal Pig Testis. J Biol Chem,1981,256:3871-3876.
    Nakamoto M, Mastsuda M, Wang DS, et al. Molecular cloning and analysis of gonadal expressionof Foxl2in the medaka, Oryzias latipes. Biochem Bioph Res Co,2006,344:353-361.
    Nanda I, Kondo M, Homung U, et al. A duplicated copy of DMRT1in the sex-determining regionof the Y-chromosome of the medaka. Oryzias latipes. Proc Natl Acad Sci USA,2002,99:11778-11783.
    Oshima Y, Uno Y, Matsuda Y et al. Molecular cloning and gene expression of Foxl2in the frogRana rugosa. Gen Comp Endocri,2008,(159):170-177.
    Pailhoux E, Vigier B, Chaffaux S, et al. A11.7-kb deletion triggers intersexuality and pollednessin goats. Nat Genet,2001,29(4):453-458.
    Pandian T J,and Sheela S G.Hormonal induction of sex reversal in fish, Aquaculture,1995,138:1-22.
    Park KL, Rice DA, Lala DS, et al. Steroidogenic factor1: an essential mediator of endocrinedevelopment. Recent Prog Horm Res,2002,57:19-36.
    Prahlad V, Pilgrim D, Goodwin EB. Roles for mating and environment in C. elegans sexdetermination. Science,2003,302:1046-1049.
    Quinn AE, Arthur G, Stephen DS, et al. Temperature Sex Reversal Implies Sex Gene Dosage in aReptile. Science,2007,316:411
    Sanderson T, Van den Berg M. Interactions of xenobiotics with the steroid hormone biosynthesispathway. Pure Appl Chem,2003,1957-1971.
    Shimeld SM, Degnan B, Luke GN. Evolutionary genomics of the Fox genes: Origin of genefamilies and the ancestry of gene clusters. Genomics,2010,95:256-260.
    Siby S, Kazuto T, Makio S, et al. Cloning and characterization of a novel endothelial promoter ofthe human CYP19(Aromatase P450) gene that is up-regulated in breast cancer tissue. MoleEndocrinol,2002,16(10):2243-2254.
    Sim EU, Smith A, Szilagi E, et al. Wnt-4regulation by the Wilms’ tumour suppressor gene, WT1.Oncogene,2002,21(19):2948-2960.
    Simpson ER, Clyne C, Rubin G, et al.Aromatase-a brief overview. Annu Rev Physiol,2002,64:93-127.
    Sinclar AH, Berta P, Palmer MS, et al. A gene forme the human sex-determining region encodes aprotein with homology to a conserved DNA-binding motif. Nature,1990,346:240-242.
    Smith CA, Roeszler KN, Ohnesorg T, et al. The avian Z-linked gene DMRT1is required for malesex determination in the chicken. Nature,2009,461:267-271.
    Sock E, Schemidt K, Hermanns-Borgmeyer l, et al. Idiopathic weight reduction in mice deficientin the high-mobility-grop transcription factor Sox8. Mol Cell Biol,2001,21(20):6951-6959.
    Swim A, Narvaez S, Burgoyne P, et al. Dax1antagonizes SRY action in mammalian detemination.Nature,1998,391(6669):761-767.
    Tang P, Park DJ, Marshall Graves JA, et al. ATRA and sex differentiation. Trends EndocrinolMethod,2004,15(7):339-344.
    Tchoudakova A, and Callard GV. Identification of multiple CYP19genes encoding diferentcytochrome P450aromatase isozymes in brain and ovary. Endocrinology,1998,139(4):2179-2189.
    Tevosian S G, Albrecht K H, Crispino J D, et al. Gonadal differentiation, sex determination andnormal sry expression in mice require direct between transcription partners GATA4andFOG2. Development,2002,129:4627-4634.
    Tomaselli S, Megiorni F, Lin L, et al. Human RSPO1/R-spondin1is expressed during early ovarydevelopment and aguments β-Catenin signaling. PloS One,2011Jan28:6(1): e16366online.
    Tripathi V,Raman R. Identification of Wnt4as the ovary pathway gene and temporal disparity ofits expression visà-vis testis genes in the garden lizard, Calotes versicolor. Gene,2010,449:77-84.
    Tu Q, Brown C T, Davidson EH, et al. Sea urchin Forkhead genefamily: phylogeny andembryonic expression. Dev Biol,2006,300(1):49-62.
    Uchida D, Yamashita M, Kitano T, et al. An aromatase inhibitor or high water temperature induceoocyte apoptosis and depletion of P450aromatase activity in the gonads of genetic femalezebrafish during sex-reversal. Comp Biochem Physiol A,2004,137:11–20.
    Uda M, Ottolenghi C, Crisponi L, et al. Foxl2disruption causes mouse ovarian failure bypervasive blockage of follicle development. Hum Mol Genet,2004,13:1171-1181.
    Uhlenhaut NH, Jakob S, Anlag K, et al. Somatic Sex Reprogramming of Adult Ovaries to Testesby FOXL2Ablation. Cell,2009,139:1130-1142.
    Vidal VP, Chaboissier MC, De Rooij DG, et al Sox9induces testis development in XY transgenticmice. Nature Genet,2001,28:216-217.
    Viger RS, Mertineit C, Trasler JM, et al. Transcription factor GATA-4is expressed in a sexuallydimorphic pattern during mouse gonadal development and is a potent activator of theMullenrian inhibiting substance promoter. Development,1998,125(14):2265-2675.
    Wang C, Croll R. Effects of sex steroids on gonadal development and gender determination in thesea scallop, Placopecten magellanicus. Aquaculture,2004,238:483-498.
    Wang DS, Kobayashi T, Zhou LY, et al. Molecular cloning and gene expression of Foxl2in theNile tilapia, Oreochromis niloticus. Biochem Bioph Res Co,2004,(320):83-89.
    Wilhelm D, Englert C. The Wilms tumor suppressor WT1regulates early gonad development byactivation of Sf1. Gene Dev,2002,16(14),1839-1851.
    Yao H C, Brennan J, Matzuk M. Follistatin operates one branch of the WNT-4signaling cascadein development of the mammalian ovary. Third International Symposium on the Biology ofVertebrate Sex Determination, Kona, Hawaii, USA.2003.
    毕延震,黄捷,姜黎.天然反义RNA (NATs):基因表达的重要调控分子.中国生物化学与分子生物学报,2010,26(9):788-795.
    曹冬梅,卢建.叉头框(FOX)转录因子家族的结构与功能.生命科学,2006,5:491-496.
    曹谨玲.奥里亚罗非鱼DMO和DMT基因的克隆及分子生物学特征和功能分析[南京农业大学博士学位论文].南京:南京农业大学,2007.
    邓思平,陈松林,田永胜,等.半滑舌鳎的性腺分化和温度对性别决定的影响.中国水产科学,2007,5:714-718.
    姜波,王昭萍,于瑞海,等.多倍体贝类的繁殖生物学研究进展.海洋湖沼通报,2004,2:
    李新红,赵文阁,郭玉民,等.中国林蛙性腺的发育及温度对其性别分化的影响.动物学研究,2001,22:351-356.
    廖冰,林秀坤. FGF9调节性腺分化研究进展.动物医学进展,2009,30(5):73-80.
    廖承义,徐应馥,王远隆.栉孔扇贝的生殖周期.水产学报,1983,7(1):1-13.
    李昀.栉孔扇贝两个卵黄蛋白原转录本的发育表达图式[中国海洋大学硕士学位论文].青岛:中国海洋大学,2011.
    刘明瑛,季福欣,石清来.性别基因调控的研究进展.育种繁殖,2008,(236):50-51.
    刘深基,陈松森.降钙素、降钙素基因相关肽基因前体RNA的加工.国外医学分析生物学分册,1999,21(4):196-201.
    牛乐耕.贝类的性变与繁殖.海洋世界,1998,25.
    曲中玉,陈子江FOXL2—不孕有关的转录因子.生殖与避孕,2006,1:40-43.
    桑润滋.动物繁殖生物技术.北京:中国农业出版社,2002.
    陶萨茹拉,王峰,刘永斌等.生长分化因子GDF9基因的研究进展。畜牧与饲料科学,2009,30(1):54-55.
    邵明瑜.栉孔扇贝生殖相关基因DEAD-box家族和boule的cDNA克隆及其发育表达图式[中国海洋大学博士学位论文].青岛:中国海洋大学,2006.
    王德寿,吴天利,张耀光.鱼类性别决定及其机制的研究进展.西南师范大学学报(自然科学版),2000,25(3):296-3042.
    王念民,孙大江,曲秋芝,等.温度对鱼类性别分化和性别决定的影响.水产学杂志,2007,2:91-93.
    吴仲庆.水产生物遗传育种学.厦门大学出版社,1991:44–45.
    杨丛海,王清印,孔杰.高温处理中国对虾受精卵性比结构的影响.海洋科学,1993,(4):1-2.
    杨宇,马恒东.哺乳动物性别决定机理与SRY基因调控性腺分化的研究进展.上海畜牧兽医通讯,2007,3:11-13.
    杨竹. Fox基因家族与卵巢疾病的研究进展.重庆医科大学学报,2007,32(4):440-442.
    余林生,孟祥金,陈宏权.中国养蜂,2004,55(6):7-9.
    张晶晶,李祥龙,周荣艳,等.不同物种FOXL2基因的生物信息学分析.《黑龙江畜牧兽医》科技版,2009,11月(上):7-9.
    张万飞.人类17β-羟基类固醇脱氢酶的功能.海南医学,2008,1:127-130.
    赵刚,路璐,宋东,范志民17β-HSD15在乳腺癌和癌旁组织中的表达及其与临床特征的关系.中国老年学杂志.2010,8:1039-1040.
    祝辉.睾丸中细胞色素P450酶的生物学特征及调控。国外医学计划生育分册,1999,18(3):129-133.
    祝辉.3β—羟甾脱氢酶/Δ^5—Δ^4异构酶的研究。中国男科学杂志,1998,4:240-243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700