用户名: 密码: 验证码:
虾虎鱼和黄颡鱼CPT Ⅰ的克隆、表达、动力学性质及对锌的响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肉碱棕榈酰转移酶I (CPT I)是线粒体脂肪酸β-氧化的一种“限速酶”,它在脊椎动物中控制长链脂肪酸的β氧化,在降解脂肪过程中发挥着重要作用。近年来,哺乳动物中对于CPT I基因的结构和功能的研究取得了一定程度的进展。但是却很少有对鱼类CPT I基因研究和酶学性质的相关报道,也没有任何研究涉及外源营养素对鱼类CPT I基因表达和动力学性质的影响。锌是鱼类一种必需的微量元素,它的存在维系着鱼类生理发育的不同功能。迄今大量的学者研究了锌对鱼类生长、金属富集、氧化应激和组织病变等方面的影响,但是很少有学者关注锌对鱼类脂代谢的影响。本论文克隆了矛尾复虾虎鱼(Javelin goby, Synechogobius hasta)和黄颡鱼(yellow catfish, Pelteobagrus fulvidraco) CPT I的全长cDNA序列,并对其结构、进化、表达和动力学性质进行了研究。同时从CPT I的基因表达和动力学的角度探讨了水体和饲料锌水平对CPT I的影响机制。
     论文的主要研究结果和结论如下:
     1矛尾复虾虎鱼CPT I的克隆与动力学性质的研究
     在脊椎动物中,CPT I的调节在控制脂肪酸代谢方面起着重要的作用。在当前的研究中,我们克隆了虾虎鱼CPT I的cDNA全序列,分别为CPT Iα1a-1a, CPT I ala-1b、CPT Iala-1c、CPTIα1a-2、CPTIa2a、CPTIα2b1a、CPTIα2b1b和CPT Iβ。进化分析显示:CPT I基因的重复形成CPT I a=α和CPTIβ, CPT I α基因的重复形成CPT I α1和CPTIα2, CPTIα2基因进一步重复形成CPT Iα2a和CPT Iα2b, CPT Iα2b基因重复导致CPT Iα2b1a和CPT Iα2b1b的产生。CPT Iα1a基因的选择性剪切形成4种CPT I剪切突变体,分别为CPT Iαla-1a、CPT Iα1a-lb、CPT Iα1a-lc和CPT Iα1a-2。CPT I氨基酸序列比对和跨膜域分析表明虾虎鱼出现了关键氨基酸的替换和跨膜域的变化。关键氨基酸的替换和跨膜域的改变可能影响CPT I对丙二酸单酰辅酶A (M-CoA)的敏感性或者CPT I的催化活性,赋予鱼类CPT I新的酶学性质。
     为了深入了解虾虎鱼CPT I酶学性质,我们分离了肝脏、心脏、肌肉、肠道和脾脏的线粒体,然后采用酶动力学的方法测定了Michaelis-Menten常数Km和最大反应速率Vmax。结果显示:CPT I适宜的反应温度是34-40℃,最佳pH是7.4,适宜的孵育时间是5-25min,适宜的线粒体蛋白浓度为120μg/ml。虾虎鱼CPTI的动力学分析符合Michaelis-Menten规律。肉碱Km值在肌肉中最高,在其它组织中没有显著差异。棕榈酰辅酶A (P-CoA)的Km值在肝脏中最高,在肌肉中最低,在其它组织中没有显著差异。催化效率(Vmax/Km)在心脏中最高,在肝脏中最低。综上所述,我们的结果表明了不同组织中的CPT I动力学的差异可能反映了脂肪酸氧化的能力。虾虎鱼肝脏最低的CPT I催化效率可能是虾虎鱼易形成“脂肪肝“的一种重要原因。
     2黄颡鱼CPT I的克隆与表达的研究
     在当前的研究中,采用逆转录PCR和快速扩增cDNA末端(RACE)的方法,我们成功克隆得到了黄颡鱼CPT14种构型的cDNA全序列。根据进化关系,我们命名为CPT Iα1b、CPT Iα1a、CPT Iα2a和CPT Iβ。CPTI的进化分析暗示黄颡鱼CPT Iα1a和CPT Ia1b的产生可能是由于CPT Ia1基因的倍增。CPT Iα2仅存在鱼类中,可能是CPT Iα的一种亚家族。由于哺乳动物仅有一个单拷贝的CPT Iα基因,因此我们的结果暗示黄颡鱼多重的CPT I基因拷贝可能源于鱼类特异性的基因组倍增事件。另外,我们将黄颡鱼CPT I的氨基酸序列和其它物种进行比对,结果表明黄颡鱼出现了关键氨基酸的替换,例如Asp17, Val19, Ser24和Ala275。这些氨基酸同样出现在其它鱼类中,显示了和哺乳动物巨大差异。我们进一步采用Tmpred软件分析了黄颡鱼CPT I的跨膜域,结果显示CPT Iα1a和CPT Iαlb的氮端比哺乳动物CPT Iα的更短,但是两个跨膜域之间的环状结构比哺乳动物CPT la的更长。关键氨基酸的替换和跨膜域的改变可能影响CPT I对M-CoA的敏感性或者CPT I的催化活性,赋予鱼类CPT I新的酶学性质。
     同时,我们通过荧光定量的方法分析了黄颡鱼4种CPTI构型在肝脏、肌肉、心脏、肠道、鳃、脑、脾脏和肾脏中的mRNA表达水平。结果显示,4种构型均在上述组织中表达,但是有量的差异。CPT Iαla和CPTIβ倾向于在心脏和肌肉中表达,CPT Iαlb和CPT Iα2a的mRNA水平分别在肝脏和鳃中表达最高。我们进一步通过相同的方法检测了4种CPT I构型在黄颡鱼仔鱼,幼鱼和成鱼肝脏、心脏和肌肉中的表达水平。结果显示构型的转变贯穿于黄颡鱼的整个发育阶段。4种构型的共表达和发育的构型转换暗示了鱼类更加复杂的脂肪的利用,可能有助于不同组织中脂肪酸氧化的精准控制。
     3黄颡鱼CPT I动力学性质的研究
     为了深入了解黄颡鱼CPT I动力学性质,我们分离了肝脏、心脏、肌肉、肠道和脾脏的线粒体,然后采用酶动力学的方法测定了Michaelis-Menten常数Km和最大反应速率Vmax。结果显示:CPT I的最适的反应温度是36℃,最佳pH是8,适宜的孵育时间是3-20min,适宜的线粒体蛋白浓度为25-200μg/ml。黄颡鱼CPT Ⅰ的动力学分析符合Michaelis-Menten规律。肉碱Km值在肠道中最高,在脾脏中最低。反之,P-CoA的Km值在脾脏中最高,在肠道中最低。肝脏和心脏具有最大的Vmax值,肌肉和脾脏具有最低的Vmax值。相似地,催化效率(Vmax/Km)在肝脏和心脏中最高,在肌肉中最低。另外,不同组织中的CPT I酶活显示了和Vmax相似的趋势。综上所述,我们的结果表明不同组织中的CPT I动力学的差异可能反映了脂肪酸氧化的能力。在另一方面,与哺乳动物相比,黄颡鱼不同组织中Km差异显得很微弱,可能暗示物种的特异性。
     4水体慢性和急性锌暴露对黄颡鱼脂肪沉积、肉碱组成、CPT I的表达及其动力学性质的影响
     本实验是在Zn2+浓度分别为0.05mgl-1(对照)、0.35mgl-1和0.86mg l-1的水体中对黄颡鱼进行为期64d的慢性暴露实验,和在zn2+浓度分别为0.05mgl-1(对照)和4.71mgl-1的水体中对黄颡鱼进行为期96h的急性暴露实验,然后研究了水体慢性和急性锌暴露对黄颡鱼生长、脂肪沉积、肉碱组成、CPT Ⅰ的表达及其动力学性质的影响。慢性和急性锌暴露对黄颡鱼生长有抑制作用。慢性锌暴露显著增加了肝脏脂肪的含量(P<0.05),相反,急性锌暴露显著减少了肝脏脂肪的含量(P<0.05),无论是慢性还是急性锌暴露都显著减少了肌肉脂肪的含量(P<0.05)。慢性锌暴露减少了肝脏Michaelis-Menten常数Km和最大反应速率Vmax (P<0.05)但是在肌肉中两参数呈现相反趋势(Km减少,Vmax增加)。慢性锌暴露也显著影响了肝脏游离肉碱(FC),总肉碱(TC)和酰基肉碱的含量(AC),但并不影响肌肉各种肉碱组成的含量。慢性和急性锌暴露也影响了黄颡鱼肝脏和肌肉4种CPT I构型的表达,即CPT Ialb、CPT Ib、CPT Ia2a和CPT Ia。进一步分析,我们发现了构型的表达和Km,以及和Vmax呈现了很好的相关性。总之,慢性和急性锌暴露差异地影响了组织脂肪的沉积,CPT I的动力学性质及其表达水平。该研究提供了锌暴露影响脂代谢的一种新机制,也加深了我们对鱼类锌毒理的认识。
     5饲料锌缺乏和过量对黄颡鱼脂肪沉积、肉碱组成、CPT I的表达及其动力学性质的影响
     黄颡鱼分别投喂三种不同锌水平的饲料20mg kg11(对照),11.45mg kg-1(缺乏)和155mg kg-1(过量),实验周期为8周,然后研究了饲料锌缺乏和过量对黄颡鱼生长、脂肪沉积、肉碱组成、CPT I的表达及其动力学性质的影响。结果显示:锌水平不能显著影响黄颡鱼生长(P>0.05),锌缺乏倾向增加肝脏和肌肉脂肪的含量(P>0.05),但是过量锌显著减少了肝脏和肌肉的脂肪含量(P<0.05)。在肝脏中,锌缺乏显著增加了FC, AC和TC的含量(P<0.05),但是并不能显著影响FC/TC和AC/FC的比率(P>0.05)。锌过量也显著增加了TC和AC的含量,但是AC/FC值增加,FC的含量和FC/TC值减少。在肌肉中,锌缺乏增加了FC的含量,但是锌过量减少了FC的含量。相似地,锌缺乏和过量差异地影响了AC/FC和FC/TC的值。锌缺乏减少了肝脏和肌肉Km和Vmax值,但是锌过量增加Km和Vmax值。锌缺乏和过量也影响了黄颡鱼肝脏和肌肉4种CPT I构型的表达,即CPT Ialb, CPT Ib, CPT Ia2a和CPT Ia。进一步分析,我们发现构型的表达和Km,以及和Vmax呈现了很好的相关性。总之,锌缺乏和过量差异地影响了组织脂肪的沉积、CPT I的动力学性质及其表达水平,该研究为鱼类锌的营养和毒理提供了一种新的观点。
Carnitine palmitoyltransferase I (CPT I) is frequently described as the'rate-limiting enzyme'of mitochondrial fatty acid β-oxidation. It controls the β-oxidation of long-chain fatty acid in vertebrate and plays an important part in the degradation of fat. The structure and function of CPT I have been studied in details in mammals. However, up to date, only limited information is available on CPT I gene and characterization in fish. Zinc is an essential micronutrient required for various biological processes. The impact of Zn exposure on growth, survival, histological changes in the gills and liver, metal bioaccumulation and the production of reactive oxygen species in fish has attracted wide attention. However, the underlying mechanism involved in the change of lipid metabolism as a response to Zn is poorly known in fish. In the present study, we describe the cloning, molecular characterization, phylogenetic analysis and the tissue expression profile of CPT I in Javelin goby Synechogobius hasta and yellow catfish Pelteobagrus fulvidraco, and investigate kinetic parameters of CPT I in various tissues. Moreover, we partially elucidate effects of waterborne and dietary Zn on CPT I expression and kinetic property.
     1Cloning and kinetics of CPT I from Javelin goby Synechogobius hasta
     The regulation of CPT I is critical in the control of fatty acid metabolism in vertebrates. In the present study, we clone seven complete CPT I cDNA squences (CPT I ala-la, CPT I ala-lb, CPT I ala-lc, CPT I ala-2, CPT I a2a, CPT I a2bla, CPT I β) and a partial cDNA sequence (CPT I a2blb) from S. hasta. Phylogenetic analysis shows there are at least four CPT I duplications in S. hasta, CPT I duplication resulting in CPT I a and CPT Iβ, CPT I a duplication producing CPT I α1and CPT Iα2, CPT Iα2duplication generating CPT I a2a and CPT Iα2b, and CPT I α2b duplication creating CPT I a2bla and CPT Iα2b1b. Alternative splicing of CPT Iα1a results in the generation of four CPT I isoforms, CPT I ala-la, CPT I ala-lb, CPT I ala-lc and CPT Iα1a-2. CPT I ala-la and CPT I α1a-2both contain complete amino acid sequences and mutually exclusive alternative exons numbered8but CPT I α1a-1a terminates earlier than CPT I α-2in the3'UTR. Premature mRNA of CPT I α-1b and CPT I α1a-1c can be as a consequence of alternative polyadenylation signal and terminal exon. The key amino acid substitutions and modifications, and a functional motifs analysis reveal an intensely diversified CPT I gene family in fish, especially for CPT Ia2b isoform. These results may affect CPT I sensitivity to malonyl-CoA and/or catalytic activity in hasta compared to mammals.
     In order to get knowledge of kinetic properties of CPT I from yellow catfish, mitochondria from five different tissues (including liver, heart, spleen, intestine and muscle) were isolated. Then CPT I kinetic parameters (Michaelis-Menten constants, Km; maximal reaction rates, Vmax) were measured with substrate concentrations for carnitine varied from0.5mM to10mM, and for palmitoyl-CoA from0.02to0.6mM. Results showed that:CPT I optimum conditions were34-40℃and pH=7.4, the optical incubation time was5to25min, the optical mitochondria protein concentration was120ug/ml. Kinetic analysis revealed CPT I has a Michaelis-Menten behavior. The Km for carnitine was highest in the muscle, and no significant differences in the other tissues. The Km for palmitoyl-CoA was highest in the liver and lowest in the heart. The Vmax of CPT I was obtained in the heart, followed by the liver, the intestine and spleen, and the muscle had the lowest Vmax. The catalytic efficiency (Vmax/Km value) for carnitine and palmitoyl-CoA was highest in the heart, and the lowest in the liver. Thus, our results suggested the differences in CPT I kinetics parameters among various tissues may be a symbol of different capacities of fatty acid oxidation.
     2Cloning and expression of CPT I from yellow catfish Pelteobagrus fulvidraco
     In the present study, we cloned the complete cDNA sequences of four CPT I gene isoforms from yellow catfish by RT-PCR and rapid amplification of cDNA ends (RACE) approaches, named as CPT Iα1b, CPT Iα1a, CPT Ia2a and CPT Iβ, respectively. Phylogenetic analysis indicated the generation of CPT Iα1a and CPT Iα1b may be due to duplication of CPT Ial. CPT Ia2exists only in fish and may be a subfamily of CPT Iα. Considering there is one copy of CPT Ia gene in mammals, our study indicated that genome duplication events had diversified the CPT I gene family in yellow catfish. Further, alignment of CPT I amino acid sequences from yellow catfish to those from mammals and other fish suggested some important substitutions occur at Asp17, Val19, Ser24and Ala275in yellow catfish. And TMpred analysis indicated the NH2terminus of CPT Ial is shorter and the loop between the first and second TMD is longer in yellow catfish CPT Ial isoform than those in mammalian CPT Iα and β. Both results may affect CPT I sensitivity to malonyl-CoA and/or catalytic activity in yellow catfish compared to mammals.
     The tissue-specific expression of four CPT I isoforms was determined via real-time qPCR in yellow catfish across liver, muscle, heart, intestine, gill, brain, spleen and kidney Four isoforms were present in all the tested tissues, but at varying levels. CPT Iα1a and CPT Iβ were expressed preferentially in heart and muscle. CPT Iαlb and CPT Iα2a mRNA expression levels were highest in liver and gill, respectively. Developmental expression of four CPT I isoforms was also detected across liver, muscle and heart in larva, juvenile and adult yellow catfish. The result suggested isoform switch occurred during development of yellow catfish. The co-expression of four CPT I isoforms and developmental isoform switch indicate more complex pathways of lipid utilization in fish than in mammals, allowing for precise control of lipid oxidation in individual tissue.
     3Study on kinetic property of CPT I from yellow catfish Pelteobagrus fulvidraco
     In order to get knowledge of kinetic properties of CPT I from yellow catfish, mitochondria from five different tissues (including liver, heart, spleen, intestine and muscle) were isolated. Then CPT I kinetic parameters (Michaelis-Menten constants, Km; maximal reaction rates, Vmax) were measured with substrate concentrations for carnitine varied from0.5mM to10mM, and for palmitoyl-CoA from0.02to0.6mM. Results showed that: CPT I optimum conditions were36℃and pH=8.5, the optical incubation time was10to20min, the optical mitochondria protein concentration was44-176μg/ml. Kinetic analysis revealed CPT I has a Michaelis-Menten behavior. The Km for carnitine was highest in the intestine and lowest in the spleen. The Km for palmitoyl-CoA was highest in the spleen and lowest in the intestine. The Vmax of CPT I was obtained in the liver and heart, followed by the intestine, while muscle and spleen had the lowest Vmax. CPT I activities in yellow catfish in different tissues followed a similar trend with the Vmax. The catalytic efficiency (Vmax/Km value) for carnitine and palmitoyl-CoA was highest in the heart and liver, and lowest in the muscle. Thus, our results suggested the differences in CPT I kinetics parameters among various tissues may be a symbol of different capacities of fatty acid oxidation. On the other hand, these differences across tissues in yellow catfish were thinner than those in mammals, indicating a species specificity.
     4Effects of the chronic and acute zinc exposure on lipid content, carnitine composition, kinetics and expression of CPT I in yellow catfish Pelteobagrus fulvidraco
     The present study is conducted to determine the effect of acute and chronic zinc exposure on carnitine concentration, CPT I kinetics, and expression levels of CPT I isoforms in liver and muscle of yellow catfish. To this end, yellow catfish are subjected to chronic waterborne Zn exposure (0.05mg Zn I-1,0.35mg Zn I-1and0.86mg Zn I-2, respectively) for8weeks and acute Zn exposure (0.05mg Zn I-1and4.71mg I-1Zn, respectively) for96h, respectively. Chronic Zn exposure increased remarkably lipid content in liver while acute Zn exposure decreased significantly hepatic lipid content (P<0.05). In muscle, lipid content declined significantly by both chronic and acute Zn exposure (P<0.05). In the chronic Zn exposure, Michaelis-Menten constants (Km) and maximal reaction rates (Vmax) values were reduced in liver while Km decreased and Vmax increased in muscle (P<0.05). Contrary to the chronic Zn exposure, the acute Zn exposure increased significantly Vmax in liver and Km in muscle (P<0.05), and did not affect Km in liver and Vmax in muscle (P>0.05). Chronic Zn exposure also significantly influences the contents of FC, TC and AC in liver, but not in muscle. The acute Zn exposure significantly increases FC, AC, TC contents in liver and muscle. The chronic and acute Zn exposure also influenced the mRNA levels of four CPT I isoforms (CPT Ialb, CPT Ib, CPT Ia2a and CPT Iala) in liver and muscle. Furthermore, correlations are observed in the mRNA levels between CPT I isoforms and Km, and between isoforms expression and CPT I Vmax. Thus, chronic and acute Zn exposure shows differential effects on carnitine content, CPT I kinetics and mRNA levels of four CPT I isoforms in yellow catfish, which provides new mechanism for Zn exposure on lipid metabolism and also novel insights into Zn toxicity in fish.
     5Effects of dietary Zn deficiency and excess on lipid content, carnitine composition, kinetics and expression of CPT I in yellow catfish Pelteobagrus fulvidraco
     The present study was conducted to determine the effect of dietary Zn deficiency and excess on carnitine status, kinetics and expression of CPT I in the liver and muscle of yellow catfish. Yellow catfish were subjected to20(adequate Zn),11.45(Zn deficiency) and155(Zn excess) mg kg-1diet for8weeks. Zn deficiency tended to reduce lipid accumulation in liver and muscle (P>0.05) while Zn excess significantly induced lipid depletion in both tissues (P<0.05). In the liver, Zn deficiency increased FC, AC and TC contents (P<0.05), and did not significantly affect the ratios of FC/TC and AC/FC (P>0.05). Similarly, Zn excess also increased TC and AC contents, and AC/FC ratios, but reduced FC content and FC/TC ratio. In the muscle, FC content was promoted by Zn deficiency and inhibited by Zn excess. FC/TC ratio was stimulated by Zn deficiency and inhibited by Zn excess. In contrast, AC/FC ratio was reduced by Zn deficiency and induced by Zn excess. Zn deficiency also reduced Km and Vmax values while Zn excess increased them in the liver and muscle. Zn deficiency and excess influenced the expression levels of four CPTI isoforms, such as CPT Ialb, CPT Iβ, CPT Iα2a and CPT la la in the liver and muscle. Furthermore, some correlations were observed between the expression levels of CPT I isoforms and Km for carnitine, and between CPT I isoform expression and CPT I Vmax. Thus, for the first time, our study indicated that Zn deficiency and excess showed differential effects on carnitine status, kinetics and expression of CPT I in yellow catfish, which helped provide some novel insights into Zn nutrition and toxicology in fish.
引文
1. 白东清,乔秀亭,张韦,于丽娜.不同pH值下淡水黑鲨脂肪酶活性的初步研究.水利渔业,2004,23:12-13.
    2. 龚清海,张晓宏,徐琛玮.孕期补充二十二碳六烯酸对母鼠脂肪代谢及CPT mRNA表达的影响.浙江预防医学,2009,4:44-47
    3.韩春英,杨晓霞.锌对免血栓素前列腺环素及脂代谢的影响.中国地方病学杂志,2000,19:426-428.
    4.彭青,侯冰,姚芬,钱元恕.pH值、温度、底物浓度对L1型金属β-内酰胺酶活性的影响.中国抗生素杂志,2010:69-71.
    5. 曲莹.略述影响酶活性的因素.福建轻纺,1999,10:21-25
    6.阮国良,杨代勤,严安生,黄蜂,张桂蓉等.pH对月鳢蛋白酶活性的影响.湖北农学院学报,2003,23:261-263.
    7.桑倩,吴蕴棠,孙忠,孙丽莎,王永明等.锌对高脂饲料喂养大鼠脂代谢的影响.现代预防医学,2013,40.3383-3386.
    8.沈水宝,冯定远.pH值、温度、钙离子和铜离子对外源酶活性的影响.中国畜牧兽医学会动物营养学分会-第九届学术研讨会论文集,2004.
    9.王建枫,孙建义,翁晓燕,钱利纯.日粮锌对大鼠肝脏脂肪酸代谢的影响.动物营养学报,2008,20:586-591.
    10.王毓三.酶动力学测定原理与方法.临床检验杂志,1985,3:194-201.
    11.文格波,高明艳.补锌对糖尿病患者脂代谢紊乱的效应.当代医师,1996,1:4-5.
    12.张晓宏,孙长颢.断乳后饲料构成对大鼠肝脏CPTI mRNA表达影响.中国公共卫生,2006,22:563-565.
    13.张玉花,王金霞,曹云华,姚勤.锌、硒对Ⅱ型糖尿病患者糖和脂代谢的影响.中国初级卫生保健,2006,19.62-63.
    14.赵霖.缺锌对大鼠生长发育及脂代谢的影响.营养学报,1996,18:305-312.
    15. Abo-Hashema KA, Cake MH, Potter IC. Liver mitochondria, confirmed as intact by complete suppression of succinate uptake and oxidation, possess a carnitine palmitoyltransferase I that is totally inhibited by malonyl CoA. Biochem Biophys Res Commun,1999,258:778-783.
    16. Alhomida A, Duhaiman A, Al-Jafari A, Junaid M. Determination of 1-carnitine, acylcarnitine and total carnitine levels in plasma and tissues of camel (Camelus dromedarius). Comp Biochem Physiol, 1995,111:441-445.
    17. Atakisi O, Atakisi E, Kart A. Effects of dietary zinc and 1-arginine supplementation on total antioxidants capacity, lipid peroxidation, nitric oxide, egg weight, and blood biochemical values in Japanase Quails. Biol Trace Elem Res, 2009,132:136-143.
    18. Ayala S, Brenner RR. Essential fatty acid status in zinc deficiency. Effect on lipid and fatty acid composition, desaturation activity and structure of microsomal membranes of rat liver and testes. Acta Physiologica Lat Am,1982,33:193-204.
    19. Bohles H, Evangeliou A, Bervoets K, Eckert I, Sewell A. Carnitine esters in metabolic disease. Eur J Ped, 1994,153:57-61.
    20. Berge RK, Nilsson A, Husoy AM. Rapid stimulation of liver palmitoyl-CoA synthetase, carnitine palmitoyltransferase and glycerophosphate acyltransferase compared to peroxisomal beta-oxidation and palmitoyl-CoA hydrolase in rats fed high-fat diets. Eur J Ped, 1988,960:417-426.
    21. Bird MI, Saggerson ED. Binding of malonyl-CoA to isolated mitochondria. Evidence for high- and low-affinity sites in liver and heart and relationship to inhibition of carnitine palmitoyltransferase activity. Biochem J, 1984,222:639-647.
    22. Bird MI, Saggerson ED. Interacting effects of L-carnitine and malonyl-CoA on rat liver carnitine palmitoyltransferase. Biochem J, 1985,230:161-167.
    23. Bishop-Bailey D, Wray J. Peroxisome proliferator-activated receptors:a critical review on endogenous pathways for ligand generation. Prost Lip Med, 2003,71: 1-22.
    24. Bonner CM, DeBrie KL, Hug G, Landrigan E, Taylor BJ. Effects of parenteral L-carnitine supplementation on fat metabolism and nutrition in premature neonates. J Pediatrics,1995,126:287-292.
    25. Borgeson CE, Pardini L, Pardini RS, Reitz RC. Effects of dietary fish oil on human mammary carcinoma and on lipid-metabolizing enzymes. Lipids, 1989,24:290-295.
    26. Borthwick K, Jackson VN, Price NT, Zammit VA. The mitochondrial intermembrane loop region of rat carnitine palmitoyltransferase 1A is a major determinant of its malonyl-CoA sensitivity. J Biol Chem, 2006,281:32946-32952.
    27. Boukouvala E, Leaver MJ, Favre-Krey L, Theodoridou M, Krey G. Molecular characterization of a gilthead sea bream (Sparus aurata) muscle tissue cDNA for carnitine palmitoyltransferase 1B (CPT1B). Comp Biochem Physiol, 2010,157: 189-197.
    28. Brady LJ, Silverstein LJ, Hoppel CL, Brady PS. Hepatic mitochondrial inner membrane properties and carnitine palmitoyltransferase A and B. Effect of diabetes and starvation. Biochem J,1985,232:445-450.
    29. Brandt JM, Djouadi F, Kelly DP. Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor a. J Biol Chem, 1998,273:23786-23792.
    30. Bremer J. The effect of fasting on the activity of liver carnitine palmitoyltransferase and its inhibition by malonyl-CoA. Biochim Biophys Acta, 1981,665:628-631.
    31. Bremer J. Carnitine-metabolism and functions. Physiol Rev,1983,63:1420.
    32. Bremer J, Woldegiorgis G, Schalinske K, Shrago E. Carnitine palmitoyltransferase. Activation by palmitoyl-CoA and inactivation by malonyl-CoA. Biochim Biophys Acta,1985,833:9-16.
    33. Bressler R, Gay R, Copeland JG, Bahl JJ, Bedotto J, et al. Chronic inhibition of fatty acid oxidation: new model of diastolic dysfunction. Life Sci,1989,44:1897-1906.
    34. Britton CH, Schultz RA, Zhang B, Esser V, Foster DW, et al. Human liver mitochondrial carnitine palmitoyltransferase I:characterization of its cDNA and chromosomal localization and partial analysis of the gene. PNAS, 1995,92: 1984-1988.
    35. Britton CH, Mackey DW, Esser V, Foster DW, Burns DK, et al. Fine chromosome mapping of the genes for human liver and muscle carnitine palmitoyltransferase I (CPTlA and CPT1B). Genomics,1997,40:209-211.
    36. Brown NF, Weis BC, Husti JE, Foster DW, McGarry JD. Mitochondrial carnitine palmitoyltransferase I isoform switching in the developing rat heart. J Biol Chem, 1995,270:8952-8957.
    37. Brown NF, Mullur RS, Subramanian I, Esser V, Bennett MJ, et al. Molecular characterization of L-CPT I deficiency in six patients:insights into function of the native enzyme. J Lipid Res, 2001,42:1134.
    38. Brungs WA. Chronic toxicity of zinc to the fathead minnow, Pimephales promelas Rafinesque. Trans Am Fish Soc, 1969,98:272-279.
    39. Chatzifotis S, Takeuchi T. Effect of supplemental carnitine on body weight loss, proximate and lipid compositions and carnitine content of red sea bream (Pagrus major) during starvation. Aquaculture, 1997,158:129-140.
    40. Cohen I, Guillerault F, Girard J, Prip-Buus C. The N-terminal domain of rat liver carnitine palmitoyltransferase 1 contains an internal mitochondrial import signal and residues essential for folding of its C-terminal catalytic domain. J Biol Chem, 2001, 276:5403.
    41. Cohen I, Kohl C, McGarry JD, Girard J, Prip-Buus C. The N-terminal domain of rat liver carnitine palmitoyltransferase 1 mediates import into the outer mitochondrial membrane and is essential for activity and malonyl-CoA sensitivity. J Biol Chem, 1998,273:29896.
    42. Cook GA. Differences in the sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA are due to differences in Ki values. J Biol Chem,1984, 259: 12030-12033.
    43. Cook GA, Otto DA, Cornell NW. Differential inhibition of ketogenesis by malonyl-CoA in mitochondria from fed and starved rats. Biochem J, 1980,192: 955-958.
    44. Cook GA, Edwards TL, Jansen MS, Bahouth SW, Wilcox HG, et al. Differential regulation of carnitine palmitoyltransferase-I gene isoforms (CPT-I alpha and CPT-I beta) in the rat heart. JMol Cell Cardiol, 2001,33:317-329.
    45. Cunnane S, Horrobin D, Manku M. Essential fatty acids in tissue phospholipids and triglycerides of the zinc-deficient rat. Exp Biol Med, 1984,177:441-446.
    46. Dai J, Zhu H, Woldegiorgis G. Leucine-764 near the extreme C-terminal end of carnitine palmitoyltransferase I is important for activity. Biochem Biophys Res Commun,2003,301:758-763.
    47. Dai J, Zhu H, Shi J, Woldegiorgis G. Identification by mutagenesis of conserved arginine and tryptophan residues in rat liver carnitine palmitoyltransferase I important for catalytic activity. J Biol Chem, 2000,275:22020-22024.
    48. Dautremepuits C, Betoulle S, Vernet G. Antioxidant response modulated by copper in healthy or parasitized carp (Cyprinus carpio L.) by Ptychobothrium sp (Cestoda). Biochim Biophys Acta, 2002,1573:4-8.
    49. Distler AM, Kerner J, Hoppel CL. Post-translational modifications of rat liver mitochondrial outer membrane proteins identified by mass spectrometry. Biochim Biophys Acta, 2007,1774:628-636.
    50. Distler AM, Kerner J, Hoppel CL. Mass spectrometric demonstration of the presence of liver carnitine palmitoyltransferase-I (CPT-I) in heart mitochondria of adult rats. Biochim Biophys Acta, 2009,1794:431-437.
    51. Driscoll ER, Bettger WJ. Zinc deficiency in the rat alters the lipid composition of the erythrocyte membrane Triton shell. Lipids, 1992,27:912-911.
    52. Eder K, Kirchgessner M. Dietary zinc deficiency and fatty acid metabolism in rats. Nutr Res,1996,16:1179-1189.
    53. El Hendy HA, Yousef MI, Abo El-Naga NI. Effect of dietary zinc deficiency on hematological and biochemical parameters and concentrations of zinc, copper, and iron in growing rats. Toxicology, 2001,167:163-170.
    54. Esser V, Britton CH, Weis BC, Foster DW, McGarry JD. Cloning, sequencing, and expression of a cDNA encoding rat liver carnitine palmitoyltransferase I. Direct evidence that a single polypeptide is involved in inhibitor interaction and catalytic function. J Biol Chem,1993,268:5817-5822.
    55. Fabbri E, Caselli F, Piano A, Sartor G, Capuzzo A. Cd2+ and Hg 2+ affect glucose release and cAMP-dependent transduction pathway in isolated eel hepatocytes. Aquat Toxicol, 2003,62:55-65.
    56. Faure P, Benhamou P, Perard A, Halimi S, Roussel A. Lipid peroxidation in insulin-dependent diabetic patients with early retina degenerative lesions:effects of an oral zinc supplementation. Eur J Clin Nutr, 1995,49:282.
    57. Faye A, Esnous C, Price NT, Onfray MA, Girard J, et al. Rat liver carnitine palmitoyltransferase 1 forms an oligomeric complex within the outer mitochondrial membrane. J Biol Chem,2007,282:26908-26916.
    58. Faye A, Borthwick K, Esnous C, Price NT, Gobin S, et al. Demonstration of N-and C-terminal domain intramolecular interactions in rat liver carnitine palmitoyltransferase 1 that determine its degree of malonyl-CoA sensitivity. Biochem J,2005,387:67.
    59. Feng L, Tan LN, Liu Y, Jiang J, Jiang WD, et al. Influence of dietary zinc on lipid peroxidation, protein oxidation and antioxidant defence of juvenile Jian carp (Cyprinus carpio var. Jian). Aquacult Nutr, 2011,17:e875-e882.
    60. Figueiredo-Silva AC, Kaushik S, Terrier F, Schrama JW, Medale F, et al. Link between lipid metabolism and voluntary food intake in rainbow trout fed coconut oil rich in medium-chain TAG. Br J Nutr, 2011,1:1-12.
    61. Force A, Lynch M, Pickett F B, Amores A, Yan Y, Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics,1999,151: 1531-1545.
    62. Forman B, Evans RM. Nuclear Hormone Receptors Activate Direct, Inverted, and Everted Repeatsa. Annals of the New York Academy of Sciences, 1995,761:29-37.
    63. Froyland L, Madsen L, Eckhoff KM, Lie 0, Berge RK. Carnitine palmitoyltransferase I, carnitine palmitoyltransferase Ⅱ, and acyl-CoA oxidase activities in Atlantic salmon (Salmo salar). Lipids, 1998,33:923-930.
    64. Fraser F, Corstorphine C, Zammit V. Topology of carnitine palmitoyltransferase I in the mitochondrial outer membrane. Biochem. J, 1997,323:711-718.
    65. Fraser F, Padovese R, Zammit VA. Distinct kinetics of carnitine palmitoyltransferase i in contact sites and outer membranes of rat liver mitochondria. J Biol Chem,2001, 276:20182-20185.
    66. Giardina A, Larson SF, Wisner B, Wheeler J, Chao M. Long term and acute effects of zinc contamination of a stream on fish mortality and physiology. Environ Toxicol Chem,2009,28:287-295.
    67. Gobin S, Thuillier L, Jogl G, Faye A, Tong L, et al. Functional and structural basis of carnitine palmitoyltransferase 1A deficiency. J Biol Chem,2003,278:50428.
    68. Gobin S, Bonnefont JP, Prip-Buus C, Mugnier C, Ferrec M, et al. Organization of the human liver carnitine palmitoyltransferase 1 gene (CPT1A) and identification of novel mutations inhypoketotic hypoglycaemia. Hum Genet, 2002,111:179-189.
    69. Gutieres S, Damon M, Panserat S, Kaushik S, Medale F. Cloning and tissue distribution of a carnitine palmitoyltransferase I gene in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol, 2003,135:139-151.
    70. Guzman M, Castro J. Okadaic acid stimulates carnitine palmitoyltransferase I activity and palmitate oxidation in isolated rat hepatocytes. FEBS Lett, 1991,291:105-108.
    71. Harano Y, Kashiwagi A, Kojima H, Suzuki M, Hashimoto T, et al. Phosphorylation of carnitine palmitoyltransferase and activation by glucagon in isolated rat hepatocytes. FEBS left, 1985,188:267-272.
    72. Harpaz S. L-Carnitine and its attributed functions in fish culture and nutrition-a review. Aquaculture, 2005,249:3-21.
    73. Heath A.1987. Water Pollution and Fish Physiology: CRC Press.
    74. Heo K, Lin X, Odle J, Han IK. Kinetics of carnitine palmitoyltransferase-Ⅰ are altered by dietary variables and suggest a metabolic need for supplemental carnitine in young pigs. J Nutr, 2000,130:2467-2470.
    75. Hoar W. The physiology of smolting salmonids. Fish physiol, 1988,11:275-323.
    76. Hoegg S, Brinkmann H, Taylor JS, Meyer A. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol, 2004,59:190-203.
    77. Hoppel C, Kerner J, Turkaly P, Tandler B. Rat liver mitochondrial contact sites and carnitine palmitoyltransferase-Ⅰ. Arch Biochem Biophys, 2001,392:321-325.
    78. Hughes T A. Regulation of gene expression by alternative untranslated regions. Trends Genet,2006,22:119-122.
    79. Ide T, Kobayashi H, Ashakumary L, Rouyer IA, Takahashi Y, et al. Comparative effects of perilla and fish oils on the activity and gene expression of fatty acid oxidation enzymes in rat liver. Biochim Biophys Acta, 2000,1485:23-35.
    80. Jackson-Hayes L, Song S, Lavrentyev EN, Jansen MS, Hillgartner FB, et al. A thyroid hormone response unit formed between the promoter and first intron of the carnitine palmitoyltransferase-Ⅰα gene mediates the liver-specific induction by thyroid hormone. J Biol Chem, 2003,278:7964-7972.
    81. Jackson VN, Zammit VA, Price NT. Identification of positive and negative determinants of malonyl-CoA sensitivity and carnitine affinity within the amino termini of rat liver- and muscle-type carnitine palmitoyltransferase Ⅰ. J Biol Chem, 2000,275:38410-38416.
    82. Jaillon O, Aury J-M, Brunet F, Petit JL, Stange-Thomann N, et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature,2004,431:946-957.
    83. Jenkins K, Kramer J. Changes in lipid composition of calf tissues by excess dietary zinc. J Dairy Sci, 1992,75:1313-1319.
    84. Ji H, Bradley TM, Tremblay GC. Atlantic salmon (Salmo salar) fed L-carnitine exhibit altered intermediary metabolism and reduced tissue lipid, but no change in growth rate. J Nutr, 1996,126:1937-1950.
    85. Ji Z, Lee J Y, Pan Z, Jiang B, Tian B. Progressive lengthening of 3'untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. PNAS, 2009,106:7028-7033.
    86. Kang X, Zhong W, Liu J, Song Z, McClain CJ, et al. Zinc supplementation reverses alcohol-induced steatosis in mice through reactivating hepatocyte nuclear factor-4a and peroxisome proliferator activated receptor-a. Hepatology, 2009,50:1241-1250.
    87. Kashfi K, Cook G. Proteinase treatment of intact hepatic mitochondria has differential effects on inhibition of carnitine palmitoyltransferase by different inhibitors. Biochem J, 1992,282:909-914.
    88. Kashfi K, Cook GA. Temperature effects on malonyl-CoA inhibition of carnitine palmitoyltransferase I. Biochim Biophys Acta, 1995,1257:133-139.
    89. Kashiwagi A. Rationale and hurdles of inhibitors of hepatic gluconeogenesis in treatment of diabetes mellitus. Diab Res Clin Pract, 1995,28:S195-S200.
    90. Kerner J, Hoppel C. Fatty acid import into mitochondria. Biochim Biophys Acta, 2000,1486:1-17.
    91. Kerner J, Zaluzec E, Gage D, Bieber LL. Characterization of the malonyl-CoA-sensitive carnitine palmitoyltransferase (CPT) of a rat heart mitochondrial particle. Evidence that the catalytic unit is CPTi. J Biol Chem, 1994,269:8209-8219.
    92. Kerner J, Distler AM, Minkler P, Parland W, Peterman SM, et al. Phosphorylation of rat liver mitochondrial carnitine palmitoyltransferase-I. J Biol Chem,2004, 279: 41104.
    93. Khoja SM, Marzouki ZM, Ashry KM, Hamdi SA. Effect of dietary zinc deficiency on rat lipid concentrations. Saudi Med J, 2002,23:82-86.
    94. Kim S, Sohn I, Ahn JI, Lee KH, Lee YS. Hepatic gene expression profiles in a long-term high-fat diet-induced obesity mouse model. Gene, 2004,340:99-109.
    95. Kjoss VA, Wood CM, McDonald DG. Effects of different ligands on the bioaccumulation and subsequent depuration of dietary Cu and Zn in juvenile rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci, 2006,63:412-422.
    96. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci, 1997,94: 4318-4323.
    97. Kolditz C, Borthaire M, Richard N, Corraze G, Panserat S, et al. Liver and muscle metabolic changes induced by dietary energy content and genetic selection in rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol, 2008,294:R1154-1164.
    98. Kolodziej MP, Zammit VA. Sensitivity of inhibition of rat liver mitochondrial outer-membrane carnitine palmitoyltransferase by malonyl-CoA to chemical- and temperature-induced changes in membrane fluidity. Biochem J, 1990,272:421-425.
    99. Kudo N, Nakagawa Y, Waku K. Effects of zinc deficiency on the fatty acid composition and metabolism in rats fed a fat-free diet. Biol Trace Elem Res, 1990,24: 49-60.
    100. Lopez-Vinas E, Bentebibel A, Gurunathan C, Morillas M, de Arriaga D, et al. Definition by functional and structural analysis of two malonyl-CoA sites in carnitine palmitoyltransferase 1A. J Biol Chem,2007,282:18212-18224.
    101. Lavarias S, Pasquevich MY, Dreon MS, Heras H. Partial characterization of a malonyl-CoA-sensitive carnitine O-palmitoyltransferase I from Macrobrachium borellii (Crustacea:Palaemonidae). Comp Biochem Physiol,2009,152:364-369.
    102. Le May C, Cauzac M, Diradourian C, Perdereau D, Girard J, et al. Fatty acids induce L-CPT I gene expression through a PPARalpha-independent mechanism in rat hepatoma cells. JNutr, 2005,135:2313-2319.
    103. Lee G, Kim N, Zhao Z, Cha B, Kim Y. Peroxisomal-proliferator-activated receptor alpha activates transcription of the rat hepatic malonyl-CoA decarboxylase gene:a key regulation of malonyl-CoA level. Biochem J, 2004,378:983-990.
    104. Lee WJ, Kim M, Park HS, Kim HS, Jeon MJ, et al. AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPAR alpha and PGC-1. Biochem Biophys Res Commun, 2006,340:291-295.
    105. Li WW, Gong YN, Jin XK, He L, Jiang H, et al. The effect of dietary zinc supplementation on the growth, hepatopancreas fatty acid composition and gene expression in the Chinese mitten crab, Eriocheir sinensis (Decapoda:Grapsidae). Aquaculture research,2010,41:e828-e837.
    106. Liang JJ, Yang HJ, Liu YJ, Tian LX, Liang GY. Dietary zinc requirement of juvenile grass carp (Ctenopharyngodon idella) based on growth and mineralization. Aquacult Nutr,2012,18:380-387.
    107. Lin X, Odle J. Changes in kinetics of carnitine palmitoyltransferase in liver and skeletal muscle of dogs (Canis familiaris) throughout growth and development. J Nutr,2003,133:1113-1119.
    108. Lin X, House R, Odle J. Ontogeny and kinetics of carnitine palmitoyltransferase in liver and skeletal muscle of the domestic felid (Felis domestica). J Nutr Biochem, 2005,16:331-338.
    109. Liu CX, Luo Z, Hu W, Tan XY, Zheng JL, et al. Kinetics of Carnitine Palmitoyltransferase I (CPT I) in Chinese sucker(Myxocyprinus asiaticus) Change with its Development. Lipids, 2014,49:173-181.
    110. Liu H, Zheng G, Treber M, Dai J, Woldegiorgis G. Cysteine-scanning mutagenesis of muscle carnitine palmitoyltransferase I reveals a single cysteine residue (Cys-305) is important for catalysis. JBiol Chem, 2005,280:4524-4531.
    111. Liu HY, Zheng G, Zhu H, Woldegiorgis G. Hormonal and nutritional regulation of muscle carnitine palmitoyltransferase I gene expression in vivo. Arch Biochem Biophys, 2007,465:437-442.
    112. Lopaschuk GD, Witters LA, Itoi T, Barr R, Barr A. Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. JBiol Chem,1994,269:25871-25878.
    113. Luo Z, Tan XY, Zheng JL, Chen QL, Liu CX. Quantitative dietary zinc requirement of juvenile yellow catfish Pelteobagrus fulvidraco, and effects on hepatic intermediary metabolism and antioxidant responses. Aquaculture,2011,319: 150-155.
    114. Lynch M, Force AG. The origin of interspecific genomic incompatibility via gene duplication. Am Nat, 2000,156:590-605.
    115. Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science,2000,290:1151-1155.
    116. Lysiak W, Toth PP, Suelter CH, Bieber LL. Quantitation of the efflux of acylcarnitines from rat heart, brain, and liver mitochondria. J Biol Chem, 1986,261: 13698-13703.
    117. Malik D, Sastry K, Hamilton D. Effects of zinc toxicity on biochemical composition of muscle and liver of murrel (Channa punctatus). Environ Int, 1998,24:433-438.
    118. Mazzatti DJ, Mocchegiani E, Powell JR. Age-specific modulation of genes involved in lipid and cholesterol homeostasis by dietary zinc. Rejuv Res, 2008,11:281-285.
    119. McGarry JD. The mitochondrial carnitine palmitoyltransferase system:its broadening role in fuel homoeostasis and new insights into its molecular features. Biochem Soc Trans,1995,23:321-324.
    120. McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem, 1997,244:1-14.
    121. McGarry JD, Mills SE, Long CS, Foster DW. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat. Biochem J, 1983,214:21-28.
    122. McGarry JD, Woeltje KF, Kuwajima M, Foster DW. Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes Metab Rev, 1989,5: 271-284.
    123. Merrells KJ, Blewett H, Jamieson JA, Taylor CG, Suh M. Relationship between abnormal sperm morphology induced by dietary zinc deficiency and lipid composition in testes of growing rats. Br JNutr, 2009,102:226-232.
    124. Modrek B, Lee C, A genomic view of alternative splicing. Nat Genet, 2002,30: 13-19.
    125. Smith WJ, Valcarcel J. Alternative pre-mRNA splicing:the logic of combinatorial control, Trends Bioch Sci,2000,25:381-387.
    126. Morash AJ, Kajimura M, McClelland GB. Intertissue regulation of carnitine palmitoyltransferase I(CPTI):mitochondrial membrane properties and gene expression in rainbow trout(Oncorhynchus mykiss). Biochim Biophys Acta, 2008, 1778:1382-1389.
    127. Morash AJ, Bureau DP, McClelland GB. Effects of dietary fatty acid composition on the regulation of carnitine palmitoyltransferase(CPT) I in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physioll, 2009,152:85-93.
    128. Morash AJ, Le Moine CMR, McClelland GB. Genome duplication events have led to a diversification in the CPTI gene family in fish. Am J Physiol Regul Integr Comp Physiol, 2010,299:579.
    129. Morillas M, Gomez-Puertas P, Rubi B, Clotet J, Arino J, et al. Structural model of a malonyl-CoA-binding site of carnitine octanoyltransferase and carnitine palmitoyltransferase I. J Biol Chem, 2002,277:11473.
    130. Morillas M, Gomez-Puertas P, Bentebibel A, Selles E, Casals N, et al. Identification of conserved amino acid residues in rat liver carnitine palmitoyltransferase I critical for malonyl-CoA inhibition. Mutation of methionine 593 abolishes malonyl-CoA inhibition. J Biol Chem,2003,278:9058-9063.
    131. Munkittrick K, Dixon D. Growth, fecundity, and energy stores of white sucker (Catostomus commersoni) from lakes containing elevated levels of copper and zinc. Can J Fish Aquat Sci, 1988,45:1355-1365.
    132. Mynatt RL, Park EA, Thorngate FE, Das HK, Cook GA. Changes in carnitine palmitoyltransferase-I mRNA abundance produced by hyperthyroidism and hypothyroidism parallel changes in activity. Biochem Biophys Res Commun, 1994, 201:932-937.
    133.Napal L, Marrero PF, Haro D. An intronic peroxisome proliferator-activated receptor-binding sequence mediates fatty acid induction of the human carnitine palmitoyltransferase 1A. J Mol Biol, 2005,354:751-759.
    134. Napal L, Dai J, Treber M, Haro D, Marrero PF, et al. A single amino acid change (substitution of the conserved Glu-590 with alanine) in the C-terminal domain of rat liver carnitine palmitoyltransferase I increases its malonyl-CoA sensitivity close to that observed with the muscle isoform of the enzyme. J Biol Chem, 2003,278: 34084.
    135.Nicot C, Hegardt FG, Woldegiorgis G, Haro D, Marrero PF. Pig liver carnitine palmitoyltransferase I, with low Km for carnitine and high sensitivity to malonyl-CoA inhibition, is a natural chimera of rat liver and muscle enzymes. Biochemistry,2001,40:2260-2266.
    136. Niot I, Gresti J, Boichot J, Sempore G, Durand G, et al. Effect of dietary n-3 and n-6 polyunsaturated fatty acids on lipid-metabolizing enzymes in obese rat liver. Lipids, 1994,29:481-489.
    137. Obici S, Feng Z, Arduini A, Conti R, Rossetti L. Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nat Med, 2003, 9:756-761.
    138. Ohno S.1970. Evolution by gene duplication: London:George Alien & Unwin Ltd. Berlin, Heidelberg and New York:Springer-Verlag.
    139. Overnell J, Fletcher T, McIntosh R. The apparent lack of effect of supplementary dietary zinc on zinc metabolism and metallothionein concentrations in the turbot, Scophthalmus maximus (Linnaeus). J Fish biol, 1988,33:563-570.
    140. Pande S, Parvin R. Carnitine-acylcarnitine translocase-mediated transport of fatty acids into mitochondria: its involvement in the control of fatty acid oxidation in liver. Carnitine Biosynthesis, Metabolism, and Functions. Academic Press, New York, 1980:143-157.
    141. Park EA, Mynatt RL, Cook GA, Kashfi K. Insulin regulates enzyme activity, malonyl-CoA sensitivity and mRNA abundance of hepatic carnitine palmitoyltransferase-I. Biochem, J 1995,310:853-858.
    142. Peffer PL, Lin X, Jacobi SK, Gatlin LA, Woodworth J, et al. Ontogeny of carnitine palmitoyltransferase I activity, carnitine-Km, and mRNA abundance in pigs throughout growth and development. JNutr, 2007,137:898-903.
    143. Polakof S, Medale F, Larroquet L, Vachot C, Corraze G, et al. Regulation of de novo hepatic lipogenesis by insulin infusion in rainbow trout fed a high-carbohydrate diet. JAnim Sci,2011,89:3079-3088.
    144. Price N, van der Leij F, Jackson V, Corstorphine C, Thomson R, et al. A novel brain-expressed protein related to carnitine palmitoyltransferase I. Genomics, 2002, 80:433-442.
    145. Prip-Buus C, Cohen I, Kohl C, Esser V, McGarry JD, et al. Topological and functional analysis of the rat liver carnitine palmitoyltransferase 1 expressed in Saccharomyces cerevisiae. FEBS left, 1998,429:173-178.
    146. Ramsay RR, Gandour RD, van der Leij FR. Molecular enzymology of carnitine transfer and transport. Biochim Biophys Acta, 2001,1546:21-43.
    147. Relat J, Pujol-Vidal M, Haro D, Marrero PF. A characteristic Glu17 residue of pig carnitine palmitoyltransferase 1 is responsible for the low Km for carnitine and the low sensitivity to malonyl-CoA inhibition of the enzyme. FEBS J, 2009,276: 210-218.
    148. Rodwell VW. Enzymes:kinetics. Harper's Biochemistry. RK Murray, DK Granner, PA Mayes, and VW Rodwell, editors, 1996:75-90.
    149. Rogalska J, Brzoska MM, Roszczenko A, Moniuszko-Jakoniuk J. Enhanced zinc consumption prevents cadmium-induced alterations in lipid metabolism in male rats. Chem Biol Interact,2009,177:142-152.
    150. Ryu MH, Sohn HS, Heo YR, Moustaid-Moussa N, Cha YS. Differential regulation of hepatic gene expression by starvation versus refeeding following a high-sucrose or high-fat diet. Nutrition, 2005,21:543-552.
    151. Saggerson ED, Carpenter CA. Effects of fasting and malonyl CoA on the kinetics of carnitine palmitoyltransferase and carnitine octanoyltransferase in intact rat liver mitochondria. FEBS Lett, 1981,132:166-168.
    152. Sheridan MA, Kao YH. Regulation of metamorphosis-associated changes in the lipid metabolism of selected vertebrates. Am Zool,1998,38:350-368.
    153. Shi J, Zhu H, Arvidson DN, Woldegiorgis G. The first 28 N-terminal amino acid residues of human heart muscle carnitine palmitoyltransferase Ⅰare essential for malonyl Co A sensitivity and high-affinity binding. Biochemistry, 2000,39:712-717.
    154. Shi J, Zhu H, Arvidson DN, Cregg JM, Woldegiorgis G. Deletion of the conserved first 18 N-terminal amino acid residues in rat liver carnitine palmitoyltransferase Ⅰ abolishes malonyl-CoA sensitivity and binding. Biochemistry, 1998,37: 11033-11038.
    155. Sidow A. Gen(om)e duplications in the evolution of early vertebrates, Curr Opin Genet Dev,1996,6:715-722.
    156. Sleboda J, Risan KA, Spydevold O, Bremer J. Short-term regulation of carnitine palmitoyltransferase Ⅰ in cultured rat hepatocytes:spontaneous inactivation and reactivation by fatty acids. Biochim Biophys Acta, 1999,1436:541-549.
    157. Song S, Attia RR, Connaughton S, Niesen MI, Ness GC, et al. Peroxisome proliferator activated receptor alpha and PPAR gamma coactivator induce carnitine palmitoyltransferase IA (CPT-1A) via independent gene elements. Mol Cell Endocrinol, 2010,325:54-63.
    158. Srivastava R, Srivastava N. Changes in nutritive value of fish, Channa punctatus after chronic exposure to zinc. J Environ Biol, 2008,29.
    159. Stonell L, Cake M, Power G, Potter I. Comparisons between the kinetic behaviour of the muscle carnitine palmitoyltransferase Ⅰof a higher and lower vertebrate. Comp Biochem Physiol B Biochem Mol Biol,1997,118:845-850.
    160. Swanson ST, Foster DW, McGarry JD, Brown NF. Roles of the N-and C-terminal domains of carnitine palmitoyltransferase Ⅰ isoforms in malonyl-CoA sensitivity of the enzymes:insights from expression of chimaeric proteins and mutation of conserved histidine residues. Biochem J, 1998,335:513.
    161. Tallman DL, Taylor CG. Effects of dietary fat and zinc on adiposity, serum leptin and adipose fatty acid composition in C57BL/6J mice. J Nutr Biochem, 2003,14:17-23.
    162. Tan Ln, Feng L, Liu Y, Jiang J, Jiang WD, et al. Growth, body composition and intestinal enzyme activities of juvenile Jian carp (Cyprinus carpio var. Jian) fed graded levels of dietary zinc. Aquacult Nutr, 2011,17:338-345.
    163. Tanphaichitr V, Broquist HP. Site of carnitine biosynthesis in the rat. J Nutr, 1974, 104:1669-1673.
    164. Thumelin S, Esser V, Charvy D, Kolodziej M, Zammit VA, et al. Expression of liver carnitine palmitoyltransferase Ⅰ and Ⅱ genes during development in the rat. Biochem J,1994,300:583-587.
    165. Tocher DR. Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci,2003,11:107-184.
    166. Tom Dieck H, Doring F, Roth H-P, Daniel H. Changes in rat hepatic gene expression in response to zinc deficiency as assessed by DNA arrays. J Nutr, 2003,133: 1004-1010.
    167. Tom Dieck H, Doring F, Fuchs D, Roth H P, Daniel H. Transcriptome and proteome analysis identifies the pathways that increase hepatic lipid accumulation in zinc-deficient rats. J Nutr,2005,135:199-205.
    168. Turkaly P, Kerner J, Hoppel C. A 22 kDa polyanion inhibits carnitine-dependent fatty acid oxidation in rat liver mitochondria. FEBS Lett, 1999,460:241-245.
    169. Uviovo E, Beatty D. Effects of chronic exposure to zinc on reproduction in the guppy (Poecilia reticulata). Bull Environ Contam Toxicol, 1979,23:650-657.
    170. Ulitsky I, Shkumatava A, Jan C, Subtelny A O, Koppstein D, Bell G, Sive H. Extensive alternative polyadenylation during zebrafish development. Genome Res, 22:2054-2066.
    171.Lutz CS. Alternative polyadenylation:a twist on mRNA 3'end formation. ACS Chem Biol,2008,3:609-617.
    172. van der Leij F.R, Boomsma C, Kuipers B. Genomics of the human carnitine acyltransferase genes. Mol Genet Metab, 2000,71:139-153.
    173. Van Der Leij FR, Kram A, Bartelds B, Roelofsen H, Smid G, et al. Cytological evidence that the C-terminus of carnitine palmitoyltransferase I is on the cytosolic face of the mitochondrial outer membrane. Biochem J, 1999,341:777-784.
    174. van der Leij FR, Takens J, van der Veen AY, Terpstra P, Kuipers JR. Localization and intron usage analysis of the human CPT1B gene for muscle type carnitine palmitoyltransferase I. Biochim Biophys Acta, 1997,1352:123-128.
    175. van Dyk JC, Pieterse GM, van Vuren JH. Histological changes in the liver of Oreochromis mossambicus (Cichlidae) after exposure to cadmium and zinc. Ecotoxicol Environ Saf, 2007,66:432-440.
    176. Velasco G, Sanchez C, Geelen MJ, Guzman M. Are cytoskeletal components involved in the control of hepatic carnitine palmitoyltransferase I activity? Biochem Biophys Res Commun, 1996,224:754-759.
    177. Velasco G, Passilly P, Guzman M, Latruffe N. Loss of response of carnitine palmitoyltransferase I to okadaic acid in transformed hepatic cells. Biochem Pharmacol,1998,56:1485-1488.
    178. Velasco G, Geelen MJ, Gomez del Pulgar T, Guzman M. Possible involvement of cytoskeletal components in the control of hepatic carnitine palmitoyltransferase I activity. Adv Exp Med Biol, 1999,466:43-52.
    179. Wang D, Harrison W, Buja LM, Elder FF, McMillin JB. Genomic DNA sequence, promoter expression, and chromosomal mapping of rat muscle carnitine palmitoyltransferase I. Genomics, 1998,48:314-323.
    180. Watanabe T, Kiron V, Satoh S. Trace minerals in fish nutrition. Aquaculture, 1997, 151:185-207.
    181. Weigand E, Boesch-Saadatmandi C. Interaction between marginal zinc and high fat supply on lipid metabolism and growth of weanling rats. Lipids, 2012,47:291-302.
    182. Wolfgang MJ, Kurama T, Dai Y, Suwa A, Asaumi M, et al.2006. The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. PNAS, 2006,103:19.
    183. Wong SH, Nestel PJ, Trimble RP, Storer GB, Illman RJ, et al. The adaptive effects of dietary fish and safflower oil on lipid and lipoprotein metabolism in perfused rat liver. Biochim Biophys Acta, 1984,792:103-109.
    184. Yamazaki N, Shinohara Y, Shima A, Terada H. High expression of a novel carnitine palmitoyltransferase I like protein in rat brown adipose tissue and heart: isolation and characterization of its cDNA clone. FEBS Lett, 1995,363:41-45.
    185. Yamazaki N, Shinohara Y, Shima A, Yamanaka Y, Terada H. Isolation and characterization of cDNA and genomic clones encoding human muscle type carnitine palmitoyltransferase I. Biochim Biophys Acta, 1996,1307:157-161.
    186. Yoshikawa T, Shimano H, Yahagi N, Ide T, Amemiya-Kudo M, et al. Polyunsaturated fatty acids suppress sterol regulatory element-binding protein lc promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements. JBiol Chem,2002,277:1705-1711.
    187. Yousef M, El Hendy H, El-Demerdash F, Elagamy E. Dietary zinc deficiency induced-changes in the activity of enzymes and the levels of free radicals, lipids and protein electrophoretic behavior in growing rats. Toxicology, 2002,175:223-234.
    188. Yu GS, Lu YC, Gulick T. Expression of novel isoforms of carnitine palmitoyltransferase I (CPT-1) generated by alternative splicing of the CPT-I beta gene. Biochemical Journal, 1998,334:225.
    189. Yu GS, Lu YC, Gulick T. Rat carnitine palmitoyltransferase Iβ mRNA splicing isoforms. Biochim Biophys Acta, 1998b,1393:166-172.
    190. Zabala A, Fernandez-Quintela A, Macarulla MT, Simon E, Rodriguez VM, et al. Effects of conjugated linoleic acid on skeletal muscle triacylglycerol metabolism in hamsters. Nutrition,2006,22:528-533.
    191. Zammit VA. Carnitine palmitoyltransferase 1:central to cell function. IUBMB life, 2008,60:347-354.
    192. Zammit VA, Corstorphine CG, Kolodziej MP, Fraser F. Lipid molecular order in liver mitochondrial outer membranes, and sensitivity of carnitine palmitoyltransferase I to malonyl-CoA. Lipids, 1998,33:371-376.
    193. Zehmer JK, Hazel JR. Plasma membrane rafts of rainbow trout are subject to thermal acclimation. J Exp Biol,2003,206:1657-1667.
    194. Zheng JL, Hu W, Luo Z, Zhao YH, Zhu QL, et al. Comparative study on the kinetic behaviour of carnitine palmitoyltransferase I between Javelin goby Synechogobius hasta (carnivorous) and grass carp Ctenopharyngodon idella (herbirovous). Aquacult Nulr,2013,19:665-676
    195. Zheng JL, Luo Z, Chen QL, Liu X, Liu CX, et al. Effect of waterborne zinc exposure on metal accumulation, enzymatic activities and histology of Synechogobius hasta. Ecotoxicol Environ Saf, 2011,74:1864-1873
    196. Zheng JL, Luo Z, Zhu QL, Tan XY, Chen QL, et al. Molecular cloning and expression pattern of 11 genes involved in lipid metabolism in yellow catfish Pelteobagrus fulvidraco. Gene, 531:53-63
    197. Zhong W, Zhao Y, Sun X, Song Z, McClain CJ, et al. Dietary Zinc Deficiency Exaggerates Ethanol-Induced Liver Injury in Mice: Involvement of Intrahepatic and Extrahepatic Factors. PloS one, 2013,8:e76522.
    198. Zhou R, Cheng H, Tiersch TR. Differential genome duplication and fish diversity. Rev Fish Biol Fish,2001,11:331-337.
    199. Zhu H, Shi J, Treber M, Dai J, Arvidson DN, et al. Substitution of glutamate-3, valine-19, leucine-23, and serine-24 with alanine in the N-terminal region carnitine palmitoyltransferase I abolishes malonyl CoA inhibition and binding. Arch Biochem Biophys, 2003,413:67-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700