用户名: 密码: 验证码:
喹赛多毒理性质的代谢组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种抗菌促生长剂,喹赛多有很大的潜力被添加到饲料中用于促进畜禽类动物的生长,但要成为饲料添加剂必须通过全面严格的食品安全评估。迄今为止,关于喹赛多毒作用性质的传统毒理学研究相对较多,但是喹赛多对机体内源性代谢的影响还没有相关的报道。因此,本论文用基于核磁共振波谱的代谢组学方法研究了喹赛多对Kunming小鼠内源性代谢产物的影响;为了进一步研究喹赛多对机体内源性代谢物影响的种属差异,我们又设计了喹赛多对Wistar大鼠的急性毒理实验;在这两个实验的基础上,为了再进一步探讨长期喹赛多暴露对机体内源性代谢的影响,我们还设计了喹赛多对Wistar大鼠的亚慢性毒理实验。在亚慢性毒理实验中,除了传统的代谢组学方法,我们还采用了大鼠肝脏表达谱全基因组测序以及荧光定量PCR检测的方法,研究了长期的喹赛多暴露对大鼠肝脏的转录组的影响。
     喹赛多对Kunming小鼠的急性毒理实验一共设计了三个剂量组(100,650,4000mg/kg body weight)和一个对照组。实验采取的是一次性灌胃给药的方式,研究了给药后小鼠尿样、血样、肝脏以及肾脏中代谢物水平的变化。在整个实验期间,代谢物的变化具有剂量依赖性,只有低剂量和中剂量组的Kunming小鼠的代谢水平恢复到了正常。喹赛多扰乱了Kunming小鼠肠道菌群的正常生命活动,这表现在一系列与肠道菌群代谢相关的物质如马尿酸、氧化三甲胺、三甲胺以及二甲胺等代谢物水平的显著下降。除此之外,高剂量的给药也导致了小鼠肝脏中氨基酸的聚集以及核苷酸代谢水平的下降。而在肾脏中,核苷酸以及一系列的渗透因子比如肌醇、胆碱以及甘油脂酰胆碱的含量明显增加,而氨基酸的含量则出现了显著性的下降。这些结果表明,喹赛多抑制了肝脏中的氨基酸代谢,扰乱了肠道菌群的生命活动,影响了肝脏和肾脏的渗透压平衡以及核苷酸代谢。
     喹赛多在Wistar大鼠体内的急性毒理实验同样也设计了三个剂量组(50,325,2000mg/kg body weight)和一个对照组,实验的方式以及检测分析的样品和小鼠急性毒理实验是一样的。总体上来说,大鼠对喹赛多暴露的反应比小鼠要敏感。这表现在给药后大鼠血液的内平衡被打破,出现了一系列显著性变化的物质,如中剂量组大鼠血样中代谢水平显著性增加的异亮氨酸、缬氨酸、甲硫氨酸、天冬酰胺和肌酸以及高剂量组中代谢水平显著性增加的丙氨酸、琥珀酸、甲硫氨酸、葡萄糖、乳酸和代谢水平显著性下降的脂类。另外,与小鼠反应不一样的还有大鼠肝脏中的氨基酸代谢并没有受到明显的抑制、大鼠体内的能量代谢受抑制的情况要比小鼠严重并且没有发现大鼠肾脏代谢水平的显著性变化;而和小鼠一样的是,其体内核酸代谢也受到了明显的抑制以及肠道菌群的正常生命活动也受到了明显的扰动。
     喹赛多在Wistar大鼠体内的亚慢性毒理实验也设计了三个剂量组(50,150,2500mg/kg feed)和一个对照组,经过三周的适应期后,给药12周,恢复两周,在给药后第6周、12周以及恢复两周后的14周处死大鼠。代谢组学的分析结果表明,对于尿样和肾脏来说,低剂量和中剂量组大鼠对药物的反应时而显著时而不显著,呈现逐渐适应的趋势,高剂量组的大鼠代谢物受到的扰动比较大,但经过两周的恢复期以后,剂量组均恢复到了正常的状态。对于血样和肝脏,低剂量组和中剂量组的血样仅出现一些血生化指标的变化,并未检测到显著性变化的代谢物。高剂量组中无论是血生化指标还是代谢物的代谢水平都受到了很大的扰动。而在肝脏中,药物的影响似乎有一种累积效应。随着时间的变化,药物对代谢物的扰动甚至出现在低剂量组中。而病理切片检测也发现了中剂量和高剂量大鼠肝脏受损的现象。对给药12周后高剂量组大鼠肝脏的基因表达结果进行转录组学分析,结果发现很多与药物代谢途径相关的基因如Cypla、Hsdllbl和Cyp2a2,与脂类代谢和转运途径相关的基因如Scd、 Acotl/2/4、Acsm2和Pexlla、与糖酵解和TCA循环途径相关的基因如Slc34a2和Pfkfb1与氨基酸代谢途径相关的基因如Daao、与转录调控相关的基因如Nfe2、 Pir和Scyllbp1、与炎性反应途径相关的基因如Cxcll3、 TmemSSa、Rtl-N和Icaml以及与神经系统途径相关的基因如Faml34b、Egrl、Scyllbpl、Colq、Gabbprl、Trim2、Epha4、Rtn4rll和Hspbl的表达都发生了显著性的变化,而代谢组学分析的结果表明发生显著性变化的代谢物所涉及到的代谢途径大多数与此也是一致的。
     本论文从转录组和代谢组水平探讨了喹赛多的作用机制。机体吸收喹赛多以后,主要的代谢器官是肝脏。在药物代谢的过程中,会释放一定量的活性氧自由基(ROS),活性氧自由基的长期刺激极有可能会引发机体的脂质过氧化,从而导致机体内一系列的代谢途径如脂类代谢、氨基酸代谢、TCA循环以及核苷酸代谢等的异常。喹赛多对机体的损伤还表现在肝脏的病理学检测上,我们发现喹赛多处理以后,肝脏中出现了细胞水样变性、点状坏死以及脂肪变性等异常。除此之外,作为一种广谱抗菌剂,喹赛多也显著地抑制了机体肠道菌群的生命活动。总体上来说,喹赛多对实验动物的影响表现出了明显的剂量依赖效应,不同种属的动物对喹赛多的反应有相似也有不同,Wistar大鼠对喹赛多的反应比Kunming小鼠要敏感。50mg/kg feed是喹赛多用作饲料添加剂的推荐剂量,在亚慢性毒理实验中,我们发现此剂量无论是对大鼠的尿样还是肾脏代谢组的影响都是非常轻微并且可以恢复的,没有发现血样的异常。但是长期喂饲此剂量的喹赛多,对肝脏还是有可能造成一定程度的影响。总之,在喹赛多的使用过程中,严格地控制其添加剂量并给予一定的恢复期,从代谢组的水平上来说是可行的。
     综上所述,本论文利用代谢组学和转录组学的研究方法系统地研究了喹赛多的毒理学性质。为喹赛多的食品安全评估提供了重要的参考。
As an antimicrobial growth promoter, cyadox has great potential to be used as additive in the feedstuff for livestock and poultry. However, a comprehensive food safety assessment should be performed before becoming feed additives. So far, there is no a report on how cyadox impacts on endogenous metabolites of animals, though many traditional toxicological studies of cyadox have been conducted. Therefore, in this paper, NMR-based metabonomic techniques were used to study the impact of cyadox on the endogenous metabolisms of Kunming mice. To further study metabolic responses of different species, endogenous metabolome changes induced by cyadox in Wistar rats were also investigated. On the basis of these two experiments, we also have designed a sub-chronic toxicological experiment on Wistar rats, in order to explore how endogenous metabolome changes under long-term cyadox exposure. In addition, transcriptomics profile was also used to investigate the variance of liver on transcriptome level.
     In the study of metabolic influence of acute cyadox exposure on Kunming mice, three groups of mice were respectively given a single dose of cyadox at three different concentrations (100,650and4000mg/kg body weight) via gavage. We present here the metabolic alterations of urine, plasma, liver and renal medulla extracts induced by cyadox exposure. The metabolic alterations induced by cyadox exposure are dose dependent and metabolic recovery is only achieved for low and moderate levels of cyadox exposure during experimental period. Cyadox exposure resulted in a disturbance of gut microbiota, which is manifested in the depleted levels of urinary hippurate, trimethylamine-N-oxide, dimethylamine and trimethylamine. In addition, cyadox exposure on high levels caused accumulations of amino acids and depletions of nucleotides in the liver. Furthermore, marked elevations of nucleotides and a range of organic osmolytes, such as myo-inositol, choline and glycerophosphocholine and decreased levels of amino acids are observed in the renal medulla of cyadox exposed mice. These results suggest that cyadox exposure causes inhibition of amino acids metabolism in the liver and disturbance of gut microbiota community, influences osmolytic homeostasis and nucleic acids synthesis in both the liver and the kidney.
     In the study of metabolic influence of acute cyadox exposure on Wistar rats, three groups of Wistar rats were respectively given a single dose of cyadox at three different concentrations (50,325and2000mg/kg body weight) via gavage. Compared to the mice, rats were more sensitive to cyadox mainly represented in the changes on the plasma profiles, an indication of inbalanced organism homeostasis. A series of significant changes including increased leucine, valine, methionine, asparagine, and creatine in moderate dose group and the elevated level of alanine, succinic acid, methionine, glucose and lactic acid and decreased lipid in the high-dose group were observed. In addition, no significant inhibition of amino acids metabolism in rat liver and no disturbance in the rat kidney were observed. However, disturbances of nucleic acid metabolism in the liver and gut microbiota were also observed in the rats.
     In the study of metabolic and transcriptome influences of sub-chronic cyadox exposure on Wistar rats, three groups of Wistar rats were respectively fed with foods containing three different concentrations of cyadox (50,150,2500mg/kg feed). Two weeks recovery were conducted before experiment ended. Results of metabonomic analysis showed that metabolites in urine of rats in low-and moderate-dose changed freely and were not in some rule. Kidney showed variance on the metabolism of amino acids and nucleic acids but no change was observed after two weeks recovery. Variations in the profiles of plasma were only observed in the high dose group during the entire experiment time. Cyadox seemed to have a cumulative effect on the profiles liver, The metabolic displacement increased as the dosage becomes high level. No obvious recovery was observed for rats exposed to moderate and high levels of cyadox. Moreover, disturbance even appeared in the rats of the low dose group, after two weeks recovery time, though no abnormal changes were observed during the dosed time. We further investigated gene expressions of the liver of high-dose group after12weeks cyadox administration. Genes involved drug metabolism such as Cyplal, Hsdllb1and Cyp2a2, involved lipid metabolism such as Scd, Acotl/2/4, Acsm2and Pexlla, involved glycolytic pathway and TCA cycle pathway such as Slc34a2and Pfkfbl, involved amino acid metabolic pathway such as Daao, involved transcriptional regulatory pathways such as Nfe2, Pir and Scyllbpl, involved inflammatory reaction pathway such Cxcll3, Tmem55a, Rtl-N and Icaml and involved nervous system pathway such as Fam134b, Scyllbpl, Colq, Gabbprl, Trim2, Epha4, Rtn4rll and Hspbl all changed significantly, which were mostly consistent with the metabolic changes.
     Mechanisms of cyadox action on organism were investigated in this thesis from transcriptome and metabolome aspects. Liver is the major metabolic organ for cyadox. A certain amount of reactive oxygen species (ROS) will be released during the process of cyadox metabolism and long-term stimulation of reactive oxygen species might cause lipid peroxidation, resulting disturbances in a series of metabolic pathways, such as in the lipid metabolism, amino acid metabolism, TCA cycle, nucleotide metabolism and so on. In addition, hydropic degeneration, punctate necrosis and fatty degeneration of hepatic cells were also observed in liver pathology. Moreover, as a broad-spectrum antibacterial agent, cyadox also suppressed the activity of the gut microbiota significantly. Overall, dose-dependent effect and different actions on different species were observed. Wistar rats were more sensitive to cyadox than Kunming mice. The dose of cyadox with50mg/kg feed is the recommended dose used as feed additives. In the sub-chronic toxicological experiments, rats'responses on this dosage on either urine or kidneys are very slight and can be restored and no abnormalities were observed on the plasma. However, long-term feeding of cyadox on this dose may cause a certain degree of influence on the liver. In short, it's practicable on the metabolic aspect for cyadox's used in livestock farming when the dosage was strictly controlled and some recovery time was given.
     In summary, this thesis provides a comprehensive view of the toxicological effects of cyadox with the help of metabolomics and transcriptomics profile, which is important in animal and human food safety.
引文
[1]Broz, J., Sevcik, B. Estimation of optimal effective dose of growth promotant cyadox in piglet rearing[J]. Biologizace a Chemizace Zivocisne Vyroby-Veterinaria 1979,15 (4):319-325.
    [2]Broz, J., Sevcik, B., Hebky, J. Growth-promoting activity of cyadox in piglet rearing[J]. Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde-Journal of Animal Physiology and Animal Nutrition 1979,41 (5):237-242.
    [3]陈孝煊,袁宗辉,范盛先,袁军法.喹赛多对鲤、银鲫生长的影响[J].水利渔业2004,(03):52-54.
    [4]王玉莲,袁宗辉,朱惠玲,邱银生,范盛先.喹赛多对断奶仔猪的生长性能和胴体品质的影响[J].华中农业大学学报2005,(01):59-62.
    [5]丁明星,王玉莲,朱惠玲,刘振利,袁宗辉.喹赛多对犊牛生长性能和血清生化指标的影响[J].华中农业大学学报2007,(04):507-510.
    [6]丁明星,王玉莲,朱惠玲,刘振利,袁宗辉.喹赛多对山羊生长性能及胴体品质的影响[J].中国兽医学报2008,142(10):1195-1198.
    [7]姚观崇,林彬全,郭俊杰,田允波.喹赛多对肉兔的促生长作用研究[J].仲恺农业技术学院学报2008,(01):6-9.
    [8]黄玲利,王玉莲,朱惠玲,袁宗辉.喹赛多对肉鸡的安全性评价[J].毒理学杂志2007,(04):335.
    [9]Liu, Z., Huang, L., Dai, M., Chen, D., Tao, Y., Wang, Y., Yuan, Z. Metabolism of cyadox in rat, chicken and pig liver microsomes and identification of metabolites by accurate mass measurements using electrospray ionization hybrid ion trap/time-of-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry 2009,23 (13):2026-2034.
    [10]Xu, N., Huang, L., Liu, Z., Pan, Y, Wang, X., Tao, Y, Chen, D., Wang, Y, Peng, D., Yuan, Z.H. Metabolism of cyadox by the intestinal mucosa microsomes and gut flora of swine, and identification of metabolites by high-performance liquid chromatography combined with ion trap/time-of-flight mass spectrometry [J]. Rapid Communications in Mass Spectrometry 2011,25 (16):2333-2344.
    [11]He, L., Liu, K., Su, Y, Zhang, J., Liu, Y, Zeng, Z., Fang, B., Zhang, G Simultaneous determination of cyadox and its metabolites in plasma by high-performance liquid chromatography tandem mass spectrometry [J]. Journal of Separation Science 2011,34 (15): 1755-1762.
    [12]Zheng, M., Jiang, J., Wang, J., Tang, X., Ouyang, M., Deng, Y. The mechanism of enzymatic and non-enzymatic N-oxide reductive metabolism of cyadox in pig liver[J]. Xenobiotica 2011,41 (11):964-971.
    [13]Cihak, R., Srb, V. Cytogenetic effects of quinoxaline-1,4-dioxide-type growth-promoting agents.1. micronucleus test in rats[J]. Mutation Research 1983,116 (2):129-135.
    [14]Cihak, R., Vontorkova, M. Cytogenetic effects of quinoxaline-1,4-dioxide-type growth-promoting agents.2. metaphase analysis in mice[J]. Mutation Research 1983,117 (3-4): 311-316.
    [15]Cihak, R., Vontorkova, M. Cytogenetic effects of quinoxaline-1,4-dioxide-type growth-promoting agents.3. trans-placental micronucleus test in mice[J]. Mutation Research 1985, 144 (2):81-84.
    [16]Schauder, S., Schroder, W., Geier, J. Olaquindox-induced airborne photoallergic contact dermatitis followed by transient or persistent light reactions in 15 pig breeders[J]. Contact Dermatitis 1996,35 (6):344-354.
    [17]Lonceint, J., Sassolas, B., Guillet, G Photoallergic reactions to olaquindox in swine raisers: role of growth promoters used in feed[J]. Annales de Dermatologie et de Venereologie 2001,128 (1):46-48.
    [18]Devries, H., Vanhenegouwen, G., Kalloe, F., Berkhuysen, M.H.J. Phototoxicity of olaquindox in the rat[J]. Research in Veterinary Science 1990,48 (2):240-244.
    [19]He, Q.H., Fang, GJ., Wang, Y.L., Wei, Z.C., Wang, D.J., Zhou, S.Q., Fan, S.X., Yuan, Z.H. Experimental evaluation of cyadox phototoxicity to Balb/c mouse skin[J]. Photodermatology Photoimmunology & Photomedicine 2006,22 (2):100-104.
    [20]Fang, GJ., He, Q.H., Zhou, S.Q., Wang, D.J., Zhang, Y.L., Yuan, Z.H. Subchronic oral toxicity study with cyadox in Wistar rats[J]. Food and Chemical Toxicology 2006,44 (1):36-41.
    [21]Wang, X., He, Q.-H., Wang, Y.-L., Ihsan, A., Huang, L.-L., Zhou, W., Su, S.-J., Liu, Z.-L. Yuan, Z.-H. A chronic toxicity study of cyadox in Wistar rats[J]. Regulatory Toxicology and Pharmacology 2011,59 (2):324-333.
    [22]Nicholson, J.K., Lindon, J.C., Holmes, E.'Metabonomics':understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica 1999,29 (11):1181-1189.
    [23]Tang, H.-R., Wang, Y.-L. Metabonomics:a revolution in progress[J]. Progress in Biochemistry and Biophysics 2006,33 (5):401-417.
    [24]Slupsky, C.M., Rankin, K.N., Wagner, J., Fu, H., Chang, D., Weljie, A.M., Saude, E.J., Lix, B., Adamko, D.J., Shah, S., Greiner, R., Sykes, B.D., Marrie, T. J. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles[J]. Analytical Chemistry 2007,79 (18):6995-7004.
    [25]裘祖文,裴奉奎.核磁共振波谱[M].科学出版社:1989.
    [26]Aue, W.P., Bartholdi, E., Ernst, R.R.2-Dimensional spectroscopy-application to nuclear magnetic-resonance[J]. Journal of Chemical Physics 1976,64 (5):2229-2246.
    [27]毛希安.现代核磁共振实用技术及应用[M].科学技术文献出版社:2000.
    [28]Lauridsen, M., Maher, A.D., Keun, H., Lindon, J.C., Nicholson, J.K., Nyberg, N.T., Hansen, S.H., Comett, C., Jaroszewski. J.W., Application of the FLIPSY pulse sequence for increased sensitivity in H-1 NMR-based metabolic profiling studies[J]. Analytical Chemistry 2008,80 (9): 3365-3371.
    [29]Van, Q.N., Chmurny, G.N., Veenstra, T.D. The depletion of protein signals in metabonomics analysis with the WET-CPMG pulse sequence[J]. Biochemical and Biophysical Research Communications 2003,301 (4):952-959.
    [30]Craig, A., Cloarec, O., Holmes, E., Nicholson, J.K., Lindon, J.C. Scaling and normalization effects in NMR spectroscopic metabonomic data sets[J]. Analytical Chemistry 2006,78 (7): 2262-2267.
    [31]Warrack, B.M., Hnatyshyn, S., Ott, K.-H., Reily, M.D., Sanders, M., Zhang, H., Drexler, D.M. Normalization strategies for metabonomic analysis of urine samples[J]. Journal of Chromatography B 2009,877 (5):547-552.
    [32]Webb-Robertson, B.-J.M., Lowry, D.F., Jarman, K.H., Harbo, S.J., Meng, Q.R., Fuciarelli, A.F., Pounds, J.G., Lee, K.M. A study of spectral integration and normalization in NMR-based metabonomic analyses[J]. Journal of Pharmaceutical and Biomedical Analysis 2005,39 (3): 830-836.
    [33]Bollard, M.E., Stanley, E.G, Lindon, J.C., Nicholson, J.K., Holmes, E. NMR- based metabonomic approaches for evaluating physiological influences on biofluid composition[J]. N M R in Biomedicine 2005,18 (3):143-162.
    [34]Keun, H.C., Ebbels, T.M., Bollard, M.E., Beckonert, O., Antti, H., Holmes, E., Lindon, J.C., Nicholson, J.K. Geometric trajectory analysis of metabolic responses to toxicity can define treatment specific profiles[J]. Chemical Research in Toxicology 2004,17 (5):579-587.
    [35]Brindle, J.T., Antti, H., Holmes, E., Tranter, G., Nicholson, J.K., Bethell, H.W., Clarke, S., Schofield, P.M., McKilligin, E., Mosedale, D.E. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using lH-NMR-based metabonomics[J]. Nature Medicine 2002,8 (12):1439-1445.
    [36]Waters, N.J., Waterfield, C.J., Farrant, R.D., Holmes, E., Nicholson, J.K. Metabonomic deconvolution of embedded toxicity:application to thioacetamide hepato-and nephrotoxicity[J]. Chemical Research in Toxicology 2005,18 (4):639-654.
    [37]Mortishire-Smith, R.J., Skiles, G.L., Lawrence, J.W., Spence, S., Nicholls, A.W., Johnson, B.A., Nicholson, J.K. Use of metabonomics to identify impaired fatty acid metabolism as the mechanism of a drug-induced toxicity[J]. Chemical Research in Toxicology 2004,17 (2):165-173.
    [38]Dieterle, F., Ross, A., Schlotterbeck, G., Senn, H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics[J]. Analytical Chemistry 2006,78 (13):4281-4290.
    [39]van den Berg, R.A., Hoefsloot, H.C., Westerhuis, J.A., Smilde, A.K., van der Werf, M.J. Centering, scaling, and transformations: improving the biological information content of metabolomics data[J]. BMC Genomics 2006,7(1):142.
    [40]Bro, R., Smilde, A.K. Centering and scaling in component analysis[J]. Journal of Chemometrics 2003,17 (1):16-33.
    [41]Jackson, J.E. A user's guide to principal components[M]. Wiley-Interscience:2005; Vol.244.
    [42]Eriksson, L. Introduction to multi-and megavariate data analysis using projection methods (PCA & PLS)[M]. Umetrics AB:1999.
    [43]Pearson, K. On lines and planes of closest fit to systems of points in space[J]. Philosophical Magazine 1901,2 (7-12):559-572.
    [44]Lindberg, W., Persson, J.A., Wold, S. Partial least-squares method for spectrofluorimetric analysis of mixtures of humic-acid and ligninsulfonate[J]. Analytical Chemistry 1983,55 (4): 643-648.
    [45]许国旺.代谢组学——方法与应用[M].2008.
    [46]Trygg, J., Wold, S. Orthogonal projections to latent structures (O-PLS)[J]. Journal of Chemometrics 2002,16 (3):119-128.
    [47]Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection[R], International joint Conference on artificial intelligence,1995; Lawrence Erlbaum Associates Ltd:1995:1137-1145.
    [48]Lindgren, F., Hansen, B., Karcher, W., Sjostrom, M, Eriksson, L. Model validation by permutation tests:Applications to variable selection[J]. Journal of Chemometrics 1996,10 (5-6): 521-532.
    [49]Eriksson, L., Trygg, J., Wold, S. CV- ANOVA for significance testing of PLS and OPLS(?) models[J]. Journal of Chemometrics 2008,22(11-12):594-600.
    [50]Eriksson, L. Multi-and megavariate data analysis[M]. Umetrics Ab:2006.
    [51]Eriksson, L., Trygg, J., Wold, S. CV-ANOVA for significance testing of PLS and OPLS (R) models[J]. Journal of Chemometrics 2008,22 (11-12):594-600.
    [52]Cloarec, O., Dumas, M.E., Trygg, J., Craig, A., Barton, R.H., Lindon, J.C., Nicholson, J.K., Holmes, E. Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in H-1 NMR spectroscopic metabonomic studies[J]. Analytical Chemistry 2005,77 (2):517-526.
    [53]Cloarec, O., Dumas, M.E., Craig, A., Barton, R.H., Trygg, J., Hudson, J., Blancher, C., Gauguier, D., Lindon, J.C., Holmes, E., Nicholson, J. Statistical total correlation spectroscopy:An exploratory approach for latent biomarker identification from metabolic H-1 NMR data sets[J]. Analytical Chemistry 2005,77 (5):1282-1289.
    [54]Ozaki, Y. Two-dimensional near infrared correlation spectroscopy:principle and its applications[J]. Journal of Near Infrared Spectroscopy 1998,6:19.
    [55]Maher, A.D., Crockford, D., Toft, H., Malmodin, D., Faber, J.H., McCarthy, M.I., Barrett, A., Allen, M., Walker, M., Holmes, E. Optimization of human plasma 1H NMR spectroscopic data processing for high-throughput metabolic phenotyping studies and detection of insulin resistance related to type 2 diabetes[J]. Analytical Chemistry 2008,80 (19):7354-7362.
    [56]Holmes, E., Cloarec, O., Nicholson, J. Probing latent biomarker signatures and in vivo pathway activity in experimental disease states via statistical total correlation spectroscopy (STOCSY) of biofluids:application to HgC12 toxicity[J]. Journal of proteome research 2006,5 (6):1313-1320.
    [57]Sands, C.J., Coen, M., Maher, A.D., Ebbels, T.M., Holmes, E., Lindon, J.C., Nicholson, J.K. Statistical total correlation spectroscopy editing of 1H NMR spectra of biofluids:application to drug metabolite profile identification and enhanced information recovery[J]. Analytical Chemistry 2009,81 (15):6458-6466.
    [58]Blaise, B.J., Navratil, V., Domange, C.I., Shintu, L., Dumas, M.-E., Elena-Herrmann, B.n.d., Emsley, L., Toulhoat, P. Two-dimensional statistical recoupling for the identification of perturbed metabolic networks from NMR spectroscopy [J]. Journal of proteome research 2010,9 (9): 4513-4520.
    [59]Blaise, B.J., Navratil, V., Emsley, L., Toulhoat, P. Orthogonal Filtered Recoupled-STOCSY to Extract Metabolic Networks Associated with Minor Perturbations from NMR Spectroscopy [J]. Journal of proteome research 2011,10 (9):4342-4348.
    [60]Nicholson, J.K., Wilson, I.D. Understanding 'global' systems biology:Metabonomics and the continuum of metabolism[J]. Nature Reviews Drug Discovery 2003,2(8):668-676.
    [61]Holmes, E., Bonner, F.W., Sweatman, B.C., Lindon, J.C., Beddell, C.R., Rahr, E., Nicholson, J.K. Nuclear-magnetic-resonance spectroscopy and pattern-recognition analysis of the biochemical processes associated with the progression of and recovery from nephrotoxic lesions in the rat induced by mercury(II) chloride and 2-bromoethanamine[J]. Molecular Pharmacology 1992,42 (5):922-930.
    [62]Beckwith-Hall, B.M., Nicholson, J.K., Nicholls, A.W., Foxall, P.J.D., Lindon, J.C., Connor, S.C., Abdi, M., Connelly, J., Holmes, E. Nuclear magnetic resonance spectroscopic and principal components analysis investigations into biochemical effects of three model hepatotoxins[J]. Chemical Research in Toxicology 1998,11 (4):260-272.
    [63]Lindon, J.C., Nicholson, J.K., Holmes, E., Antti, H., Bollard, M.E., Keun, H., Beckonert, O., Ebbels, T.M., Reilly, M.D., Robertson, D., Stevens, GJ., Luke, P., Breau, A.P., Cantor, GH., Bible, R.H., Niederhauser, U., Senn, H., Schlotterbeck, G, Sidelmann, U.G, Laursen, S.M., Tymiak, A., Car, B.D., Lehman-McKeeman, L., Colet, J.M., Loukaci, A., Thomas, C. Contemporary issues in toxicology- The role of metabonomics in toxicology and its evaluation by the COMET project[J]. Toxicology and Applied Pharmacology 2003,187 (3):137-146.
    [64]Lindon, J.C., Keun, H.C., Ebbels, T.M.D., Pearce, J.M.T., Holmes, E., Nicholson, J.K. The Consortium for Metabonomic Toxicology (COMET):aims, activities and achievements[J]. Pharmacogenomics 2005,6 (7):691-699.
    [65]Salek, R.M., Maguire, M.L., Bentley, E., Rubtsov, D.V., Hough, T., Cheeseman, M., Nunez, D., Sweatman, B.C., Haselden, J.N., Cox, R.D., Connor, S.C., Griffin, J.L. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human[J]. Physiological Genomics 2007,29 (2):99-108.
    [66]Akira, K., Masu, S., Imachi, M., Mitome, H., Hashimoto, M., Hashimoto, T. H-1 NMR-based metabonomic analysis of urine from young spontaneously hypertensive rats[J]. Journal of Pharmaceutical and Biomedical Analysis 2008,46 (3):550-556.
    [67]Wu, J.-F., Holmes, E., Xue, J., Xiao, S.-H., Singer, B.H., Tang, H.-R., Utzinger, J., Wang, Y.-L. Metabolic alterations in the hamster co-infected with Schistosoma japonicum and Necator americanus[J]. International Journal for Parasitology 2010,40 (6):695-703.
    [68]Zhao, X., Zhang, Y, Meng, X., Yin, P., Deng, C., Chen, J., Wang, Z., Xu, G Effect of a traditional Chinese medicine preparation Xindi soft capsule on rat model of acute blood stasis:A urinary metabonomics study based on liquid chromatography-mass spectrometry[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2008,873 (2): 151-158.
    [69]倪艳霞,刘安强,高云峰,王卫红,宋亚贵,王丽辉,张玉华.黄连素治疗II型糖尿病60例疗效观察及实验研究[J].中西医结合杂志1988,(12):711-713+707.
    [70]Gu, Y, Zhang, Y, Shi, X., Li, X., Hong, J., Chen, J., Gu, W., Lu, X., Xu, G, Ning, G Effect of traditional Chinese medicine berberine on type 2 diabetes based on comprehensive metabonomics[J]. Talanta 2010,81 (3):766-772.
    [71]Nicholson, J.K., Connelly, J., Lindon, J.C., Holmes, E. Metabonomics:a platform for studying drug toxicity and gene function[J]. Nature Reviews Drug Discovery 2002,1 (2):153-161.
    [72]Harrigan, G.G, Goodacre, R. Metabolic profiling:its role in biomarker discovery and gene function analysis[M]. Kluwer Academic Pub:2003.
    [73]Li, J., Huang, C., Zheng, D., Wang, Y., Yuan, Z. CcpA-Mediated Enhancement of Sugar and Amino Acid Metabolism in Lysinibacillus sphaericus by NMR-Based Metabolomics[J]. Journal of proteome research 2012,11 (9):4654-4661.
    [74]Watanabe, H. Toxicogenomics as a tool for evaluation of chemical effects[J]. Yakugaku zasshi: Journal oj the Pharmaceutical Society of Japan 2007,127(12):1967.
    [75]Battershill, J.M. Toxicogenomics:regulatory perspective on current position[J]. Human & Experimental Toxicology 2005,24 (1):35-40.
    [76]Wang, Z., Gerstein, M., Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics[J]. Nature Reviews Genetics 2009,10(1):57-63.
    [77]Schena, M., Shalon, D., Davis, R.W. Brown, P.O., Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J]. Science 1995,270 (5235): 467-470.
    [78]刘连新,王秀琴,吴旻.微阵列(Microarray)技术原理及应用[J].高技术通讯2000,4:100-103.
    [79]Huang, L., Yuan, Z., Fan, S., Liu, D., Chen, P., Wang, D. In vitro Antibacterial Activity of Cyadox on Poultry Bacteria[J]. Journal of South China Agricultural University.Natural Science Edition 2003,24 (2):81-83.
    [80]Hodrova, B., Marounek, M., Novozamska, K. Action of antimicrobial feed additives on metabolite production in the anaerobic rumen fungi[J]. Biologizace a Chemizace Zivocisne Vyroby-Veterinaria 1990,26 (6):495-501.
    [81]Nabuurs, M.J., van der Molen, E.J., de Graaf, G.J., Jager, L.P. Clinical signs and performance of pigs treated with different doses of carbadox, cyadox and olaquindox[J]. Zentralblatt fur Veterinarmedizin. Reihe A 1990,37 (1):68-76.
    [82]Wang, Y., Yuan, Z., Zhu, H., Ding, M., Fan, S. Effect of cyadox on growth and nutrient digestibility in weanling pigs[J]. South African Journal of Animal Science 2005,35 (2):117-125.
    [83]Sestakova, I.,Skarka, P., Residue elimination after the administration of cyadox to pigs[J]. Biologizace a Chemizace Zivocisne Vyroby-Veterinaria 1986,22 (3):209-214.
    [84]Huang, X.-J., Zhang, H.-H., Wang, X., Huang, L.-L., Zhang, L.-Y, Yan, C.-X., Liu, Y, Yuan, Z.-H. ROS mediated cytotoxicity of porcine adrenocortical cells induced by QdNOs derivatives in vitro[J]. Chemico-Biological Interactions 2010,185 (3):227-234.
    [85]Lewis, H.B. Studies in the synthesis of hippuric acid in the animal organism. Ⅱ. The synthesis and rate of elimination of hippuric acid after benzoate ingestion in man[J]. Journal of Biological Chemistry 1914,18 (2):225-231.
    [86]Lewis, H.B. Studies on the synthesis of hippuric acid in the animal organism. I. The synthesis of hippuric acid in rabbits on a glycocoll-free diet[J]. Journal of Biological Chemistry 1914,17 (4): 503-508.
    [87]Lewis, H.B. Studies on the synthesis of hippuric acid in the animal organism. IV. A note on the synthesis of hippuric acid in the rabbit after exclusion of bile from the intestine[J]. Journal of Biological Chemistry 1921,46 (1):73-75.
    [88]Gatley, S.J., Sherratt, H.S.A. Synthesis of hippurate from benzoate and glycine by rat-liver mitochondria-submitochondrial localization and kinetics[J]. Biochemical Journal 1977,166 (1): 39-47.
    [89]Rechner, A.R., Kuhnle, G., Bremner, P. Hubbard, G.P., Moore, K.P.,Rice-Evans, C.A., The metabolic fate of dietary polyphenols in humans[J]. Free Radical Biology and Medicine 2002,33 (2):220-235.
    [90]Gilbson, D.T. Microbial degradation of aromatic compounds[J]. Science (New York, N. Y) 1968,161 (3846):1093-1097.
    [91]Holmes, E., Li, J.V., Athanasiou, T., Ashrafian, H., Nicholson, J.K. Understanding the role of gut microbiome-host metabolic signal disruption in health and disease[J]. Trends in Microbiology 2011,19 (7):349-359.
    [92]Smith, J.L., Wishnok, J.S., Deen, W.M. Metabolism and excretion of methylamines in rats[J]. Toxicology and Applied Pharmacology 1994,125 (2):296-308.
    [93]Bjerrum, J.T., Nielsen, O.H., Hao, F., Tang, H., Nicholson, J.K., Wang, Y, Olsen, J. Metabonomics in Ulcerative Colitis: Diagnostics, Biomarker Identification, And Insight into the Pathophysiology[J]. Journal of proteome research 2010,9 (2):954-962.
    [94]Stanley, E.G, Bailey, N.J.C., Bollard, M.E., Haselden, J.N., Waterfield, C.J., Holmes, E., Nicholson, J.K. Sexual dimorphism in urinary metabolite profiles of Han Wistar rats revealed by nuclear-magnetic-resonance-based metabonomics[J]. Analytical Biochemistry 2005,343 (2): 195-202.
    [95]Alnouti, Y, Klaassen, CD. Tissue distribution and ontogeny of sulfotransferase enzymes in mice[J]. Toxicological Sciences 2006,93 (2):242-255.
    [96]Notten, W., Henderson, P.T. The interaction of chemical compounds with the functional state of the liver[J]. International Archives of Occupational and Environmental Health 1977,38 (3): 209-220.
    [97]Sirica, A.E., Pitot, H. Drug metabolism and effects of carcinogens in cultured hepatic cells[J]. Pharmacological Reviews 1979,31 (3):205-228.
    [98]Schrand, A.M., Rahman, M.F., Hussain, S.M., Schlager, J.J., Smith, D.A., Syed, A.F. Metal-based nanoparticles and their toxicity assessment[J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology 2010,2 (5):544-568.
    [99]Gallazzini, M., Burg, M.B. What's New About Osmotic Regulation of Glycerophosphocholine[J]. Physiology 2009,24 (4):245-249.
    [100]Tseng, H.C., Graves, D.J. Natural methylamine osmolytes, trimethylamine N-oxide and betaine, increase tau-induced polymerization of microtubules[J]. Biochemical and Biophysical Research Communications 1998,250 (3):726-730.
    [101]Brosnan, J.T. Interorgan amino acid transport and its regulation[J]. Journal of Nutrition 2003,133 (6):2068S-2072S.
    [102]Solter, P., Liu, Z.L., Guzman, R. Decreased hepatic ALT synthesis is an outcome of subchronic microcystin-LR toxicity[J]. Toxicology and Applied Pharmacology 2000,164 (2): 216-220.
    [103]Zhao, X.-J., Hao, F., Huang, C., Rantalainen, M., Lei, H., Tang, H., Wang, Y. Systems Responses of Rats to Mequindox Revealed by Metabolic and Transcriptomic Profiling[J]. Journal of proteome research 2012,11 (9):4712-4721.
    [104]Kluwe, W.M., Hook, J.B. Comparative induction of xenobiotic metabolism in rodent kidney, testis and liver by commercial mixtures of polybrominated biphenyls and polychlorinated biphenyls, phenobarbital and 3-methyIcholanthrene:Absolute and temporal effects[J]. Toxicology 1981,20 (2):259-273.
    [105]Neuhofer, W., Beck, F.X. Survival in hostile environments:Strategies of renal medullary cells[J]. Physiology 2006,21:171-180.
    [106]Yamauchi, A., Sugiura, T., Kitamura, H., Matsuoka, Y, Imai, E., Hori, M. Expression of the Na+/myo-inositol cotransporter in the juxtaglomerular region[J]. Kidney International 1998,54: S183-S185.
    [107]Hallemeesch, M.M., Soeters, P.B., Deutz, N.E.P. Renal arginine and protein synthesis are increased during early endotoxemia in mice[J]. American Journal of Physiology-Renal Physiology 2002,282(2):F316-F323.
    [108]方桂杰.喹赛多临床前毒理学安全性评价[D].华中农业大学,2006.
    [109]方桂杰,袁宗辉.喹赛多急性毒性和致突变性实验研究[J].中兽医医药杂志2001:56-58.
    [110]何庆华.喹赛多的皮肤光敏毒性和长期毒性研究[D].华中农业大学,2005.
    [111]1Delaforge, M., Pruvost, A., Perrin, L., Andre, F. Cytochrome P450-mediated oxidation of glucuronide derivatives:Example of estradiol-17 beta-glucuronide oxidation to 2-hydroxyestradiol-17 beta-glucuronide by CYP2C8[J]. Drug Metabolism and Disposition 2005, 33 (3):466-473.
    [112]Nelson, D.R., Koymans, L., Kamataki, T., Stegeman, J.J., Feyereisen, R., Waxman, D.J., Waterman, M.R. Gotoh, O., Coon, M.J., Estabrook, R.W., Gunsalus, I.C.,Nebert, D.W., P450
    superfamily:Update on new sequences, gene mapping, accession numbers and nomenclature[J]. Pharmacogenetics 1996,6(1):1-42.
    [113]Li, D., Wang, Y., Han, K. Recent density functional theory model calculations of drug metabolism by cytochrome P450[J]. Coordination Chemistry Reviews 2012,256 (11-12): 1137-1150.
    [114]Ortiz De Montellano, P.R. Structure, mechanism, and inhibition of cytochrome P450[J]. Drug Metabolism and Disposition 1995,23 (11):1181-1187.
    [115]Handschin, C., Podvinec, M., Amherd, R., Looser, R., Ourlin, J.C., Meyer, U.A. Cholesterol and bile acids regulate xenosensor signaling in drug-mediated induction of cytochromes P450[J]. Journal of Biological Chemistry 2002,277 (33):29561-29567.
    [116]Nelson, D.R. Cytochrome P450 and the individuality of species[J]. Archives of Biochemistry and Biophysics 1999,369 (1):1-10.
    [117]Kliewer, S.A., Goodwin, B., Willson, T.M. The nuclear pregnane X receptor:A key regulator of xenobiotic metabolism[J]. Endocrine Reviews 2002,23 (5):687-702.
    [118]Turrens, J.F. Mitochondrial formation of reactive oxygen species[J]. Journal of Physiology-London 2003,552 (2):335-344.
    [119]Anonymous. Hepatic toxicity of pyrazinamide used with isoniazid in tuberculous patients-united-states-public-health-service tuberculosis therapy trial[J]. American Review of Respiratory Disease 1959,80 (3):371-387.
    [120]Castillo, C., Salazar, V., Ariznavarreta, C., Fossati, M., Tresguerres, J.A.F., Vara, E. Effect of S-adenosylmethionine on age-induced hepatocyte damage in old Wistar rats[J]. Biogerontology 2005,6 (5):313-323.
    [121]Kirsch, S.H., Knapp, J.-P., Geisel, J., Herrmann, W., Obeid, R. Simultaneous quantification of S-adenosyl methionine and S-adenosyl homocysteine in human plasma by stable-isotope dilution ultra performance liquid chromatography tandem mass spectrometry[J]. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 2009,877 (30): 3865.
    [122]Rhodes, D., Yang, W.J., Samaras, Y, Wood, K.V., Bonham, C.C., Rhodes, J.C., Burr, B. Map locations of genes conferring glycinebetaine and trigonelline accumulation in maize[J]. Plant Physiology 1993,102 (1):160-160.
    [123]Lemire, J., Mailloux, R., Appanna, V.D. Zinc-toxicity alters mitochondrial metabolism and leads to decreased ATP production in hepatocytes[J]. Journal of Applied Toxicology 2008,28 (2): 175-182.
    [124]Fiske, C.H., Subbarow, Y. Special articles-The nature of the "inorganic phosphate" in voluntary muscle[J]. Science 1927,65:401-403.
    [125]Eggleton, P., Eggleton, G.P. The inorganic phosphate and a labile form of organic phosphate in the gastrocnemius of the frog[J]. Biochemical Journal 1927,21 (1):190-195.
    [126]Lee, H.J., Fillers, W.S., Iyengar, M.R. Phosphocreatine, an intracellular high-energy compound, is found in the extracellular fluid of the seminal-vesicles in mice and rats[J]. Proceedings of the National Academy of Sciences of the United States of America 1988,85 (19): 7265-7269.
    [127]Hashimoto, T., Cook, W.S., Qi, C., Yeldandi, A.V., Reddy, J.K., Rao, M.S. Defect in peroxisome proliferator-activated receptor α-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting[J]. Journal of Biological Chemistry 2000,275 (37): 28918-28928.
    [128]Heijboer, A.C., Donga, E., Voshol, P.J., Dang, Z.-C., Havekes, L.M., Romijn, J.A., Corssmit, E.P. Sixteen hours of fasting differentially affects hepatic and muscle insulin sensitivity in mice[J]. Journal of Lipid Research 2005,46 (3):582-588.
    [129]Heneghan, J.B. Influence of microbial flora on xylose absorption in rats and mice[J]. American Journal of Physiology 1963,205 (3):417-420.
    [130]Huang, C., Lei, H., Zhao, X., Tang, H., Wang, Y. Metabolic Influence of Acute Cyadox Exposure on Kunming Mice[J]. Journal ofproteome research 2013,12 (1):529-537.
    [131]Perez-Cobas, A.E., Gosalbes, M.J., Friedrichs, A., Knecht, H., Artacho, A., Eismann, K., Otto, W., Rojo, D., Bargiela, R., von Bergen, M. Gut microbiota disturbance during antibiotic therapy:a multi-omic approach[J]. Gut 2012.
    [132]Dumas, M.-E., Barton, R.H., Toye, A., Cloarec, O., Blancher, C., Rothwell, A., Fearnside, J., Tatoud, R., Blanc, V., Lindon, J.C., Mitchell, S.C., Holmes, E., McCarthy, M.I., Scott, J., Gauguier, D., Nicholson, J.K. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice[J]. Proceedings of the National Academy of Sciences of the United States of America 2006,103 (33):12511-12516.
    [133]Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U., Speed, T.P. Exploration, normalization, and summaries of high density oligonucleotide array probe level data[J]. Biostatistics 2003,4 (2):249-264.
    [134]Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Research 2001,29 (9):e45-e45.
    [135]Gabaldon, T. Peroxisome diversity and evolution[J]. Philosophical Transactions of the Royal Society B-Biological Sciences 2010,365 (1541):765-773.
    [136]Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., Darnell, J. Molecular cell biology[M]. New York.2000.
    [137]Lazarow, P.B., Fujiki, Y. Biogenesis of peroxisomes[J]. Annual Review of Cell Biology 1985, 1:489-530.
    [138]Leone, T.C., Weinheimer, C.J., Kelly, D.P. A critical role for the peroxisome proliferator-activated receptor alpha (PPAR alpha) in the cellular fasting response:The PPAR alpha-null mouse as a model of fatty acid oxidation disorders[J]. Proceedings of the National Academy of Sciences of the United States of America 1999,96 (13):7473-7478.
    [139]Wanders, R.J.A., Tager, J.M. Lipid metabolism in peroxisomes in relation to human disease[J]. Molecular Aspects of Medicine 1998,19 (2):69-154.
    [140]Wanders, R.J.A., Waterham, H.R. Biochemistry of mammalian peroxisomes revisited. In Annual Review of Biochemistry 2006,.75:295-332.
    [141]Koch, J., Pranjic, K., Huber, A., Ellinger, A., Hartig, A., Kragler, F., Brocard, C. PEX11 family members are membrane elongation factors that coordinate peroxisome proliferation and maintenance[J]. Journal of Cell Science 2010,123 (19):3389-3400.
    [142]Li, X.L., Gould, S.J. PEX11 promotes peroxisome division independently of peroxisome metabolism[J]. Journal of Cell Biology 2002,156 (4):643-651.
    [143]Schrader, M., Reuber, B.E., Morrell, J.C., Jimenez-Sanchez, G., Obie, C., Stroh, T.A., Valle, D., Schroer, T.A., Gould, S.J. Expression of PEX11 beta mediates peroxisome proliferation in the absence of extracellular stimuli[J]. Journal of Biological Chemistry 1998,273 (45):29607-29614.
    [144]Subramani, S. Protein import into peroxisomes and biogenesis of the organelle[J]. Annual Review of Cell Biology 1993,9:445-478.
    [145]Li, X., Baumgart, E., Morrell, J.C., Jimenez-Sanchez, G., Valle, D., Gould, S.J. PEX11β deficiency is lethal and impairs neuronal migration but does not abrogate peroxisome function[J]. Molecular and Cellular Biology 2002,22 (12):4358-4365.
    [146]Brocker, C., Carpenter, C., Nebert, D.W., Vasiliou, V. Evolutionary divergence and functions of the human acyl-CoA thioesterase gene (ACOT) family[J]. Human genomics 2010,4 (6): 411-420.
    [147]Hunt, M.C., Solaas, K., Kase, B.F., Alexson, S.E.H. Characterization of an acyl-CoA thioesterase that functions as a major regulator of peroxisomal lipid metabolism[J]. Journal of Biological Chemistry 2002,277 (2):1128-1138.
    [148]Boomgaarden, I., Vock, C., Klapper, M., Doering, F. Comparative Analyses of Disease Risk Genes Belonging to the Acyl-CoA Synthetase Medium-Chain (ACSM) Family in Human Liver and Cell Lines[J]. Biochemical Genetics 2009,47 (9-10):739-748.
    [149]Dobrzyn, P., Dobrzyn, A., Miyazaki, M., Cohen, P., Asilmaz, E., Hardie, D.G, Friedman, J.M., Ntambi, J.M. Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver[J]. Proceedings of the National Academy of Sciences of the United States of America 2004,101 (17):6409-6414.
    [150]Attie, A.D., Krauss, R.M., Gray-Keller, M.P., Brownlie, A., Miyazaki, M., Kastelein, J.J., Lusis, A.J., Stalenhoef, A.F.H., Stoehr, J.P., Hayden, M.R., Ntambi, J.M. Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia[J]. Journal of Lipid Research 2002,43 (11):1899-1907.
    [151]Yamazaki, K., Kuromitsu, J., Tanaka, I. Microarray analysis of gene expression changes in mouse liver induced by peroxisome proliferator activated receptor alpha agonists[J]. Biochemical and Biophysical Research Communications 2002,290 (3):1114-1122.
    [152]Di Leandro, L., Maras, B., Schinina, M.E., Dupre, S., Koutris, I., Martin, F.M., Naquet, P., Galland, F., Pitari, G Cystamine restores GSTA3 levels in Vanin-1 null mice[J]. Free Radical Biology and Medicine 2008,44 (6):1088-1096.
    [153]Seidah, N.G., Benjannet, S., Wickham, L., Marcinkiewicz, J., Jasmin, S.B., Stifani, S., Basak, A., Prat, A., Chretien, M. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1):liver regeneration and neuronal differentiation[J]. Proceedings of the National Academy of Sciences 2003,100 (3):928-933.
    [154]Benjannet, S., Rhainds, D., Essalmani, R., Mayne, J., Wickham, L., Jin, W., Asselin, M.-C., Hamelin, J., Varret, M., Allard, D. NARC-1/PCSK9 and its natural mutants zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol[J]. Journal of Biological Chemistry 2004,279 (47):48865-48875.
    [155]Maxwell, K.N., Fisher, E.A., Breslow, J.L. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment[J]. Proceedings of the National Academy of Sciences of the United States of America 2005,102 (6):2069-2074.
    [156]Park, S.W., Moon, Y.-A., Horton, J.D. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver[J]. Journal of Biological Chemistry 2004,279 (48):50630-50638.
    [157]Abifadel, M., Varret, M., Rabes, J.-P., Allard, D., Ouguerram, K., Devillers, M., Cruaud, C., Benjannet, S., Wickham, L., Erlich, D. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia[J]. Nature Genetics 2003,34 (2):154-156.
    [158]Weisgraber, K.H., Bersot, T.P., Mahley, R.W. Isolation and characterization of an apoprotein from the d< 1.006 lipoproteins of human and canine lymph homologous with the rat A-IV apoprotein[J]. Biochemical and Biophysical Research Communications 1978,85 (1):287-292.
    [159]Steinmetz, A., Barbaras, R., Ghalim, N., Clavey, V., Fruchart, J., Ailhaud, G Human apolipoprotein A-IV binds to apolipoprotein AI/A-Ⅱ receptor sites and promotes cholesterol efflux from adipose cells[J]. Journal of Biological Chemistry 1990,265 (14):7859-7863.
    [160]Li, A.C., Tanaka, R., Callaway, K., Fogelman, A., Edwards, P. Localization of 3-hydroxy-3-methylglutaryl CoA reductase and 3-hydroxy-3-methylglutaryl CoA synthase in the rat liver and intestine is affected by cholestyramine and mevinolin[J]. Journal of Lipid Research 1988,29 (6):781-796.
    [161]Dietschy, J.M., Turley, S.D., Spady, D.K. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans[J]. Journal of Lipid Research 1993,34 (10):1637-1659.
    [162]Ness, GC., Chambers, C.M. Feedback and Hormonal Regulation of Hepatic 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase:The Concept of Cholesterol Buffering Capacity[J]. Proceedings of the Society for Experimental Biology and Medicine 2008,224 (1):8-19.
    [163]Androutsopoulos, V.P., Tsatsakis, A.M., Spandidos, D.A. Cytochrome P450 CYP1A1:wider roles in cancer progression and prevention[J]. BMC Cancer 2009,9 (1):187.
    [164]Carlet, M., Janjetovic, K., Rainer, J., Schmidt, S., Panzer-Gruemayer, R., Mann, G, Prelog, M., Meister, B., Ploner, C., Kofler, R. Expression, regulation and function of phosphofructo-kinase/fructose-biphosphatases (PFKFBs) in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia cells[J]. BMC Cancer 2010,10.
    [165]Rider, M.H., Bertrand, L., Vertommen, D., Michels, P.A., Rousseau, G.G., Hue, L. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase:head-to-head with a bifunctional enzyme that controls glycolysis[J]. Biochemical Journal 2004,381 (Pt 3):561.
    [166]Colosia, A.D., Lively, M., El-Maghrabi, M.R., Pilkis, S.J. Isolation of a cDNA clone for rat liver 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase[J]. Biochemical and Biophysical Research Communications 1987,143 (3):1092-1098.
    [167]Pollegioni, L., Piubelli, L., Sacchi, S., Pilone, M., Molla, G. Physiological functions of D-amino acid oxidases:from yeast to humans[J]. Cellular and Molecular Life Sciences 2007,64 (11):1373-1394.
    [168]Perotti, M., Gavazzi, E., Trussardo, L., Malgaretti, N., Curti, B. Immunoelectron microscopic localization of D-amino acid oxidase in rat kidney and liver[J]. The Histochemical Journal 1987,19 (3):157-169.
    [169]Usuda, N., Yokota, S., Hashimoto, T., Nagata, T. Immunocytochemical localization of D-amino acid oxidase in the central clear matrix of rat kidney peroxisomes[J]. Journal of Histochemistry and Cytochemistry 1986,34 (12):1709-1718.
    [170]Stefanini, S., Serafini, B., Cimini, A., Sartori, C. Differentiation of kidney cortex peroxisomes in fetal and newborn rats[J]. Biology of the Cell 1994,82 (2):185-193.
    [171]Johkura, K., Usuda, N., Liang, Y, Nakazawa, A. Immunohistochemical localization of peroxisomal enzymes in developing rat kidney tissues[J]. Journal of Histochemistry and Cytochemistry 1998,46 (10):1161-1173.
    [172]Momoi, K., Fukui, K., Watanabe, F., Miyake, Y Molecular cloning and sequence analysis of cDNA encoding human kidney D-amino acid oxidase[J]. FEBSLetters 1988,238 (1):180-184.
    [173]Chan, K., Lu, R., Chang, J.C., Kan, Y.W. NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and developmen[J]. Proceedings of the National Academy of Sciences 1996,93 (24):13943-13948.
    [174]Pang, H., Bartlam, M., Zeng, Q., Miyatake, H., Hisano, T., Miki, K., Wong, L.-L., Gao, G.F., Rao, Z. Crystal structure of human pirin[J]. Journal of Biological Chemistry 2004,279 (2): 1491-1498.
    [175]Liu, Y, Chen, Y, Lu, X., Wang, Y, Duan, Y, Cheng, C., Shen, A. SCYL1BP1 modulates neurite outgrowth and regeneration by regulating the Mdm2/p53 pathway[J]. Molecular Biology of the Cell 2012,23 (23):4506-4514.
    [176]Legler, D.F., Loetscher, M., Roos, R.S., Clark-Lewis, I., Baggiolini, M., Moser, B. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5[J]. Journal of Experimental Medicine 1998,187 (4): 655-660.
    [177]Gunn, M.D., Ngo, V.N., Ansel, K.M., Ekland, E.H., Cyster, J.G, Williams, L.T. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1[J]. Nature 1998,391 (6669):799-803.
    [178]Zlotnik, A., Yoshie, O. Chemokines:A New Classification Review System and Their Role in Immunity[J].Immunity 2000,12:121-127.
    [179]Breitfeld, D., Ohl, L., Kremmer, E., Ellwart, J., Sallusto, F., Lipp, M., Forster, R. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production[J]. The Journal of experimental medicine 2000,192(11):1545-1552.
    [180]廖欣鑫,廖彩仙,黄勇平,秦安成,袁杰,赖勇强,龚祖元.肝纤维化与肝硬化患者肝 内CXCL13和CXCL16的表达变化[J].广东医学2010,31(005):564-565.
    [181]Ungewickell, A., Hugge, C., Kisseleva, M., Chang, S.-C., Zou, J., Feng, Y, Galyov, E.E., Wilson, M., Majerus, P.W. The identification and characterization of two phosphatidylinositol-4, 5-bisphosphate 4-phosphatases[J]. Proceedings of the National Academy of Sciences of the United States of America 2005,102(52):18854-18859.
    [182]Batalia, M.A., Kirksey, T.J., Sharma, A., Jiang, L., Abastado, J.-P., Yan, S., Zhao, R., Collins, E.J. Class I MHC is stabilized against thermal denaturation by physiological concentrations of NaCl[J]. Biochemistry 2000,39 (30):9030-9038.
    [183]Rosette, C., Roth, R.B., Oeth, P., Braun, A., Kammerer, S., Ekblom, J., Denissenko, M.F. Role of ICAM1 in invasion of human breast cancer cells[J]. Carcinogenesis 2005,26 (5): 943-950.
    [184]Hubbard, A.K., Rothlein, R. Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades[J]. Free Radical Biology and Medicine 2000,28 (9):1379-1386.
    [185]Pantel, K., Schlimok, G., Angstwurm, M., Passlickt, B., Izbickij, J., Johnson, J., Riethmuller, G. Early metastasis of human solid tumours: expression of cell adhesion molecules[J]. Cell Adhesion and Human Disease 2008,770 (35):157.
    [186]Marx, J. Inflammation and cancer:the link grows stronger[J]. Science 2004,306 (5698): 966-968.
    [187]Cooper, A., Wu, J., Maluccio, M. Is autotaxin (ENPP2) the link between hepatitis C and hepatocellular cancer?[J]. Gastroenterology 2007',132 (4):A838-A838.
    [188]Wang, G.K., Hu, L., Fuller, G.N., Zhang, W. An interaction between insulin-like growth factor-binding protein 2 (IGFBP2) and integrin a5 is essential for IGFBP2-induced cell mobility[J]. Journal of Biological Chemistry 2006,281 (20):14085-14091.
    [189]盛学仕,方肇勤,管冬元,赵晓珍,吴中华,阚卫兵,高必峰.DEN诱发大鼠肝癌过程中肝组织基因表达谱的演变[J].中国中医基础医学杂志2005,(10):737-746.
    [190]Mollema, N.J., Yuan, Y, Jelcick, A.S., Sachs, A.J., von Alpen, D., Schorderet, D., Escher, P., Haider, N.B. Nuclear receptor Rev-erb alpha (Nrldl) functions in concert with Nr2e3 to regulate transcriptional networks in the retina[J]. PloS one 2011,6 (3):e17494.
    [191]Davis, L.M., Harris, C., Tang, L., Doherty, P., Hraber, P., Sakai, Y, Bocklage, T., Doeden, K., Hall, B., Alsobrook, J. Amplification patterns of three genomic regions predict distant recurrence in breast carcinoma[J]. The Journal of Molecular Diagnostics 2007,9 (3):327-336.
    [192]Murphy, S.M., Davidson, GL., Brandner, S., Houlden, H., Reilly, M.M. Mutation in FAM134B causing severe hereditary sensory neuropathy [J]. Journal of Neurology, Neurosurgery and Psychiatry 2012,83 (1):119-120.
    [193]Nakashima, A., Ota, A., Sabban, E.L. Interactions between Egrl and API factors in regulation of tyrosine hydroxylase transcription[J]. Molecular Brain Research 2003,112 (1): 61-69.
    [194]Sigoillot, S.M., Bourgeois, F., Lambergeon, M., Strochlic, L., Legay, C. ColQ controls postsynaptic differentiation at the neuromuscular junction[J]. The Journal of Neuroscience 2010, 30(1):13-23.
    [195]Li, M.D., Mangold, J.E., Seneviratne, C., Chen, G-B., Ma, J.Z., Lou, X.-Y., Payne, T.J. Association and interaction analyses of GABBR1 and GABBR2 with nicotine dependence in European-and African-American populations[J]. PloS one 2009,4 (9):e7055.
    [196]Khazaei, M.R., Bunk, E.C., Hillje, A.L., Jahn, H.M., Riegler, E.M., Knoblich, J.A., Young, P., Schwamborn, J.C. The E3- ubiquitin ligase TRIM2 regulates neuronal polarization[J]. Journal of Neurochemistry 2011,117 (1):29-37.
    [197]Dixon, K.J., Munro, K.M., Bartlett, P.F., Turnley, A.M. Partial change in EphA4 knockout mouse phenotype:Loss of diminished GFAP upregulation following spinal cord injury[J]. Neuroscience Letters 2012.
    [198]Dickendesher, T.L., Baldwin, K.T., Mironova, Y.A., Koriyama, Y, Raiker, S.J., Askew, K.L., Wood, A., Geoffroy, C.G, Zheng, B., Liepmann, C.D. NgRl and NgR3 are receptors for chondroitin sulfate proteoglycans[J]. Nature Neuroscience 2012,15 (5):703-712.
    [199]Lee, Y.-J., Lee, H.-J., Choi, S.-h., Jin, Y.B., An, H.J., Kang, J.-H., Yoon, S.S., Lee, Y.-S. Soluble HSPB1 regulates VEGF-mediated angiogenesis through their direct interaction[J]. Angiogenesis 2012,15 (2):229-242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700