用户名: 密码: 验证码:
蓝藻铵毒害的生态效应与分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类活动的加剧,人为氮输出量不断增加,由此对生态环境造成的负面效应也越来越明显,如水体富营养化、蓝藻水华的暴发、生物多样性的减少等。在大量人为输出的总氮中,铵占有相当大的比重。铵通常作为一种主要的氮营养被植物优先利用,但同时过高的铵也具有毒害作用。以往,铵毒害研究主要集中于高等植物,蓝藻的铵毒害机制研究还很欠缺,同时铵毒害对蓝藻的生态效应也没有引起人们的足够关注。基于以上认识,本论文对一种食用野生蓝藻资源-葛仙米(念珠藻属)减产的原因以及其铵毒害机制进行了探讨,分析了铵在蓝藻水华的暴发以及藻类的演替中所起到的作用,研究了铵毒害对模式蓝藻-集胞藻PCC6803光系统Ⅱ的作用机制,并从分子水平上探讨了D1蛋白的一个编码基因psbAl在抵御铵毒害中所起的作用,具体研究内容和结果如下:
     1.研究了两种化肥(氯化铵和氯化钾)对葛仙米以及其它四种常见蓝藻生长的影响。结果表明:五种藻在10mmol L-1氯化铵作用下,生长速率至少下降了65%,而相同浓度的氯化钾对所有藻生长没有抑制作用。同时,五种藻对铵毒害敏感性的顺序依次为:葛仙米>固氮鱼腥藻FACHB118>铜绿微囊藻FACHB905>铜绿微囊藻FACHB315>聚球藻FACHB805。葛仙米96小时铵处理的生长半抑制效应浓度为1.105mmol L-1,这个浓度远低于农业土壤中的铵浓度(2-20mmol L-1),说明铵肥的大量使用是葛仙米野生资源减产的一个重要原因。1mmol L-1氯化铵处理葛仙米96小时后,其光合放氧速率,PSII最大光化学效率(Fv/Fm),光合饱和光强以及PSII活性都显著降低,叶绿素合成较藻胆素合成更易受到铵抑制。捕光截面和电子受体QA后的电子传递速率在铵处理后增加,暗呼吸在5和10mmol L-1氯化铵处理下分别较对照组增加了246%和384%,快速荧光诱导动力学分析铵对葛仙米毒害作用的位点可能在PSⅡ的放氧复合体上。
     2.比较了葛仙米在两种限制性光强(40和100otons m-2s-1)下对铵毒害的敏感性。在2mmol L-1氯化铵处理96小时后,低光和高光下葛仙米的生长速率分别下降到对照组的44.3%和-16.0%。快速荧光诱导动力学分析发现5mmol L-1氯化铵在高光下更易对放氧复合体造成破坏,铵在高光下对葛仙米生长抑制的半效应浓度在比低光下低,说明葛仙米在高光下对铵毒害更为敏感。5。nmol L-1氯化铵处理一个小时内,高光处理较低光处理下的反应中心连接系数,Fv/Fm以及PQ后的电子传递速率下降更快,而捕光截面增加更明显。因此,高光下进行铵处理后,电子供体侧的快速损伤可能引起P680的过氧化,氧化β-胡萝卜素、破坏反应中心,而引起非光化学淬灭的降低,加重了反应中心的损伤。林肯霉素处理实验表明铵毒害对葛仙米PSⅡ的伤害主要作用在损伤过程,对PSⅡ的修复影响相对较小
     3.随着人类农业、工业活动的加剧,大量的还原性氮进入生物圈,引起全球水体富营养化和蓝藻水华。然而,至今还没有直接表明铵毒害影响藻类演替的相关报道。本研究探讨了19种不同营养类型水体中常见藻的铵毒害敏感性,证实铵可能是影响水体中蓝藻水华暴发以及常见藻类分布的因素之一。水华蓝藻-铜绿微囊藻PCC7806在高pH、高光条件下容易遭受铵毒害,pH9.0±0.2,1000μmol photons m-2s-1下处理1小时,0.06mmol L-1NH4Cl即能抑制PSⅡ的实际光化学效率至对照组的一半,而此浓度在自然水体中完全可以达到。此外,不同营养等级的水体中生长的常见藻种对铵毒害的耐受性顺序表现为超富营养化藻>富营养化藻>中度营养化藻>贫营养化藻。这种对铵毒害敏感性的变化正好解释了不同营养等级水体中常见藻的分布规律。同时,蓝藻(如微囊藻)水华经常出现在铵含量较低的夏季,并且随着铵浓度的降低而迅速消失。这可能是与春季的铵浓度较高带来的毒害效应有关(国内主要33个湖泊的平均和最大铵浓度分别为0.08mmol L-1和0.72mmol L-1),而夏秋季的铵浓度较低,没有毒害作用,仅作为氮营养被利用。因此,水体中的铵含量可能是决定蓝藻水华暴发和常见藻种类分布的一个重要限制因子。
     4.研究了铵对蓝藻Synechocystis sp. PCC6803光系统Ⅱ的损伤和修复的作用。结果表明铵对PSⅡ的伤害表现在加速PSⅡ的损伤,而对其修复没有抑制作用。铵对离体类囊体膜的处理实验直接证实放氧复合体是铵毒害的初级作用位点。D1蛋白能在光损伤下进行快速合成,早期结果表明Synechocystis sp. PCC6803的D1蛋白的一个编码基因psbA1在绝大多数条件下是一个沉默基因,仅微氧条件能诱导其表达。本研究显示,高光能诱导其表达,且敲除psbA1基因的突变株较野生型表现出更强的高光伤害和铵毒害敏感性,这说明psbA1基因在Synechocystis sp. PCC6803中并不是一个冗余基因,它在抗高光伤害和抗铵毒害上起到一定的保护作用。
With the human intensification of agricultural and industrial activities, the amount of nitrogen input by human has been increasing, which consequently results in some significant negative ecological effects, such as eutrophication, cyanobacterial blooms, decline of biodiversity and so on. Ammonium accounts for a large proportion to the total nitrogen created by human. It is one of the major and preferred nutrients for plants, however, it is known to be toxic to many organisms at high concentration. Prevoius studies of ammonium toxicity were mainly focused on higher plants, relatively less attention has been paid in cyanobacteria, and the cyanobacterial ecological effects caused by ammonium toxicity had not been attracted human's special concern. Based on above background, present study explored the cause of reduction of Nostoc sp.(Ge-Xian-Mi) resource—one kind of edible cyanbacteria and its ammonium toxicity mechanism, analyzed the role of ammonium in the succession of cyanobacterial blooms and the distribution of common algal species in shallow freshwater lakes, investigated the mechanism of ammonium toxicity on PSII of Synechocystis sp. PCC6803, and the function of psbAl gene on the resisting to ammonium toxicity damage, the detailed content and results of this study is as follows,
     1. Effects of two fertilizers, NH4Cl and KCl, on the growth of the edible cyanobacterium Ge-Xian-Mi (Nostoc) and other four cyanobacterial strains were compared. Their growth was decreased by at least65%at10mmol·L-1NH4Cl, but no inhibitory effect was observed at the same level of KCl. Meanwhile, they exhibited a great variation of sensitivity to NH4+toxicity in the order: Ge-Xian-Mi> Anabaena azotica FACHB118> Microcystis aeruginosa FACHB905> Microcystis aeruginosa FACHB315> Synechococcus FACHB805. The relative growth rate96-h EC50value of NH4+for Ge-Xian-Mi was1.105mmol L-1, which was much less than NH4+concentration in many agricultural soils (2to20mmol L'1). These indicated that the use of ammonium as nitrogen fertilizer was responsible for the reduced resource of Ge-Xian-Mi in the paddy field. After96h exposure to1mmol L-1NH4Cl, the photosynthetic rate, Fv/Fm value, saturating irradiance for photosynthesis and PSII activity of Ge-Xian-Mi colonies were remarkably decreased. The chlorophyll synthesis of Ge-Xian-Mi was more sensitive to NH4+toxicity than phycobiliproteins. Thus, its functional absorption cross section of PSII was increased markedly at NH4Cl levels≥1mmol·L-1and the electron transport on the acceptor side of PSII was significantly accelerated by NH4Cl addition≥3mmol·L-1. Dark respiration of Ge-Xian-Mi was significantly increased by246%and384%at5and 10mmol L-1NH4Cl respectively. The rapid fluorescence rise kinetic suggested that the oxygen-evolving complex of PSII was the inhibitory site of NH4-
     2. The sensitivity of Ge-Xian-Mi (Nostoc) to ammonium toxicity under two limiting light intensities (40and100μmol photons m-2s-) were compared. After96h exposure to2mmol L-1NH4Cl, their growth were decreased to44.3%and-16.0%of the control under low light and high one respectively. The rapid fluorescence rise kinetic showed that the oxygen-evolving complex of PSII was much greatly damaged upon5mmol L-1NH4+addition under high light. The relative growth rate96-h EC50value showed that Ge-Xian-Mi was more sensitive to NH4+toxicity under high light compared to low one during the limiting light climate. With the treatment of5mmol L-1NH4+during60min, the connectivity factor, Fv/Fm value and electron transport rate between PSII and PSI decreased much faster, and the functional absorption cross section of PSII increased much faster, under high light than that of low light. Therefore, much more degree of damage in donor side with the treatment of ammonium upon high light may cause the generation of highly reaction P680, which will oxidate the β-carotene, damage the reaction centre, reduce the nonphotochemical fluorescence quenching, and aggravate the damage of reaction centre. Meanwhile, the lincomycin addition experiment indicated NH4+triggered photodamage response for accelerating the damage and less inhibiton of repair the of PSII of Nostoc sp.(Ge-Xian-Mi).
     3. With the human intensification of agricultural and industrial activities, large amount of reduced nitrogen enter into the biosphere, which consequently results in the development of global eutrophication and cyanobacterial blooms. However, no research had reported the direct effect of ammonia toxicity on the algal succession in freshwater lakes. In this study, we investigated the ammonia toxicity to nineteen algal species or strains to test the hypothesis that ammonia may regulate the succession of cyanobacterial blooms and the distribution of common algal species in freshwater lakes. The bloom-forming cyanobacterium Microcystis aeruginosa PCC7806suffered from ammonia toxicity at high pH value and light intensity conditions. Low NH4CI concentration (0.06mmol L-1) resulted in the decrease of operational PSII quantum yield by50%compared to the control exposed to1000μmol photons m-2s-1for one hour at pH9.0±0.2, which can be reached in freshwater lakes. Furthermore, the tolerant abilities to NH3toxicity of eighteen freshwater algal species or strains were as follows:hypertrophication species> eutrophication species> mesotrophication species> oligotrophication species. The different sensitivities of NH3toxicity in the present study could well explain the distributing rule of common algal species in the freshwater lakes of different trophic states. Meanwhile, the cyanobacterial bloom (e.g. M. aeruginosa) always happened at the low concentration of ammonia in summer, and disappeared with the decrease of ammonia. This may be attributed to the toxic effect of ammonia to M. aeruginosa in spring (the average and maximum ammonia concentration were0.08mmol L-1, and0.72mmol L-1in33Chinese lakes), and the low level of NH3-N in summer and fall in the lakes might be used as preferred nitrogen nutrition by M. aeruginosa, rather than with toxicity. Therefore, ammonia could be a key factor to determine the distribution of common algal species and cyanobacterial bloom in the freshwater systems.
     4. The effects of ammonia on the photodamage of PSII and repair of damaged PSII in cyanobacterium Synechocystis sp. strain PCC6803were investigated in this study. Ammonia was shown to accelerate the decrease of PSII activity through a mechanism that directly caused photodamage of PSII, rather than inhibition of the repair of photodamaged PSII. Isolated thylakoid membranes lost PSII activity upon ammonia treatment, with the oxygen-evolving complex being the primary target for ammonia toxicity. The D1protein of photosynthetic organisms is known to be rapidly turned over in the light. Previous studies indicated that the psbAl gene encoded one form of Dl protein that was not expressed in wild-type Synechocystis6803. The present investigation shows that its expression is transiently induced by high light. Synechocystis wild-type cells are more resistant to high light and ammonia than a psbAl-deficient mutant, indicating that the psbAl gene is not redundant, but could play a role in protecting PSII against high light and ammonia toxicity.
引文
邓中洋,况琪军,胡征宇.2006.葛仙米室内规模化培养、群体显微结构及营养成分分析.武汉植物学研究 24:481-484.
    和丽萍.2001. 用化学杀藻剂控制滇池蓝藻水华研究.云南环境群学20:43-44.
    黄宗英. 固氮蓝藻一记藻类学家黎尚豪. 人民日报.1980年3月22日.
    孔繁翔,高光.2004. 大型浅水富营养化湖泊中蓝藻水华形成机理的思考.生态学保 25:589-595.
    雷安平,施之新,魏印心.2003.武汉东湖浮游藻类物种多样性的研究.水生生物学保 27:179-184.
    刘建康,谢平.1999.揭开武汉东湖蓝藻水华消失之谜. 长江流域资源与环境 8:312-319.
    马英,焦念志.2004.聚球藻(Synechococcus)分子生态学研究进展.自然群学进展14:967-972.
    邱保胜,刘树文,戴国政.2009.藻类利用微量金属元素的研究技术与方法.水生生物学报33:330-337.
    全国中草药汇编编写组.全国中草药汇编下册.北京:人民卫生出版社1978:608-609.
    饶钦止,章宗涉.1980. 武汉东湖浮游植物的演变(1956-1975年)和富营养化问题.水生生物学集刊7:1.17.
    汤宏波,胡圣,胡征宇,况琪军,刘国祥.2007.武汉东湖甲藻水华与环境因子的关系.湖泊科学19:632-636.
    田娟,宋碧玉,林燊,余博识,李仁辉.2009.两种改性粘土去除群体状铜绿微囊藻的比较.湖泊科学21:669-674.
    于丹,涂芒辉,刘丽华,夏盛林.1998.武汉东湖水生植物区系四十年间的变化与分析.水生生物学报22:221-228.
    余博识,吴忠兴,朱梦灵,吴幸强,彭欣,覃家理,李仁辉.2008.水果湖湾蓝藻水华的形成及其对东湖影响的评价.水生生物学报 32:286-289.
    汪兴平,程超,周志,周光来.2002.野生葛仙米营养成分分析及评价.食品科学23:288-290.
    赵学敏著.本草纲目拾遗.北京:人民卫生出版社.1983:341.342.
    Abeliovich A, Azov Y.1976. Toxicity of ammonia to algae in sewage oxidation ponds. Appl. Environ. Microbiol. 31:801-806.
    Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM.1989. Nitrogen saturation in northern forest ecosystems-excess nitrogen from fossil fuel combustion may stress the biosphere. BioScience 39:378-386.
    Abraham A, Couturier C, Parsons JA.1996. Toxicity of un-ionized ammonia to juvenile giant scallops, Placopecten magellanicus. Bull. Aquacult. Assoc. Can.96:68-70.
    Adir N, Zer H, Shochat S, Ohad, L 2003. Photoinhibition-a historical perspective. Photosynth. Res.76:343-370.
    Agren GI, Bosatta E.1988. Nitrogen saturation of terrestrial ecosystems. Environ. Pollut.54: 185-197.
    Allakhverdiev SI, Murata N.2004. Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem Ⅱ in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1657:23-32.
    Allakhverdiev SI, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N. 2002 Salt stress inhibits the repair of photodamaged photosystem Ⅱ by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol.130:1443-1453.
    Allakhverdiev SI, Nishiyama Y, Takahashi S, Miyairi S, Suzuki I, Murata N.2005. Systematic analysis of the relation of electron transport and ATP synthesis to the photodamage and repair of photosystem Ⅱ in Synechocystis. Plant Physiol.137:263-273.
    Alonso A, Camargo JA.2003. Short-term toxicity of ammonia, nitrite, and nitrate to the aquatic snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca). Bull. Environ. Contam. Toxicol. 70:1006-1012.
    Alvarez Cobelas M, Jacobsen BA.1992. Hypertrophic phytoplankton:an overview. Freshwater Forum 2:184-199.
    Andersson B, Barber J.1996. Mechanisms of photodamage and protein degradation during photoinhibition of photosystem Ⅱ. In:Neil R. Baker (ed):Photosynthesis and the environment. Kluwer Academic Publishers, Netherlands, pp.101-121.
    Apel K, Hirt H.2004. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol.55:373-399.
    Arauzo M.2003. Harmful effects of un-ionised ammonia on the zooplankton community in a deep waste treatment pond. Water Res.37:1048-1054.
    Aro EM, Hundal T, Carlberg I, Andersson B.1990. In vitro studies on light-induced inhibition of Photosystem II and Dl-protein degradation at low temperatures. Biochim Biophys Acta 1019:269-275.
    Aro EM, Suorsa M, Rokka A, Allahverdiyeva Y, Paakkarinen V, Saleem A, Battchikova N, Rintamaki E.2005. Dynamics of photosystem Ⅱ:a proteomic approach to thylakoid protein complexes. J. Exp. Bot.56:347-356.
    Aro EM, Virgin I, Andersson B.1993. Photoinhibition of photosystem Ⅱ. Inactivation, protein damage and turnover. Biochim. Biophys. Acta.1143:113-134.
    Asada K.2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol.141:391-396.
    Atici T, Ahiska S, Altindag A, Aydin D.2008. Ecological effects of some heavy metals (Cd, Pb, Hg, Cr) pollution of phytoplanktonic algae and zooplanktonic organisms in Sariyar Dam Reservoir in Turkey. Afr. J. Biotechnol.7:1972-1977.
    Ayers RU, Schlesinger WH, Socolow RH.1994. Human impacts on the carbon and nitrogen cycles. In:Industrial Ecology and Global Change. Socolow RH, Andrews C, Berkhout R, Thomas V. (eds). Cambridge University Press, Cambridge, MA, pp.121-155.
    Azov Y, Goldman JC.1982. Free ammonia inhibition of algal photosynthesis in intensive cultures. Appl. Environ. Microbiol.43:735-739.
    Badger MR, Price GD.2003. CO2 concentrating mechanisms in cyanobacteria:molecular components, their diversity and evolution. J. Exp. Bot.54:609-622.
    Baena-Gonzalez E, Aro EM.2002. Biogenesis, assembly and turnover of photosystem Ⅱ units. Phil. Trans. R. Soc. Lond.357:1451-1460.
    Bald D, Kruip J, Rogner M.1996. Supramolecular architecture of cyanobacterial thylakoid membranes:how is the phycobilisome connected with the photosystems? Photosynth. Res. 49:103-118.
    Barbate R, Frizzo A, Friso G, Rigoni F, Giacometti GM.1995. Degradation of the D1 protein of photosystem-I1 reaction centre by ultraviolet-B radiation requires the presence of functional manganese on the donor side. Eur. J. Biochem.227:723-729.
    Barry BA and Babcock GT.1987. Tyrosine radicals are involved in the photosynthetic oxygen-evolving system. Proc. Natl. Acad. Sci. USA 84:7099-7103.
    Beck WF, Brudvig GW.1986. Binding of amines to the O2-evolving center of photosystem II. Biochemistry 25:6479-6486.
    Beck WF, De Paula JC, Brudvig GW.1986. Ammonia binds to the manganese site of the O2-evolving complex of photosystem Ⅱ in the S2 state. J. Am. Chem. Soc.108:4018-4022.
    Bendall DS.1982. Photosynthetic cytochromes of oxygenic organisms. Biochim. Biophys. Acta 683:119-157.
    Bendixen R, Gerendas J, Schinner K, Sattelmacher B, Hansen UP.2001. Difference in zeaxanthin formation in nitrate-and ammonium-grown Phaseolns vulgaris. Physiol. Plant. 111:255-261.
    Blankenship RE, Sauer K.1974. Manganese in photosynthetic oxygen evolution I. electron paramagnetic resonance study of the environment of manganese in tris-washed chloroplasts. Biochim. Biophys. Acta 357:252-266.
    Blomqvist P, Petterson A, Hyenstrand P.1994. Ammonium-nitrogen:a key regulatory factor causing dominance of non-nitrogen fixing cyanobacteria in aquatic systems. Arch. Hydrobiol. 132:141-164.
    Bloom AJ, Sukrapanna SS, Warner RL.1992. Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol.99:1294-1301.
    Bouyoub A, Vernotte C, Astier C.1993. Functional analysis of the two homologous psbA gene copies in Synechocystis PCC 6714 and PCC 6803. Plant Mol. Biol.21:249-258.
    Britt RD, Zimmermann JL, Sauer K, Klein MP.1989. Ammonia binds to the catalytic Mn of the oxygen-evolving complex of photosystem Ⅱ:evidence by electron spin-echo envelope modulation spectroscopy. J. Am. Chem. Soc. 111:3522-3532.
    Britto DT, Kronzucker HJ.2002. NH4+ toxicity in higher plants:a critical review. J. Plant Physiol.159:567-584.
    Britto DT, Siddiqi MY, Glass ADM, Kronzucker HJ (2001) Futile transmembrane NH4+ cycling:a cellular hypothesis to explain ammonium toxicity in plants. Proc. Natl. Acad. Sci. USA 98: 4255-4258.
    Campbell D, Hurry V, Clarke AK, Gustafsson P, Oquist G.1998. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol. Mol. Biol. Rev.62: 667-683.
    Canfield DE, Glazer AN, Falkowski PG.2010. The evolution and future of earth's nitrogen cycle. Science 330:192-196.
    Cao T, Ni LY, Xie P.2004. Acute biochemical responses of a submersed macrophyte, Potamogeton crispus L., to high ammonium in an aquarium experiment. J. Freshwater Ecol. 19:279-284.
    Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ.1997. Trichodesmium, a globally significant marine cyanobacterium. Science 276:1221-1229.
    Carr GM, Duthie HC, Taylor WD.1997. Models of aquatic plant productivity:a review of the factors that influence growth. Aquat. Bot.59:195-215.
    Carvalho L.1994. Top-down control of phytoplankton in a shallow hypertrophic lake:Little Mere (England). Hydrobiologia 275/276:53-63.
    Chen YW, Qin BQ, Teubner K, Dokulil MT.2003. Long-term dynamics of phytoplankton assemblages:Mcrocystis-domination in Lake Taihu, a large shallow lake in China. J. Plant Res.25:445-453.
    Chen Z, Juneau P, Qiu BS.2007. Effects of three pesticides on the growth, Photosynthesis and photoinhibition of the edible cyanobacterium Ge-Xian-Mi (Nostoc). Aquat. Toxicol.81: 256.265.
    Cheng HM, Dai GZ, Yu L, Zhong XP, Juneau P, Qiu BS.2008. Influence of CO2 concentrating mechanism on photoinhibition in Synechococcus sp. PCC7942 (Cyanophyceae). Phycologia 47:588-598.
    Cheng XY, Li SJ.2006. An analysis on the evolvement processes of lake eutrophication and their characteristics of the typical lakes in the middle and lower reaches of Yangtze River. Chinese Sci.Bull.51:1603-1613.
    Claussen W, Lenz F.1999. Effect of ammonium or nitrate nutrition on net photosynthesis, growth, and activity of the enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and strawberry. Plant Soil 208:95-102.
    Dai GZ, Deblois CP, Liu SW, Juneau P, Qiu BS.2008. Differential sensitivity of five cyanobacterial strains to ammonium toxicity and its inhibitory mechanism on the photosynthesis of rice-field cyanobacterium Ge-Xian-Mi (Nostoc). Aquat. Toxicol.89:113-121.
    Dai GZ, Shang JL, Qiu BS.2012. Ammonia may play an important role in the succession of cyanobacterial blooms and the distribution of common algal species in shallow freshwater lakes. Global Change Biol. DOI:10.1111/j.1365-2486.2012.02638.x
    de Figueiredo DR, Azeiteiro UM, Esteves SM, Goncalves FJM, Pereira MJ.2004. Microcystin-producing blooms-a serious global public health issue. Ecotox. Environ Safe. 59:151-163.
    De Graaf MCC, Bobbink R, Roelofs JGM, Verbeek PJM.1998. Differential effects of ammonium and nitrate on three heathland species. Plant Ecol.135:185-196.
    Dillon PJ, Rigler FH.1974. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr.19:767-773.
    Diner BA.2001. Amino acid residues involved in the coordination and assembly of the manganese cluster of photosystem II. Proton-coupled electron transport of the redox-active tyrosines and its relationship to water oxidation. Biochim. Biophys. Acta.1503:147-163.
    Dokulil MT, Chen W, Cai Q.2000. Anthropogenic impacts to large lakes in China:the Tai Hu example. Aquat. Ecosys. Health. Manag.3:81-94.
    Drath M, Kloft N, Batschauer A, Marin K, Novak J, Forchhammer K.2008. Ammonia triggers photodamage of photosystem II in the cyanobacterium Synechocystis sp. Strain PCC 6803. Plant Physiol.147:206-215.
    Duan HT, Ma RH, Xu XF, Kong FX, Zhang SX, Kong WJ, Hao JY, Shang LL.2009. Two-decade reconstruction of algal blooms in China's lake Taihu. Environ. Sci. Technol.43: 3522-3528.
    Eisenhut M, Bauwe H, Hagemann M.2007. Glycine accumulation is toxic for the cyanobacterium Synechocystis sp. strain PCC 6803, but can be compensated by supplementation with magnesium ions. FEMS Microbiol. Lett.277:232-237.
    Elrifi IR, Holmes JJ, Weger HG, Mayo WP, Turpin DH.1988. RuBP limitation of photosynthetic carbon fixation during NH3 assimilation. Plant Physiol.87:395-401.
    Elrifi IR, Turpin DH.1986. Nitrate and ammonium induced photosynthetic suppression in N-limited Selenastrum minutum. Plant Physiol.81:273-279.
    Fagerlund RD, Eaton-Rye JJ.2011. The lipoproteins of cyanobacterial photosystem Ⅱ. J. Photochem. Photobiol. B Biol.104:191-203.
    Farnsworth-Lee LA, Baker LA.2000. Conceptual model of aquatic plant decay and ammonia toxicity for shallow lakes. J. Envir. Engrg.126:199-207.
    Fay P.1992. Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol. Rev.56: 340-373.
    Fenn, ME, Poth MA, Aber JD et al.1998. Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecol. Appl.8: 706-733.
    Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S.2004. Architecture of the photosynthetic oxygen-evolving center. Science 303:1831-1838.
    Flameling IA, Kromkamp J.1998. Light dependence of quantum yields for PSII charge separation and oxygen evolution in eucaryotic algae. Limnol. Oceanogr.43:284-297.
    Flores E, Herrero A.2005. Nitrogen assimilation and nitrogen control in cyanobacteria. Biochem. Soc. Trans.33:164-167.
    Foyer C, Furbank R, Harbinson J, Horton P.1990. The mechanisms contributing to photosynthetic control of electron transport by carbon assimilation in leaves. Photosynth. Res. 25:83-100.
    Fujii K, Sivonen K, Naganawa E, Harada K.2000. Non-Toxic Peptides from Toxic Cyanobacteria, Oscillatoria agardhii. Tetrahedron 56:725-733.
    Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ. 2003. The nitrogen cascade. BioScience 53:341-356.
    Galloway JN, Cowling EB.2002. Reactive nitrogen and the world:200 years of change. Ambio 31:64-71.
    Galloway JN, Schlesinger WH, Levy HII, Michaels A, Schnoor JL.1995. Nitrogen fixation: anthropogenic enhancement-environmental response. Global Biogeochem. Cy.9:235-252.
    Genty B, Briantais JM, Baker NR.1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990:87-92.
    Gerendas J, Zhu ZJ, Bendixen R, Ratcliffe RG, Sattelmacher B.1997. Physiological and biochemical processes related to ammonium toxicity in higher plants. Zeit. Pflanzenerna.hr. Bodenk.160:239-251.
    Golterman HL, Bruijn P, Schouffoer JGM, Dumoulin E.1998. Urea fertilization and the N-cycle of rice-fields in the Camargue (S. France). Hydrobiologia 384:7-20.
    Gombos Z, Wada H, Murata N.1994. The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids:A mechanism of chilling tolerance. Proc. Natl. Acad. Sci. USA 91:8787-8791.
    Govindjee, Down ton WJS, Fork DC, Armond PA.1981. Chlorophyll a fluorescence transient as an indicator of water potential of leaves. Plant Sci. Letters 20:191-194.
    Guiss6 B, Srivastava A, Strasser RJ.1995. The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat stressed leaves. Arch. Sci. Geneve 48:147-160.
    Haghighat N, McCandless DW, Geraminegad P.2000. The effect of ammonium chloride on metabolism of primary neurons and neuroblastoma cells in vitro. Metabol. Brain Dis.15: 151-162.
    Hakala M, Rantamaki S, Puputti EM, Tyystjarvi T, Tyystjarvi E.2006. Photoinhibition of manganese enzymes:insights into the mechanism of photosystem Ⅱ photoinhibition. J. Exp. Bot.57:1809-1816.
    Hakala M, Tuominen I, Keranen M, Tyystjarvi T, Tyystjarvi E.2005. Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of photosystem Ⅱ. Biochim. Biophys. Acta 1706:68-80.
    Halwart M, Gupta MV.2004. Culture of fish in rice fields. FAO and The WorldFish Center, Rome and Penang,83 pp.
    Han MY, Kim W.2001. A theoretical consideration of algae removal with clays. Microchem. J. 68:157-161.
    Harbinson J, Genty B, Foyer CH.1990. Relationship between photosynthetic electron transport and stromal enzyme activity in pea leaves. Toward an understanding of the nature of the photosynthetic control. Plant Physiol.94:545-553.
    Haroon AKY, Pittman KA.1997. Rice-fish culture:feeding, growth and yield of two size classes of Puntius gonionotus Bleeker and Oreochromis spp. in Bangladesh. Aquaculture 154: 261-281.
    Henley WJ.1993. Measurement and interpretation of photosynthetic light-response curves in alga in the context of photoinhibition and diel changes. J. Phycol.29:729-739.
    Herrero A, Muro-Pastor AM, Flores E.2001. Nitrogen control in cyanobacteria. J. Bacteriol. 183:411-425.
    Herrmann M, Saunders AM, Schramm A.2008. Archaea dominate the ammonia-oxidizing community in the rhizosphere of the freshwater macrophyte Littorella uniflora. Appl. Environ. Microbiol.74:3279-3283.
    Hess, DC, Lu W, Rabinowitz JD, Botstein D.2006. Ammonium toxicity and potassium limitation in Yeast. Plos Biol.4:2012-2023.
    Hoff, M.2006. An unexpected connection:potassium limitation and ammonium toxicity in Yeast. Plos Biol.4:1884-1885.
    Hogberg P.2007. Nitrogen impacts on forest carbon-does the extra nitrogen input from anthropogenic sources mean that more carbon from the atmosphere is being locked up in boreal and temperate forests?'Yes'is the answer to emerge from the latest analysis. Nature 447: 781-782.
    Hu B, Yang GH, Zhao WX, Zhang YJ, Zhao JD.2007. MreB is important for cell shape but not for chromosome segregation of the filamentous cyanobacterium Anabaena sp PCC 7120. Mol. Microbiol.63:1640-1652.
    Huang TC, Chow TJ.1986. New type of N2-fixing unicellular cyanobacterium (blue-green alga). FEMSMicrobiol. Lett.36:109-110.
    Huang X, Dong YQ, Zhao JD.2004. HetR homodimer is a DNA-binding protein required for heterocyst differentiation, and the DNA-binding activity is inhibited by PatS. Proc. Natl. Aead. Sci.USA 101:4848-4853.
    Huang ZB, Liu YD, Paulsen BS, Klaveness D.1998. Studies on polysaccharides from three edible species of Nostoc (Cyanobacteria) with different colony morphologies:comparison of monosaccharide compositions and viscosities of polysaccharides from field colonies and suspension cultures. J. Phycol.34:962-968.
    Ishiyama K, Inoue E, Tabuchi M, Yamaya T, Takahashi H.2004. Biochemical background and compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol.45:1640-1647.
    Jackson RB, Caldwell MM.1993. The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics. Ecology 74:612-614.
    Jansson C, Debus RJ, Osiewacz HD, Gurevitz M, Mcintosh L.1987. Construction of an obligate photoheterotrophic mutant of the cyanobacterium Synechocystis 6803. Plant Physiol. 85:1021-1025.
    Jassby AD and Platt T.1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr.21:540-547.
    Jenkinson DS.1990. An introduction to the global nitrogen cycle. Soil Use Manage.6:56-61.
    Jensen JP, Jeppesen E, Olrik K, Kristensen P.1994. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow danish lakes. Can. J. Fish. Aquat. Sci.51:1692-1699.
    Jiang HB, Qiu BS.2005. Photosynthetic adaptation of a bloom-forming cyanobacterium microcystis aeruginosa (cyanophyceae) to prolonged UV-B exposure. J. Phycol.41: 983-992.
    Jin XC.2003. Analysis of eutrophication state and trend for lakes in China. J. Limnol.62: 60-66.
    Johnston BR, Jacoby JM.2003. Cyanobacterial toxicity and migration in a mesotrophic lake in western Washington, USA. Hydrobiologia 495:79-91.
    Joliot P, Joliot A.1964. Etudes cinetique de la reaction photochimique liberant l'oxygene au cours de la photosynthese. CR. Acade. Sci. Paris 258:4622-4625.
    Juneau P, Sumitomo H, Matsui S, Itoh S, Kim S, Popovic R.2003. Use of chlorophyll fluorescence of Closterium ehrenbergii and Lemna gibba for toxic effect evaluation of sewage treatment plant effluent and its hydrophobic components. Ecotoxicol. Environ. Safe.55:1-8.
    Kallqvist T, Svenson, A.2003. Assessment of ammonia toxicity in tests with the microalga, Nephroselmis pyriformis, Chlorophyta. Water Res.37:477-484.
    Kashino Y, Lauber WM, Carroll JA, Wang QJ, Whitmarsh J, Satoh K, Pakrasi HB.2002. Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 41: 8004-8012.
    Ke ZX, Xie P, Guo LG.2008. Controlling factors of spring-summer phytoplankton succession in Lake Taihu (Meiliang Bay, China). Hydrobiologia 607:41-49.
    Kehoe DM, Gutu A.2006. Responding to color:The regulation of complementary chromatic adaptation. Annu. Rev. Plant Biol.57:127-150.
    Keren N, Berg A, VanKan PJM, Levanon H, Ohad I.1997. Mechanism of photosystem Ⅱ photoinactivation and D1 protein degradation at low light:the role of back electron flow. Proc. Natl. Acad. Sci. USA.94:1579-1584.
    King DL.1970. The role of carbon in eutrophication. J. Water Pollut. Control Fed.42: 2035-2051.
    Kojima K, Oshita M, Nanjo Y,Kasai K, Tozawa Y, Hayashi H, Nishiyama Y.2007. Oxidation of elongation factor G inhibits the synthesis of the D1 protein of photosystem Ⅱ. Mol. Mcrobiol.65:936-947.
    Kolber ZS, Falkowski PG.1992. Fast Repetition rate (FRR) fluorometer for making in situ measurements of primary productivity. In:Proceedings of Ocean'92 Conference, Newport, RI, Oct.26-29, pp.637-641.
    Kolber ZS, Prasil O, Falkowski PG 1998. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques:defining methodology and experimental protocols. Biochim. Biophys. Acta 1367:88-106.
    Komenda J, Knoppov & J, Kopea J, Sobotka R, Halada P, Yu J, Nickelsen J, Boehm M, Nixon PJ.2012. The Psb27 assembly factor binds to the CP43 complex of photosystem Ⅱ in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 158:476-86.
    Kronzucker HJ, Schjoerring JK, Erner Y, Kirk GJD, Siddiqi MY, Glass ADM..1998. Dynamic Interactions between root NH4+ influx and long-distance N translocation in rice: insights into feedback processes. Plant Cell Physiol.39:1287-1293.
    Kronzucker HJ, Britto DT, Davenport RJ, Tester M.2001. Ammonium toxicity and the real cost of transport. Trends Plant Sci.6:335-337.
    Kronzucker HJ, Siddiqi MY, Glass ADM.1997. Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385:59-61.
    Kulkarni RD, Golden SS.1994. Adaptation to high light intensity in Synechococcus sp. strain PCC 7942:Regulation of three psbA genes and two forms of the D1 protein. JBacteriol.176: 959-965.
    Laisk A, Oja V.1995. Coregulation of electron transport through PSI by Cytb6f, excitation capture by P700 and acceptor side reduction. Time kinetics and electron transport requirement. Photosynth. Res.45:11-19.
    Lehner J, Zhang Y, Berendt S, Rasse TM, Forchhammer K, Maldener I.2011. The morphogene AmiC2 is pivotal for multicellular development in the cyanobacterium Nostoc punctiforme. Mol. Mcrobiol.79:1655-1669.
    Lei AP, Hu ZL, Wang J, Shi ZX, Tam FY.2005. Structure of the phytoplankton community and its relationship to water quality in Donghu Lake, Wuhan, China. J. Integr. Plant Biol.47: 27-37.
    Lepisto L, Rosenstrom U.1998. The most typical phytoplankton taxa in four types of boreal lakes. Hydrobiologia 369/370:89-97.
    Li DH.2000. Studies on morphogenesis, development and physiology of Nostoc sphaeroides kutzing (Cyanobacterium). Ph.D. dissertation, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China,194 pp.
    Li YG, Gao KS.2004. Photosynthetic physiology and growth as a function of colony size in the cyanobacterium Nostoc sphaeroides. Eur. J. Phycol.39:9-15.
    Lichtenthaler HK, Buschmann C.2001. Chlorophylls and carotenoids:measurement and characteriztion by UV-VIS spectroscopy. Curr. Protoc. Food Analyt. Chem. F.4.3.1-F.4.3.8.
    Liu HJ, Huang RYC, Chen JW, Gross ML, Pakrasi HB.2011a. Psb27, a transiently associated protein, binds to the chlorophyll binding protein CP43 in photosystem Ⅱ assembly intermediates. Proc. Natl. Acad. Sci. USA 108:18536-18541.
    Liu YH, Dai GZ, Qiu BS.2011b. Potassium alleviates the inhibitory action of ammonium upon the photosynthetic recovery of Nostoc flagelliforme (Cyanophyceae) during rehydration. J. Phycol 47:557-564.
    Livak KJ, Schmittgen TD.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods 25:402-408.
    Lorenz MC.2006. A marriage of old and new:chemostats and microarrays identify a new model system for ammonium toxicity. Plos Biol.4:1905-1907.
    Liider UH, Knoetzel J. Wiencke, C.2001. Assimation of photosynthesis and pigments to seasonally changing light condition in the endemic Antarctic red macroalga Palmaria decipiens. Polar Biol.24:598-603.
    Ma WM, Ogawa T, Shen YG, Mi HL.2007. Changes in cyclic and respiratory electron transport by the movement of phycobilisomes in the cyanobacterium Synechocystis sp. strain PCC 6803. Biochim. Biophys. Acta 1767:742-749.
    Mackinney G.1941. Absorption of light by chlorophyll solution. J. Biol. Chem.140: 315-322.
    Magnani F, Mencuccini M, Borghetti M et al.2007. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:848-850.
    Marcaida G, Felipo V, Hermenegildo C, Minana MD, Grisolfa S.1992. Acute ammonia toxicity is mediated by the NMDA type of glutamate receptors. FEBS Lett.296:67-68.
    Marshall BE, Falconer AC.1973. Physico-chemical aspects of lake Mcllwaine (Rhodesia), a eutrophic tropical impoundment. Hydrobiologia 42:45-62.
    Maskell LC, Smart SM, Bullock JM, Thompson K, Stevens CJ.2010. Nitrogen deposition causes widespread loss of species richness in British habitats. Global Change Biol.16: 671-679.
    Mcclean CJ, van den Berg LL, Ashmore MR, Preston CD.2011. Atmospheric nitrogen deposition explains patterns of plant species loss. Global Change Biol.17:2882-2892.
    Mi HL, Endo T, Ogawa T, Asada K.1995. Thylakoid membrane-bound, NADPH-specific pyridine nucleotide dehydrogenase complex mediates cyclic electron transport in the cyanobacterium Synechocystis sp PCC 68038. Plant Cell Physiol.36:661-668.
    Mi HL, Deng Y, Tanaka Y, Hibino T, Takabe T.2001. Photo-induction of an NADPH dehydrogenase which functions as a mediator of electron transport to the intersystem chain in the cyanobacterium Synechocystis PCC 6803, Photosynth, Res.70:167-173.
    Mitsui A, Kumazawa S, Takahashi A, Ikemoto H, Cao S, Arai T.1986. Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature 323:720-722.
    Mohamed A, Jansson C.1989. Influence of light on accumulation of photosynthesis-specific transcripts in the cyanobacterium Synechocystis 6803. Plant Mol. Biol.13:693-700.
    Mohanty N, Bruce D, Turpin DH.1991. Dark ammonium assimilation reduces the plastoquinone pool of photosystem Ⅱ in the green alga Selenastrum minutum. Plant Physiol. 96:513-517.
    Moisander PH, Ochiai M, Lincoff A.2009. Nutrient limitation of Microcystis aeruginosa in northern California Klamath River reservoirs. Harmful Algae 8:889-897.
    Mollenhauer D, Bengtsson R, LindstrOm EA.1999. Macroscopic cyanobacteria of the genus Nostoc:a neglected and endangered constituent of European inland aquatic biodiversity. Eur. J. Phycol.34:349-360.
    Mulder A, van de Graaf AA, Robertson LA, Kuenen JG. 1995. Aanareobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol.16: 177-184.
    Muller T, Walter B, Wirtz A, Burkovski A.2006. Ammonium toxicity in bacteria. Curr. Microbiol.52:400-406.
    Mulo P, Sicora C, Aro EM.2009. Cyanobacterial psbA gene family:optimization of oxygenic photosynthesis. Cell Mol. Life Sci.66:3697-3710.
    Munoz-Martin MA, Mateo P, Leganet F, Fernandez-Pinas F.2011. Novel cyanobacterial bioreporters of phosphorus bioavailability based on alkaline phosphatase and phosphate transporter genes of Anabaena sp. PCC 7120. Anal. Bioanal. Chem.400:3573-3584.
    Mur LR, Skulberg OM, Utkilen H.1999. Cyanobacteria in the environment. In Chorus, I.& Bartram, J. [Eds.] Toxic Cyanobacteria in Water:A guide to their public health consequences, monitoring and management. E & FN Spon, London, pp.15-40.
    Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI.2007. Photoinhibition of photosystem II under environmental stress. Biochim.Biophys.Acta 1767:414-421.
    Muro-Pastor MI, Reyes JC, Florencio FJ.2005. Ammonium assimilation in cyanobacteria. Photosynth. Res.83:135-150.
    Murphy TP, Lean DRS, Nalewajko C.1976. Bluegreen algae:Their excretion of iron-selective chelators enables them to dominate other algae. Science 192:900-902.
    Naselli-FIores L, Barone R.2000. Phytoplankton dynamics and structure:a comparative analysis in natural and man-made water bodies of different trophic state. Hydrobiologia 438:65-74.
    Nesdoly RG, Van Rees KCJ.1998. Redistribution of extractable nutrients following disc trenching on luvisols and brunisols in Saskatchewan. Can. J. Soil Sci.78:367-375.
    Nishiyama Y, Allakhverdiev SI, Murata N.2005. Inhibition of the repair of photosystem Ⅱ by oxidative stress in cyanobacteria. Photosynth. Res.84:1-7.
    Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N.2004. Singlet oxygen inhibits the repair of photosystem Ⅱ by suppressing the translation elongation of the Dl protein in Synechocystis sp. PCC 6803. Biochemistry 43:11321-11330.
    Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N.2001. Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J. 20:5587-5594.
    NishiyamaY, Allakhverdiev SI, Murata N.2006. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem Ⅱ. Biochim. Biophys. Acta 1757: 742-749.
    Nixon PJ, Barker M, Boehm M, de Vries R, Komenda J.2005. FtsH mediated repair of the photosystem Ⅱ complex in response to light stress. J. Exp. Bot.56:357-363.
    Nusch EA, Essen.1980. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol. Beih. Ergebn. Limnol.14:14-36.
    Ohnishi N, Allakhverdiev SI, Takahashi S, Higashi S, Watanabe M, Nishiyama Y, Murata N. 2005. Two-step mechanism of photodamage to photosystem Ⅱ:step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center. Biochemistry 44:8494-8499.
    Oliver RL, Ganf GG. 2000. Freshwater blooms. In Whitton, B. A.& Potts, M. [Eds.] The Ecology of Cyanobacteria:Their Diversity in Time and Space. Kluwer Academic, Dordrecht, pp.149-194.
    Olrik K, Nauwerck A.1993. Stress and disturbance in the phytoplankton community of a shallow, hypertrophic lake. Hydrobiologia 249:15-24.
    Ono T, Inoue Y.1988. Abnormal S-state turnovers in NH3-binding Mn centers of photosynthetic O2 evolving system. Arch. Biochem. Biophys.264:82-92.
    Owens TG.1996. Processing of excitation energy by antenna pigment. In Baker. N. [Eds.] Photosythesis and the Enviroment. Kluwer Academic, Dordrecht, pp.1-23.
    Ozimek T, Kowalczewski A.1984. Long-term changes of the submerged macrophytes in eutrophic lake Mikolajskie (North Poland). Aquat.Bot.19:1-11.
    Padhi SB.1995. Algal environment of polluted and unpolluted fresh water ponds. In:Alga Ecology:An Overview (eds Kargupta AN, Siddique EN) pp.132-148. International Book Distributors, Dehradun, India.
    Palmer CM.1969. A composite rating of algae tolerating organic pollution. J. Phycol.5: 78-82.
    Pearson J, Stewart GR.1993. The deposition of atmospheric ammonia and its effects on plants. New Phytol.125:283-305.
    Porter K. 1973. Selective grazing and differential digestion of algae by zooplankton. Nature 244:179-180.
    Pospisil P, Arato A, Krieger-Liszkay A, Rutherford AW.2004. Hydroxyl radical generation by photosystem Ⅱ. Biochemistry 43:6783-6792.
    Potts M.2000. Nostoc. In Whitton, B. A.& Potts, M. [Eds.] The Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer Academic, Dordrecht, pp.465-504.
    Priya B, Premanandh J, Dhanalakshmi RT, Seethalakshmi T, Uma L, Prabaharan D, Subramanian G.2007. Comparative analysis of cyanobacterial superoxide dismutases to discriminate canonical forms. BMC Genomics 8:435-444.
    Qin BQ, Liu ZW, Havens K. 2007a. Preface. Hydrobiologia 581:1-2.
    Qin BQ, Xu PZ, Wu QL, Luo LC, Zhang YL.2007b. Environmental issues of Lake Taihu, China. Hydrobiologia 581:3-14.
    Qiu BS, Gao KS.2002. Effects of CO2 enrichment on the bloom-forming cyanobacterium Microcystis aeruginosa (Cyanophyceae):physiological responses and relationships with the availability of dissolved inorganic carbon. J. Phycol.38:721-729.
    Qiu BS, Liu JY, Liu ZL, Liu SX.2002. Distribution and ecology of the edible cyanobacterium Ge-Xian-Mi (Nostoc) in rice fields of Hefeng County in China. J. Appl. Phycol.14:423-429.
    Qiu BS, Liu JY.2004. Utilization of inorganic carbon in the edible cyanobacterium Ge-Xian-Mi (Nostoc) and its role in alleviating photo-inhibition. Plant Cell Environ.27:1447-1458.
    Qiu BS, Price NM.2009. Different physiological responses of four marine Synechococcus strains (cyanophyceae) to nickel starvation under iron-replete and iron-deplete conditions. J. Phycol. 45:1062-1071.
    Quiros R.2003. The relationship between nitrate and ammonia concentrations in the pelagic zone of lakes. Limnetica 22:37-50.
    Rantala A, Rajaniemi-Wacklin P, Lyra C, Lepisto L, Rintala J, Mankiewicz-Boczek J, Sivonen K.2006. Detection of microcystin-producing cyanobacteria in finnish lakes with genus-specific microcystin synthetase gene E (mcyE) PCR and associations with environmental factors. Appl. Environ. Microbiol.72:6101-6110.
    Rawson DS.1956. Algal indicators of trophic lake types. Limnol. Oceanogr.1:18-25.
    Redhead K, Wright SJ.1978. Isolation and properties of fungi that lyse blue-green algae. Appl. Environ. Microbiol.35:962-969.
    Reynolds CS, Oliver RL, Walsby AE.1987. Cyanobacterial dominance:the role of buoyancy regulation in dynamic lake environments. New Zeal. J. Mar. Fresh.21:379-390.
    Reynolds CS.1998. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369/370:11-26.
    RippkaR.1988. Isolation and purification of cyanobacteria. Method. Enzymol.167:3-27.
    Rocap G, Distel DL, Waterbury JB, Chisholm SW.2002. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl. Envirol. Microbiol.68:1180-1191.
    Roose JL, Wegener KM, Pakrasi HB.2007. The extrinsic proteins of Photosystem Ⅱ. Photosynth. Res.92:369-87.
    Salih GF, Jansson C.1997. Activation of the silent psbAl gene in the cyanobacterium Synechocystis sp strain 6803 produces a novel and functional D1 protein. Plant Cell 9: 869-878.
    Sand-Jensen K, Sondergaard M.1979. Distribution and quantitative development of aquatic macrophytes in relation to sediment characteristics in oligotrophic Lake Kalgaard, Denmark. Freshwater Biol.9:1-11.
    Sand-Jensen K.1977. Effect of epiphytes on eelgrass photosynthesis. Aquat. Bot.3:55-63.
    Sandusky PO, Yocum CF.1984. The chloride requirement for photosynthetic oxygen evolution-Analysis of the effects of chloride and other anions on amine inhibition of the oxygen-evolving complex. Biochim. Biophys. Acta 766:603-611.
    Sandusky PO, Yocum CF.1986. The chloride requirement for photosynthetic oxygen evolution: factors affecting nucleophilic displacement of chloride from the oxygen-evolving complex. Biochim. Biophys. Acta 849:85-93.
    Scheffer M, Rinaldi S, Kuznetsov YA.1997. On the dominance of filamentous cyanobacteria in shallow turbid lakes. Ecology 78:272-282.
    Schindler DW, Hecky RE, Findlay DL et al.2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input:Results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. USA 105:11254-11258.
    Schindler DW.1977. Evolution of phosphorus limitation in lakes. Science 195:260-262.
    Schlebusch M, Forchhammer K.2010. Requirement of the Nitrogen Starvation-Induced Protein S110783 for Polyhydroxybutyrate Accumulation in Synechocystis sp. Strain PCC 6803. Appl. Envirol. Microbiol.76:6101-6107.
    Schreiber U, Endo T, Mi H, Asada K.1995. Quenching analysis of chlorophyll fluorescence by the saturation pulse method:particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol.36:873-882.
    Schreiber U.2004. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. In George C. Papageorgiou & Govindjee (eds):Chlorophyll Fluorescence:A Signature of Photosynthesis. Kluwer Academic, Netherlands.
    Schrijver AD, Verheyen K, Mertens J, Staelens J, Wuyts K, Muys B.2008. Nitrogen saturation and net ecosystem production. Nature 451:E1.
    Sener A, Malaisse WJ.1980. The stimulus secretion coupling of amino-acid induced insulin release Ⅱ. Sensitivity to K+, NH4+and H+ of leucine stimulated islets. Diabete Metab.6: 97-101.
    Shapiro J.1973. Blue-green algae:Why they become dominant. Science 179:382-384.
    Shapiro J.1984. Blue-green dominance in lakes:the role and management significance of pH and CO2. Int. Rev. Gesamten Hydrobiol. Hydrogr.69:765-780.
    Shcolnick S, Keren N.2006. Metal homeostasis in cyanobacteria and chloroplasts. Balancing benefits and risks to the photosynthetic apparatus. Plant Physiol.141:805-810.
    Shimizu Y.2003. Microalgal metabolites. Curr. Opin. Microbiol.6:236-243.
    Sicora CI, Ho FM, Salminen T, Styring S, Aro EM.2009. Transcription of a "silent" cyanobacterial psbA gene is induced by microaerobic conditions. Biochim. Biophys. Acta 1787:105-112.
    Silva P, Thompson E, Bailey S, Kruse O, Mullineaux CW, Robinson C, Mann NH, Nixon PJ. 2003. FtsH is involved in the early Ssages of repair of photosystem Ⅱ in Synechocystis sp PCC 6803. Plant Cell 15:2152-2164.
    Smith VH.1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221:669-671.
    Sommer U, Gliwicz ZM, Lampert W, Duncan A.1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol.106:433-471.
    Speer M, Brune A, Kaiser WM.1994. Replacement of nitrate by ammonium as the nitrogen source increases the salt sensitivity of pea plants. I. Ion concentrations in roots and leaves. Plant Cell Environ.17:1215-1221.
    Speer M, Kaiser WM.1994. Replacement of nitrate by ammonium as the nitrogen source increases the salt sensitivity of pea plants. Ⅱ. Inter-and intracellular solute compartmentation in leaflets. Plant Cell Environ.17:1223-1231.
    Srivastava A, Guisse B, Greppin H, Strasser RJ.1997. Regulation of antenna structure and electron transport in photosystem Ⅱ of Piston sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient:OKJIP. Biochim. Biophys. Acta 1320: 95-106.
    Stanier RY, Kunisawa R, Mandel M, Cohen-bazire G.1971. Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol. Rev.35:171-205.
    Stevens CJ, Disez NB, Gowing DJG, Mountfordw JO.2006. Loss of forb diversity in relation to nitrogen deposition in the UK:regional trends and potential controls. Global Change Biol. 12:1823-1833.
    Stewart WDP.1964. The effect of available nitrate and ammonium-nitrogen on the growth of two nitrogen-fixing blue-green algae. J. Exp. Bot.15:138-145.
    Strasser RJ, Srivastava A, Govindjee.1995. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem. Photobiol.61:32-42.
    Stumm W, Morgan JJ.1996. Aquatic Chemistry,3rd ed. John Wiley & Sons, New York, 1040 pp.
    Summerfield TC, Nagarajan S, Sherman LA.2011. Gene expression under low-oxygen conditions in the cyanobacterium Synechocystis sp. PCC 6803 demonstrates Hik31-dependent and-independent responses. Microbiology 157:301-312.
    Summerfield TC, Toepel J, Sherman LA.2008. Low-oxygen induction of normally cryptic psbA genes in cyanobacteria. Biochemistry 47:12939-12941.
    Takahashi S, Badger MR.2011. Photoprotection in plants:a new light on photosystem Ⅱ damage. Trends Plant Sci.16:53-60.
    Takahashi S, Murata N.2008. How do environmental stresses accelerate photoinhibition? Trends Plant Sci.13:178-182.
    Takahashi S, Nakamura T, Sakamizu M, Woesik R, Yamasaki H.2004. Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol.45:251-255.
    Thornton LE, Ohkawa H, Roose JL, Kashino Y, Keren N, Pakrasia HB.2004. Homologs of Plant PsbP and PsbQ Proteins Are Necessary for Regulation of Photosystem II Activity in the Cyanobacterium Synechocystis 6803. Plant Cell 16:2164-2175.
    Tilman D, Kilham SS, Kilham P.1982. Phytoplankton community ecology:The role of limiting nutrients. Annu. Rev. Ecol. Syst.13:349-372.
    Tilzer MM, Horne AJ.1979. Diel patterns of phytoplankton productivity and extracellular release in ultra-oligotrophic Lake Tahoel. Int. Rev. Gesamten Hydrobiol. Hydrogr. 64:157-176.
    Toivonen H.1985. Changes in the pleustic macrophyte flora of 54 small Finnish lakes in 30 years. Ann. Bot. Fennici 22:37-44.
    Turpin DH, Botha FC, Smith RG, Feil R, Horsey AK, Vanlerberghe GC.1990. Regulation of carbon partitioning to respiration during dark ammonium assimilation by the green alga Selenastrum minutum. Plant Physiol.93:166-175.
    Turpin DH, Bruce D.1990. Regulation of photosynthetic light harvesting by nitrogen assimilation in the green alga Selenastrum minutum. FEBS Lett.263:99-103.
    Tyystjarvi E, Aro EM.1996. The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc. Natl. Acad. Sci. USA 93:2213-2218.
    Tyystjarvi E.2008. Photoinhibition of photosystem Ⅱ and photodamage of the oxygen evolving manganese cluster. Coordin. Chem. Rev.252:361-376.
    Umenta Y, Kawakami K, Shen JR, Kamiya, N.2011. Crystal structure of oxygen-evolving photosystem Ⅱ at a resolution of 1.9 A. Nature 473:55-61.
    Valiela I, Geist M, McClelland J, Tomasky G.2000. Nitrogen loading from watersheds to estuaries:verification of the waquoit bay nitrogen loading model. Biogeochem.49:277-293.
    Valiente EF, Quesada A, Prosperi C, Nieva M, Leganes F, Ucha A.1997. Short-and long-term effects of ammonium on photodependent nitrogen fixation in wetland rice fields of Spain. Biol. Fertil. Soils 24:353-357.
    Van Breemen N, Burrough PA, Velthorst EJ, Van Dobben HF, DeWit T, Ridder TB, Reijnders HFR.1982. Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall. Nature 299:548-550.
    Van Breemen N, Van Dijk HFG. 1988. Ecosystem effects of atmospheric deposition of nitrogen in the Netherlands. Environ. Pollut.54:249-274.
    Van der Eerden LJM.1982. Toxicity of ammonia to plants. Agric. Environ.7:223-235.
    Van der Salm C, de Vries W, Reinds GJ, Dise NB.2007. N leaching across European forests: Derivation and validation of empirical relationships using data fromintensive monitoring plots. For. Ecol. Manage.238:81-91.
    Varis O.1993. Cyanobacteria dynamics in a restored Finnish lake:a long term simulation study. Hydrobiologia 268:129-145.
    Vass I, Styring S, Hundal T, Koivuniemi A, Aro EM, Andersson B.1992. Reversible and irreversible intermediates during photoinhibition of photosystem II:stable reduced Qa species promote chlorophyll triplet formation. Proc. Natl. Acad. Sci. USA.89:1408-1412.
    Velthuys BR.1975. Binding of inhibitor NH3 to oxygen evolving apparatus of spinach chloroplasts. Biochim. Biophys. Acta 396:392-401.
    Vitousek PM, Mooney HA, Lubchenco J, Melillo JM.1997. Human domination of earth's ecosystems. Science 277:494-499.
    Vitousek PM.1994. Beyond global warming:ecology and global change. Ecology 75: 1861-1876.
    Von Wir6n N, Gazzarrini S, Gojon A, Frommer WB.2000. The molecular physiology of ammonium uptake and retrieval. Curr. Opin. Plant Biol.3:254-261.
    Vrba JM, Curtis SE.1989. Characterization of a four-member psbA gene family from the cyanobacterium Anabaena PCC 7120.. Plant Mol. Biol.14:81-92.
    Wada H, Gombos Z, Murata N.1994. Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc. Natl. Acad. Sci. USA 91: 4273-4277.
    Wang MY, Siddiqi MY, Ruth TJ, Glass ADM.1993. Ammonium uptake by rice roots:I. fluxes and subcellular distribution of 13NH4+. Plant Physiol.103:1249-1258.
    Weis E.1982. Influence of light on the heat sensitivity of the photosynthetic apparatus in isolated spinach chloroplasts. Plant Physiol.70:1530-1534.
    Whitby CB, Saunders JR, Pickup RW, McCarthy AJ.2001. A comparison of ammonia-oxidiser populations in eutrophic and oligotrophic basins of a large freshwater lake. Antonie van Leeuwenhoek 79:179-188.
    Whitton BA, Potts M.2000. Introduction to the cyanobacteria. In Whitton, B. A.& Potts, M. [Eds.] The Ecology of Cyanobacteria:Their Diversity in Time and Space. Kluwer Academic, Dordrecht, pp.1-11.
    Whitton BA.1984. Algae as monitors of heavy metals in freshwaters. In Shubert, L. E. [Eds.] Algae as Ecological Indicators. Academic Press, London, pp.257-280.
    Whitton BA.2000. Soils and rice-fields. Whitton B A, Potts M. Ecology of Cyanobacteria: Their Diversity in Time and Space. The Netherlands:Kluwer Academic Publishers.233-255.
    Wilson A, Ajlani G, Verbavatz JM, Vass I, Kerfeld CA, Kirilovsky D.2006. A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18:992-1007.
    Wolt J.1994. Soil Solution Chemistry:Applications in Environmental Science and Agriculture. John Wiley & Sons, New York,345 pp.
    Wu SK, Xie P, Wang, SB, Zhou Q.2006. Changes in the patterns of inorganic nitrogen and TN/TP ratio and the associated mechanism of biological regulation in the shallow lakes of the middle and lower reaches of the Yangtze River. Sci. China D Life Earth Sci.49:126-134.
    Wu X, Xi WY, Ye WJ, Yang H.2007. Bacterial community composition of a shallow hypertrophic freshwater lake in China, revealed by 16S rRNAgene sequences. FEMS Microbiol. Ecol.61:85-96.
    Xia JR.2005. Response of growth, photosynthesis and photoinhibition of the edible cyanobacterium Nostoc sphaeroides colonies to thiobencarb herbicide. Chemosphere 59: 561-566.
    Xu H, Paerl HW, Qin BQ, Zhu GW, Gao G.2010. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol. Oceanogr.55:420-432.
    Yang SZ, Zhang R, Hu CC, Xie J, Zha.JQ.2009. The dynamic behavior of phycobilisome movement during light state transitions in cyanobacterium Synechocystis PCC6803. Photosynth. Res.99:99-106.
    Yoshida M, Yoshida T, Kashima A, Takashima Y, Hosoda N, Nagasaki K, Hiroishi S.2008. Ecological dynamics of the toxic bloom-forming cyanobacterium Microcystis aeruginosa and its cyanophages in freshwater. Appl. Environ. Microbiol.74:3269-3273.
    Zhao WX, Ye Z, Zhao JD.2007. RbrA, a cyanobacterial rubrerythrin, functions as a FNR-dependent peroxidase in heterocysts in protection of nitrogenase from damage by hydrogen peroxide in Anabaena sp PCC 7120. Mol. Microbiol.66:1219-1230.
    Zhou L, Yu H, Chen K.2002. Relationship between microcystin in drinking water and colorectal cancer. Biomed. Environ. Sciences 15:166-171.
    Zhu Z, Gerendas J, Bendixen R, Schinner K, Tabrizi H, Sattelmacher B, Hansen UP.2000. Different tolerance to light stress in NO3--and NH4+-grown Phaseolus vulgaris L. Plant Biol. 2:558-570.
    Zinchenko W, Piven IV, Melnik VA, Shestakov SV.1999. Vectors for the complementation analysis of cyanobacterial mutants. Russ. J. Genet.35:228-232,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700