用户名: 密码: 验证码:
湖北省灰霉病病菌区系和灰葡萄孢菌多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灰霉病(grey mould)是葡萄孢属真菌(Botrytis spp.)引起的一类世界范围分布的重要的植物病害。对该属病原菌的分类鉴定工作具有非常重要的理论研究和实际应用价值。许多真菌分类学家多年来一直致力于不断提高葡萄孢属真菌的分类水平,目前已经有28种葡萄孢菌的纪录。2008年已完成了该属模式菌-灰葡萄孢菌(B. cinerea)的全基因组测序。同时,Staats et al.(2005)分子水平上证明葡萄孢属真菌与寄主的进化的关系。本论文利用形态学和分子系统学分析方法对湖北省重要经济作物上的葡萄孢属真菌种类进行了分离和鉴定。对一些重要种类进行了分布调查、生物学特性、致病性和遗传多样性分析。取得的研究结果如下:
     1、对采自湖北省不同寄主作物样品进行了葡萄孢属真菌的分离与培养,共获得了818株葡萄孢属真菌和类似葡萄孢属真菌分离物。共鉴定出14个种,包括两个新种:拟蚕豆葡萄孢(B. fabiopsis)和中国葱葡萄孢(B. sinoallii),分别引起蚕豆赤斑病、葱属蔬菜叶斑病。命名了一种新病害:大蒜盲种葡萄孢菌(B. porri)引起大蒜叶斑病。确定了一种病原的分类属性,即引起洋葱茎腐病的病原为B. aclada,而非B. alli。分离两个疑似新种:葡萄孢种1(Botrytis sp.l)和葡萄孢种2(Botrytis sp.2)。鉴定出3种葡萄孢属类似真菌,它们是:Amphyobotrys ricini、Streptobotrys caulophylli和Verrucobotrys geranii。对拟蚕豆葡萄孢和中国葱葡萄孢菌的致病力进行了测定。结果表明:拟蚕豆葡萄孢菌引起典型的蚕豆赤斑病,其致病力与蚕豆葡萄孢菌相似。但拟蚕豆葡萄孢菌的在湖北省的自然分布较蚕豆葡萄孢菌广泛。可见,拟蚕豆葡萄孢菌对蚕豆的危害较蚕豆葡萄孢菌严重。中国葱葡萄孢菌在接种的条件下,能够感染小葱、大蒜和韭菜。在发病部位产生大量分生孢子,其潜在重要性不能忽视。
     2、利用ITS和G3PDH基因序列,对葡萄孢属及其近缘属真菌(Amphyobotrys, Streptobotrys, Verrucobotrys, Sclerotinia, Monilinia)的系统发育关系进行了分析。与ITS相比,G3PDH基因序列可以很好的解决葡萄孢属真菌及其近缘属真菌的系统发育问题。Verrucobotrys与Botrytis的亲缘关系最近,虽呈独立分支,但Verrucobotrys属真菌是属于葡萄孢属真菌一大类群里的亚支,将其作为一个独立的属还有待研究。
     3、研究确定了两个新种拟蚕豆葡萄孢(B. fabiopsis)和中国葱葡萄孢(B.sinoallii)的生物学特性。B. fabiopsis菌丝生长的温度范围为5~30℃,最适生长温度为20-25℃。菌丝pH值范围为2~10,pH值为4.0-5.0时利于菌丝生长和菌核形成,最适宜的碳氮源分别为可溶性淀粉,丙氨酸。B.fabiopsis、B.fabae和B. cinerea之间对温度、pH值和碳源/氮源的反应存在明显差异。B.fabiopsis和B. fabae比较而言具有更广泛的生长温度范围和pH值范围。B. sinoallii菌丝生长的温度范围为5-30℃,最适生长温度为20℃。菌丝pH值范围为2-10,最适pH值为5.0,pH值为6.0时有利于菌核形成,最适宜的碳氮源分别为葡萄糖,蛋白胨和丙氨酸。B. sinoallii和B. squamosa之间对温度、pH值和碳源/氮源的反应存在一定的差异,相对而言,B. sinoallii较B. squamosa更适应偏高的生长温度(25℃和28℃)。
     4、探讨了灰葡萄孢菌的多样性规律。灰葡萄孢菌菌株在培养特征表现为菌丝型、孢子型和菌核型等3类,以菌核型为主。在转座子方面,可分为transposa和vacuma两类,以transposa为主。抗药性分析结果表明:大部分菌株对多菌灵、菌核净、农利灵和环酰菌胺为敏感菌株,并从分子水平分析了部分抗性菌株抗药的可能机制。不同来源的灰葡萄孢菌株都有对油菜的致病能力,但是菌株之间存在差异。即使是相同田块来源的菌株在特养特征、致病性、转座子和抗药性上同样也存在丰富的多样性。
Botrytis spp., the causal agents of grey mould diseases, can infect many fruits, vegetables and ornamental crops. These fungi are world-wide plant pathogens. It is necessary to keep continuous research on Botrytis taxonomy and identification. The fungal taxonomists all over the world have been making efferts to promote Botrytis taxonomy. Nowadays, there are 28 species in this genus. The genome sequencing of B. cinerea has been completed in 2008. The relationship between Botrytis and host plants has been reported and many new species and diversity of Botrytis have been elucidated.
     Some researches on morphology, histology, molecular biology and proteomics of Botrytis have made considerable progress. However, it has been short of taxonomic work on Botrytis in China. The morphological and molecular character of Botrytis were identified in this paper. The genetic diversity of Botrytis cinerea isolated from different host in Hubei province was studied based on mophyological characteristics, pathogenicity, resistance and molecular biology techniques. The aim of this study is to determine Botrytis species and diversity of B. cinerea. The results are summarized below:
     1. The Botrytis cultures were isolated from different hosts and 818 isolates were identied based on morphological and molecular characteristics, including 11 species of Botrytis and 3 Botrytis-like genera. Two new species of Botrytis were described, B. sinoallii causing leaf blight of Allium and B. fabiopsis causing chocolate spot of broad bean. A new disease of garlic caused by B. porri was identified. The taxonomic status of the causal agent of onion bulb rot was determined to be B. aclada, rather than B. allii. Two suspected new species, Botrytis spl. and Botrytis sp2 were identified. Three Botrytis-like species were Amphyobotrys ricini, Streptobotrys caulophylli and Verrucobotrys geranii isolated and identified. In addition, the distribution and the pathogenicity of some species of Botrytis spp. were investigated.
     2. Phylogenetic relationships were analyzed using the sequence of ITS and G3PDH gene of Botrytis and related genera(Amphyobotrys, Streptobotrys, Verrucobotrys, Sclerotinia, Monilinia). The partial sequence of G3PDH gene can be used for solving the phylogeny problem, compared to ITS. Verrucobotrys is closely related to Botrytis. Verrucobotrys was clustered in an independent branch of a clade of Botrytis in the phylogenetic tree. So, it needs to further investigation that Verrucobotrys was a separate genus needs.
     3. Two new species, B. fabiopsis and B. sinoallii, were characterized for basic biological properties (the optimum temperature, pH and the optimum carbon and nitrogen sources). The result showed B. fabiopsis could grow in 5-30℃, pH values of 2.0-10.0. The most optimum temperature is 20-25℃for mycelium growth and the most optimum pH value is 4.0-5.0. The most suitable carbon and nitrogen sources were soluble starch and alanine, respectively. B. fabiopsis, B. fabae and B. cinerea showed a dramatic difference in response to temperature, pH value and nutritent sources. B. sinoallii could grow in 5-30℃, pH values of 2.0-10.0 with the optimum temperature of 20℃and ph value of 4.0-5.0. The most suitable carbon and nitrogen sources were glucose and peptone/alanine, respectively. B. sinoallii and B. squamosa also showed a dramatic difference in response to temperature, pH value and nutrient sources. B. sinoallii showed better growth at 25℃and 28℃than B. squamosa.
     4. The genetic diversity of Botrytis cinerea isolated from different hosts in Hubei Province was studied based on mophyological characteristics, pathogenicity, fungicide resistance and some molecular features. The results showed that:isolates of B. cinerea have three types:mycelium type, conidial type and sclerotial type. A PCR method was developed to identify the transposable elements Boty and Flipper that form two groups, transposa and vacuma. Most of isolates are sensitive to four fungicides.
引文
1.戴芳澜遗著.中国真菌总汇.科学出版社,1979,p 850-853.
    2.蒋盛岩,张志光.真菌的分子生物学鉴定方法研究进展.生物学通报,2002,37(10):4-7.
    3.李林,徐作琏.山东省灰霉病菌对速克灵、多菌灵田间抗性检测研究初报.山东农业科学,1997,3:32-35.
    4.林剑伟,阙友雄,陈天生.核糖体DNA的内转录间隔区序列标记在真菌分类鉴定中的应用.生物技术通讯,2007,18(2):292-294.
    5.刘超洋,庄文颖.火丝菌科(盘菌目)部分属的系统学研究.菌物学报,2006,25:546-558.
    6.刘晶晶.蓝藻念珠藻属及其近缘属的分子系统学研究.上海师范大学,硕士论文,2008.23-68
    7.刘钢,周与良.真菌分类技术的发展.微生物通报,1995,22(6):362-366.
    8. 龙宝卓玛.保护地蔬菜灰霉病的防治.青海农技推广,2002,3:46.
    9.牛永春.真菌系统分类与鉴定中的新方法.北京林业大学学报,1995,17(2):94-98.
    10.盛伟,方晓阳,潘传奇.核糖体RNA基因在蕈菌分子系统学研究中的应用.食品科学,2008,29(6):453-456.
    11.田红萍,曲济兴,武志强.保护地蔬菜灰霉病的防治.山西农业,2003,10:29-30.
    12.田民,王育新.生物多样性保护现状及发展趋势.河北林果研究,,2008,23(4):407-409.
    13.王次男,Coley-SiIlim, J. R.温室莴苣灰霉病菌对Dicarboxidmide杀菌剂之抗性.植保会刊,1987,29:327-336.
    14.王学英,张立新,张中义.中国的葡萄孢分类之二:一新种和五个已知种.植物病理学报,1996,26(1):79-85.
    15.魏景超.真菌鉴定手册.上海科学技术出版社,1979,p 257-260.
    16.吴德喜,王扬,王学英,张立新,黄国品,孔令平.葡萄孢菌全基因组DNA遗传多态性RAPD分析.云南农业大学学报,2000,15(3):282-283.
    17.吴德喜,王扬,王学英,张中义.葡萄孢菌遗传多态性DNA分子指纹RAPD分析.西南农业大学学报,2003,25(4):290-296.
    18.吴社高,严细秋.百合主要病虫及防治,植保技术与推广,1999,19(4):1-2.
    19.刑来君,李明春.普通真菌学.北京:高等教育出版社,1999,pp 160-165.
    20.印丽梅.茄科蔬菜灰霉病菌对嘧霉胺抗药性研究.浙江大学硕士学位论文,2006.
    21.张传博,苏晓庆.几种基于基因组DNA的真菌分类技术研究进展.贵州师范大学学报:自然科学版,2006,24(1):113-119.
    22.张建博,桂明英,刘蓓,马绍宾.分子生物学在大型真菌遗传多样性研究中的应用.中国食用菌,2008,27(6):3-7.
    23.张俊忠,陈秀蓉,杨成德,薛莉.东祁连山高寒草地土壤可培养真菌多样性分析.草原学报,2010,19(2):124-132.
    24.张忠义等.中国真菌志.葡萄孢属、柱格孢属.2006.26:p17.
    25.赵士民,巴哈尔古丽.草莓灰霉病的发生与防治.农村科技,2009,10:28.
    26.郑和斌.核rDNA ITS序列在侧耳属分子分类学上的应用.华中农业大学,硕士论文,2005:25-36.
    27.周志伟,黄河.毛霉目真菌的DNA提取及其GC含量的测定.微生物学通报,1991,18(5):275-279..
    28.周明国,叶钟音,刘经芬.南京市郊灰霉菌对苯并咪唑类杀菌剂田间抗性的检测.南京农业大学学报,1987,6(2):53-57.
    29.庄剑云. Floristic survey of rust fungi in China:summary of available knowledge. Proceedings of the First Korea-China Joint Seminar for Mycology (Dec.2-5,1993, Seoul, Korea). Printed in Dongguk University, Seoul,1994, P32-41.
    30. Albertini, C., Thebauld, G., Leroux, P., Fournier, E. Eburicol 14a-demethylase gene (Cyp51) polymorphism and speciation in Botrytis cinerea. Mycol. Res.,2002,106: 1171-1178.
    31. Albertini, C., Leroux, P. A Botrytis cinerea putative 3-keto reductase gene (ERG27) that is homologous to the mammalian 17B-hydroxysteroid dehydrogenase type7 gene (17B-HSD7). Eur. J. Plant Pathol.,2004,110:723-733.
    32. Alderman, S. C., Lacy, M. L.. Influence of temperature and moisture on growth and sporulation of Botrytis squamosa. Canadian J. Bot.,1984,62:2793-2797.
    33. Alfonso, C., Raposo, R., Melgarejo, P.. Genetic diversity in Botrytis cinerea populations on vegetable crops in greenhouses in south-eastern Spain. Plant Pathol, 2000,49:243-251.
    34. Bergquist, R. R., Lorbeer, J. W. Apothecial production, compatibility and sex in Botryotinia squamosa. Mycologia,1972,64:1270-1281.
    35. Boff, P., Kastelein P., de Kraker J., Gerlagh M., Kohl J. Epidemiology of grey mould in annual waitingbed production of strawberry. Eur. J. Plant Pathol.,2001,107: 615-624.
    36. Bollen G J. Acquired resistallce to benomyland some other systemic fungicides in a Stain of Botrytis Cinerea in cyclamen. Neth. J. Plant Pathol,1971,77:83-90.
    37. Broeckling, C. D., Broz, A. K., Bergelson, Joy., Manter, D. K., Vivanco, J. M. Root Exudates Regulate Soil Fungal Community Composition and Diversity. Appl. Environ. Microbiol.,2008,74(3):738-744.
    38. Bruns, T. D. R., vilgalys, S. M., Barns D. Evolutionary relationships within the fungi: analyses of small subunit ribosomal DNA sequences. Appl Environ Microbiol,1992, 61:681-689.
    39. Buchwald, N. F.. Studies in the Sclerotiniaceae.I.Taxonomy of the Scerotiniaceae, Arsskr. K. Vet. Landbohojsk,1949, pp 74-191.
    40. Calpas, J. T., Konschuh, M. N., Toews, C. C, and Tewari, J. P. Relationships among isolates of Botrytis cinerea collected from greenhouses and field locations in Alberta, based on RAPD analysis. Can. J. Plant Pathol.,2006,28:109-124.
    41. Carlile, M. J., Watkinson, S. C. The fungi. London:Academic Press,1994, pp 345-384.
    42. Castro, M., Kramer, K., Valdivia, L., Ortiz, S., Castillo A.. A double-stranded RNA mycovirus confers hypovirulence-associated traits to Botrytis cinerea. FEMS Microbiol. Lett.,2003,228:87-91.
    43. Chilvers M. I., Hay F. S., Wilson C. R. Survey for Botrytis species associated with onion bulb rot in northern Tasmania, Australia. Australasian Plant Pathol.,2004,33: 419-422.
    44. Culberson, C. F., Kristinsson, H. A standardized method for the identification of lichen products. J. Chromatogr,1970,46:85-93.
    45. Culberson, C. F. Improved conditions and new data for the identification of lichen products by a standardized thin layer chromatographic method. J. Chromatogro,1972, 72:113-125.
    46. Davidson J. A., Pande S., Bretag T. W., Lindbeck K. D., Krishna-Kishore G. Biology and management of Botrytis spp. in legume crops. In:Elad Y, Williamson B, Tudzyski P and Delen N, eds. Botrytis:Biology, Pathogenicity and Control. Dordrecht:Kluwer Academic Publishers.2004, p 295-318.
    47. Delhey R., Kiehr M., Izcovich P., Frascarelli A., Azpilicueta A., Wright E., Garcia Lorenzana U.. Eradication of Botryotinia squamosa from the main onion-producing zone of Argentina in the Lower Rio Colorado Valley. Bulletin OEPP/EPPO Bulletin, 2006,36:21-23.
    48. Diolez, A., Marches, F., Fortini, D., Brygoo, Y. Boty, a long terminal repeat retroelement in the phytopathoenic fungus Botrytis cinerea. Appl. Environ. Microbiol, 1995,61:103-108.
    49. Druzhinina, I., Kopchinskiy, A. G., Komon, M., Bissett, J., Szakacs, G., Kubicek, C. P. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet. Biol.,2005,42:813-828.
    50. Dry, I. B., Yuan, K. H., Hutton, D. G. Dicarboximide resistance in field isolates of Alternaria alternate is mediated by a mutation in a two-component histidine kinase gene. Fungal Genet. Biol.,2004,41:102-108.
    51. Du Toit, L. J., Derie, M. L., Hsiang, T., Pelter, G. Q.. Botrytis porri in onion seed crops and onion seed. Plant Dis.,2002,86:1178.
    52. Duarte-Escalante, E., Zuniga, G., Ramirez, O. N., Cordoba, S., Refojo, N., Arenas, R., Delhaes, L., Reyes-Montes, M. R. Population structure and diversity of the pathogenic fungus Aspergillus fumigatus isolated from different sources and geographic origins. Mem. Inst. Oswaldo. Cruz., Rio de Janeiro,2009,104(3): 427-433.
    53. Dugan F. M., Hellier B. C., Lupien L. Pathogenic fungi in garlic seed cloves from the United States and China, and efficacy of fungicides against pathogens in garlic germplasm in Washington State. J. Phytopathol.,2007,155:437-445.
    54. Dugan, F. M., Hellier, B. C., Lupien, S. L.. Pathogenic Fungi in Garlic Seed Cloves from the United States and China, and Efficacy of Fungicides Against Pathogens in Garlic Germplasm in WashingtonElad, Y., Williamson, B., Tudzynski P., Delen, N. Botrytis:Biology, Pathology and Control. Kluwer Academic Publishers, Dordrecht, The Netherlands,2004, p 341.
    55. El-Helaly, A. F. A chocolate spot disease of beans (Vicia faba). Part Ⅰ. Bulletin, Ministry of Agriculture. Egypt Uo,1938, p 191.
    56. Ellerbrock L. A., Lorbeer J. W. Etiology and control of onion flower blight. Phytopathology,1977,67:1550-1559
    57. Elliott, L. E.. Streptotinia caulophylli sp. nov. produced in culture. Can. J. Bot,1962, 40:1197-1201.
    58. Ellis, J. J. Species and varieties in the Rhizopus arrhizus-Rhizopus oryzae group asincated by their DNA complementarity. Mycologia,1985,77:243-247.
    59. Fabian M., Dominique B., Pascal L., Caroline L., Bernadette D., Marc F. Phenotypic differences between vacuma and transposa subpopulations of Botrytis cinerea. Eur. J. Phytopathol.,2003,109:479-488
    60. Farmer D. J., Sylvia, D. M. Variation in the rDNA ITS of ectomycorrhizal fungi. Mycol Res,1998,102 (7):859-869.
    61. Fernande, Z. D., Assigbetse K., Dubois, M. P., Geiger J. P. Molecular Characterization of races and Vegetative compatibility groups in Fusarium oxysporum f. sp. vasinfectum. Appl. Environ. Microb.,1994,60(11):4039-4046.
    62. Ferraro, L. I. Morphological diversity in the hyphopores of Gomphillaceae (Ostroplaes, lichenized Ascomycetes). Fungal Divers.,2004,15:153-169.
    63. Fournier, E., Giraud, T., Loiseau, A., Vautrin, D., Estoup, A., Solignac, M., Cornuet, J. M., Brygoo, Y.. Characterization of nine polymorphic microsatellite loci in the fungus Botrytis cinerea (Ascomycota). Mol. Ecol. Notes,2002,2:253-255.
    64. Fournier, E., Levis C., Fortini, D., Leroux, P., Giraud, T., Brygoo, Y. Characterization of Bc-hch, the Botrytis cinerea homolog of the Neurospora crassa het-c vegetative incompatibility locus, and its use as a population marker. Mycologia, 2003,95(2):251-261.
    65. Geiser, D. M., Jimenez-Gasco, M., Kang, S., Makalowska, I., Veerarahavan, N., Ward, T., Zhang, N., Kuldau, G., O'donnell, K. FUSARIUM-ID v.1.0:A DNA sequence database for identifying Fusarium. Eur. J. Plant Pathol.,2004,110: 473-479.
    66. Giraud, T., Fortini, D., Levis, C., Leroux, P., Brygoo, Y.. RFLP Markers show genetic recombination in Botryotinia fuckeliana(Botrytis cinerea) and. transposable elements reveal two sympatric species. Mol. Biol. Evol.,1997,14:1177-1185.
    67. Giraud T., Levis, C., Fortini, D., Leroux, P., Brygoo, Y. Plusieurs especes cachees sous le nom de Botrytis cinerea:Etude de populations de B. cinerea sur vignes champenoises. Phytoma, La defense des vegetaux,1998,504:56-60.
    68. Godfrey, G. H.1923. Gray mold of castor bean. J. Agric. Res.23:679-716.
    69. Guarro, J., Gene, J., Stchigel, A. M. Developments in Fungal Taxonomy. Clinical Microbiology Reviews,1999,12(4):454-500.
    70. Gullino, M. L., Hugh Sisler, D.. Antagonism of iprodione toxicity to Botrytis cinerea by mixed function oxidase inhibitors. Pest Management Science,1986,17:142-149.
    71. Guthrie, P. A. I., Magill, C. W., Fredeaiksen, R. A. Random amplified polymorphic DNA markers:A system for indentifying and differentiating isolates of Colletotrichum graminicola. Phytopathology,1992,82:832-835.
    72. Haaseg,1., Sonntag, Y.. Phylogenetic analysis of ten blackyeast species using nuclear small subunit rRNA gene sequences. Antonie Leeuwenhoeklnt. J. Genet,1995,68: 19-33.
    73. Harrison, J. G.. Chocolate spot of field beans in Scotland. Plant Pathol,1981,30: 111-115.
    74. Hennebert G. L. Botrytis and Botrytis-like genera. Persoonia,1973,7:183-204.
    75. Hennebert, G. L. Les Botrytis des Allium.Meded.Landbouwhogesch. Opzoe-kingsstn.Staat Gent,1963,28:851-876
    76. Hennebert, G. L., Sutton, B. C. Ascomycete systematics:problems and perspectives inthe nineties. NewYork:Plenum Press,1994, p 65-76.
    77. Henson, J. M., French, R. The polymerase chain reaction and plant disease diagnosis. Annu.Rev. Phytopathology,1993,31:81-109.
    78. Hibbett, D. S. Ribosomal RNA and fungal systematics.Trans Mycol Soc Jpn,1992, 33:533-556.
    79. Hong, S. K., Kim, W. G., Cho, W. D., Kim, H. G. Occurrence-of Gray Mold in Castor Bean Caused by Botrytis cinerea and Amphobotrys ricini in Korea Plant Pathol. J.,2001,17(6):357-360.
    80. Hong, S. K., Kim, W. G., Cho, W. D., Kim, H. G. Leaf and Stem Blight on Columbine and Bleeding Heart Caused by Streptobotrys caulophylli Plant Pathol. J., 2004,20(3):192-195.
    81. Hoog, G. S., Guarro J. Atlas of clinical fungi. Centraalbureauvo or Schimmelcultures. Mycoscience,1995,39:71.
    82. Ian, B. D., Khor, H. Y., Don, G. H.. Dicarboximide resistance in field isolates of Alternaria alternata is mediated by a mutation in a two-component histidine kinase gene. Fun. Genet. Biol.,2004,41:102-108.
    83. Ikata, S. Study on red spot disease (Chocolate spot disease) of Vicia faba. Rept. Agric. Exper. Stat. Okayamaken,1933, Extra No.38. (Japanese.)
    84. Isenegger, D. A., Macleod, W. J., Ford, R., Taylor, P. W. J.. Genotypic diversity and migration of clonal lineages of Botrytis cinerea from chickpea fields of Bangladesh inferred by microsatellite markers. Plant Pathol,2008,57:967-973.
    85. Jarvis, W. R.1977. Botryotinia and Botrytis species; taxonomy, physiology and pathogenicity. Monograph No.15, Canadian Department of Agriculture, Ottawa.
    86. Jarvis, W. R. Epidemiology. In:Coley-Smith J. R., Verhoeff K., Javis, W. R. (eds) The Biology of Botrytis. Academic Press, London, UK,1980, pp 219-250.
    87. Joaquim, T. R., Rowe, R. C. Reassessment of vegetative compatibility relationships among strains of Verticillium dahliae using nitrate-nonutilizing mutants. Phytopathology,1990,80:1160-1166.
    88. Katan, T. Resistance to 3,5-dichlorophenyl-N-cyclic imide ('dicarboximide') fungicides in the grey mould pathogen Botrytis cinerea on protected crops. Plant Pathol,1982,31:133-141.
    89. Katan, T., Elad Y., Yunis H.. Resistance to diethofencarb (NPC) in benomyl-resistant field isolates of Botrytis cinerea. Plant Pathol.,1989,38:86-92.
    90. Kerssies, A., Bosker-van Zessen, A. I., Wagemakers, C. A. M., Van Kan, J. A. L. Variation in pathogenicity and DNA polymorphism among Botrytis cinerea isolates sampled inside and outside a glasshouse. Plant Dis.,1997,81:781-786.
    91. Kim, G. H., Lim Y. W., Song Y. S., Kim J. J. Decay fungi from playground wood products in service using 28S rDNA sequence analysis. Holzforschung,2005,59(4): 459-466.
    92. Kim J., Min, J. Y., Bae, Y. S., Kim,H. T. Molecular Analysis of Botrytis cinerea Causing Ginseng Grey Mold Resistant to Carbendazim and the Mixture of Carbendazin Plus Diethofencarb Plant Pathol. J.,2009,25(4):322-327.
    93. Koenraadt, H., Somerville, S. C., and Jones, A. L. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology,1992,82:1348-1354.
    94. Kunz, C, Vandelle, E., Rolland, S., Poinssot, B., Bruel, C., Cimerman, A., Zotti, C., Moreau, E.,Latorre, B. A., Flores, V., Sara, A., and Roco, A. Dicarboximide-resistant isolates of Botrytis cinerea from table grapes in Chile:survey and characterization. Plant Dis.,1994,78:990-994.
    95. Kurtzman, C. P., Robnett, C. J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (28S) ribosomal DNA partial sequences. Ant Leeuwenhoek,1998,73:331-371.
    96. Lorenz, G., Pommer, E.H. Morphological and physiological characteristics of dicarboximide-sensitive and resistant isolates of Botrytis cinerea. EPPO Bull,1985, 15:353-360.
    97. Leroux, P., Fritz, R., Debieu, D., Albertini, C., Lanen, C., Bach, J., Gredt, M., Chapeland, F. Mechanisms of resistance to fungicides in Weld strains of Botrytis cinerea. Pest Manag. Sci.,2002,58:876-888.
    98. Levis, C., Fortini, D., Brygoo, Y. Flipper, a mobile Fotl-like transposable element in Botrytis cinerea. Mol. Gen. Genet.,1997,254:674-680.
    99. Ma, Z., Michailides, T. J. Genetic structure of Botrytis cinerea populations from different host plants in California. Plant Dis.,2005,89:1083-1089.
    100.Ma, Z. H., Yan, L. Y., Luo, Y., Michailides, T. J. Sequence variation in the two-component histidine kinase gene of Botrytis cinerea associated with resistance to dicarboximide fungicides. Pest. Biochem. Physiol.,2007,88:300-306.
    101.MacFarlane, H. H. Review of Applied Mycology. In:plant host-pathogen index to volumes 1-40,1968, pp 820.
    102.Makoto, F., Noriyuki, O., Akihiko, I., Ron, U., Koki, H., Isamu, Y. Fungicide resistance and osmotic stress sensitivity in os mutants of Neurospora crassa. Pest. Biochem. Physiol.,2000,67(2):125-133.
    103.Martinez, F., Blancard, D., Lecomte, P., Levis, C., Dubos B., Fermaud, Marc. Phenotypic differences between vacuma and transposa subpopulations of Botrytis cinerea. Eur. J. Plant Pathol.,2004,19:479-488.
    104.McQuilken M. P., Gemmell, J., Hill, R. A., Whipps, J. M. Production of macrosphelide A by the mycoparasite Coniothyrium minitans. FEMS Microbiol. Lett., 2003,219:27-31.
    105.Mirzaei, S., Goltapeh, E. M., Shams-Bakhsh, M., Safaie, N. Identification of Botrytis spp. on plants grown in Iran. J. Phytopathol,2008,156:21-28.
    106.Morgan, D. J. Numberical taxonomic studies of the genus Botrytis Ⅰ. The B. cinerea complex. Trans. Br. Mycol. Soc.,1971a,56:319-235
    107.Morgan, D. J. Numberical taxonomic studies of the genus Botrytis. Ⅱ. Other Botrytis taxa. Trans. Br. Mycol. Soc.,1971b,56:319-235
    108.Mount, D. W.生物信息学.北京:高等教育出版社,2003,182-246.
    109.Moukhamedov, R., Hu, X., Nazar, R. N., Robb, J. Use of polymerase chain reaction-amplified PCR ribosomal intergenic sequences for the diagnosis of Verticillium trisorpus. Phytopathology,1994,84:256-259.
    110.Moyano, C., Alfonso, C., Gallego, J., Raposo, R., Melgarejo, P. Comparison of RAPD and AFLP Marker Analysis as a Means to Study the Genetic Structure of Botrytis cinerea Populations. Eur. J. Plant Pathol.,2003,109:515-522.
    111.Moyano, E., Jouhikainen, K., Tammela, P., Palazon, J., Cusido, R. M., Pinol, M. T. Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. J. Exp. Bot.,2003,54:203-211.
    112.Munnoz, G., Hinrichsen, P., Brygoo, Y., Giraud, T. Genetic characterisation of Botrytis cinerea populations in Chile. Mycol. Res.,2002,106 (5):594-601.
    113.Nattrass R.M. Note on Botrytis sp, as the cause of "chocolate spot" of Vicia faba in Cyprus. Cyprus Agricultural Journal,1935,30:57-58.
    114.Nielsen, K., Yohalem D. S. Origin of a polyploid Botrytis pathogen through interspecific hybridization between Botrytis aclada and B. byssoidea. Mycologia, 2001,93:1064-1071.
    115.Nielsen, K., Yohalem, D. S., Jensen, D. F. PCR detection and RFLP differentiation of Botrytis species associated with neck rot of onion. Plant Dis.,2002,86:682-686.
    116.0'Gorman, D. T., Sholberg, P. L., Stokes, S. C., Ginns, J. DNA sequence analysis of herbarium specimens facilitates the revival of Botrytis mali, a postharvest pathogen of apple. Mycologia,2008,100:227-235.
    117.Oshima, M., Fujimura, M., Banno, S., Hashimoto, C., Motoyama, T., Ichiishi, A., Yamaguchi, I. A point mutation in the two-component histidine kinase BcOS-1 gene confers dicarboximide resistance in field isolates of Botrytis cinerea. Phytopathology, 2002,92(1):75-80.
    118.Pappas, A. C. Inadequate control of grey mould on cyclamen by dicarboximide fungicides in Greece. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz,1982, 89:52-58.
    119.Patchara, P. P., Osbom, T. C., Williams, P. H. Genetic analysis and identification of amplified fragment length polymorphism market·linded to the almlavirulencegene of Leptosphaeria mucnlans. Phytopathology,1998,88:1068-1072.
    120.Presly A. H. Studies of Botrytis spp. occurring on onions (Allium cepa) and leeks (Allium porrum). Plant Pathol.,1985,34:422-427.
    121.Purkayastha, R. P., Deverall, B. J. The growth of Botrytis fabae and B. cinerea into leaves of bean (Vicia faba L.). Ann. Appl. Biol.,1965,56:139-147.
    122.Rhaiem, A., Cherif, M., Kharrat, M., Cherif, M., Harrabi, M.. New faba bean genotypes resistant to chocolate spot caused by Botrytis fabae. Phytopathol. Mediterr., 2002,41:99-108.
    123.Romanazzi, G., Karabulut O. A., Smilanick J. L. Combination of chitosan and ethanol to control postharvest gray mold of table grapes. Postharvest Biol. Technol., 2007,45(1):134-140.
    124.Royse, D. J., May, B. Use of isozyme variation to identity genotypic classes of Agaricus brunnescens. Mycologia,1992.74(1):93-102.
    125.Ruehle, G. D. New apple-rot fungi from Washington. Phytopathology,1931,21: 1141-1152.
    126.Saccardo, P. A. Sylloge Fungorum Omnium Hucusque Cognitorum.1886,4:1-807.
    127.Sahile, S., Fininsa, C., Sakhuja, P. K., Ahmed, S. Effect of mixed cropping and fungicides on chocolate spot (Botrytis fabae) of faba bean (Vicia faba) in Ethiopia. Crop Prot.,2008,27:275-282.
    128.Saitou, N., and Nei, M. The neighbor-joining method-a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.,1987,4:406-425.
    129.Sardina, J. R. Dos nuevas enfermedades de las habas. Boln Patol. veg. y. Ent. Agric. 1931,5:59-80.
    130.Schnellhardt, O. F. and Heald F. D. Pathogenicity tests with Botrytis spp. when inoculated into apples. Phytopath,1936,26:786-794.
    131.Seifert, K. A., Samson, R. A., deWaard, J. R., Houbraken, J., Levesque, C. A., Moncalvo, J. M., Louis-Seize, G., and Hebert, P. D. N. Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc. Natl Acad. Sci. USA,2007,4:3901-3906.
    132.Sisler, H. D. Dicarboxilnide fungicide mechanisms of action and resistance in fungicide resistance in North America. Delp. C. J. America. Phytopathol Soc,1988: 51-53.
    133.Smith, C. M. History of benzimidazole use and resistance in Fungicides Resistance in North America. Delp, C. J. America Phytopathol. Soc.,1988,23-25.
    134.Smith, R. F. Botrytis and Sclerotinia; their relation to certain plant diseases and to each other. Bot. Gaz.,1900,29:369-407.
    135.Spatafora, J. W. Ascomal evolution of filamentous ascomycetes:evidence from molecular data. Can. J. Bot.,1994,73(S1):811-815.
    136.Staats, M., Van Baarlen, P., Van Kan J. A. L. Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Mol. Biol. Evol,2005, 22:333-346.
    137.Staats M, van Baarlen P, Schouten A, van Kan J. A. L., Bakker F. T.2007. Positive selection in phytotoxic protein-encoding genes of Botrytis species. Fung. Genet. Biol. 44:52-63.
    138.Storck, R., Alexopoulos C. J. Deoxyibonucleic acid of fungi. Bacterial Rev,1970,34: 126-154.
    139.Strider, D. L. Disease of Floral Crops. Pracer,1985, (1-2):579-638.
    140.Sugita, T., Canete-Gibas, C. F., Takashima, M., Nakase T. Three new species of Bullera isolated from leaves in the Ogasawara Islands. Mycoscience,1999,40(6): 491-501.
    141.Tamura K, Dudley J, Nei M, Kumar S.2007. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol.24:1596-1599.
    142.Takashima, M., Nakase, T. Four new species of the genus Sporobolomyces isolated from leaves in Thailand. Mycoscience,2000,41:357-369.
    143.Tejesvi, M.V., Kini, K. R., Prakash, H. S., Ven S., Shetty, H. S. Genetic diversity and antifungal activity of species of Pestalotiopsis isolated as endophytes from medicinal plants. Fungal Divers.,2007,24:37-54.
    144.Tremblay, D. M., Talbot, B. G., Carisse, O. Sensitivity of Botrytis squamosa to different classes of fungicides. Plant Dis.,2003,87:573-578.
    145.Tsukamoto, T., Isota, J. Occurrence of gray mold of Locoris spp. caused by Botrytis galanthina (Berk.& Broome) Sacc. and B. cinerea Pers.:Fr. Japanese J. Phytopathol., 2004,70(3):225.
    146.Valdebenito-Sanhuenza, R. M., Sutton, J. C., Perazzolo, I., Czermainski, A. B. C. Controle biologico de Botrytis cinerea em morangueiros cultivados em estufa. Fitopatologia Brasileira 1997,22:69-73.
    147.Vallejo, I., Santos, M., Cantoral, J. M., Collado, I. G., Rebordinos, L. Chromosomal polymorphism in Botrytis cinerea strains. Hereditas,1996,124:31-38.
    148.Van der Vlugt-Bergmans, C. J. B., Wagemakers, C. A. M., Van Kan, J. A. L. Cloning and expression of the cutinase A gene of Botrytis cinerea, Mol. Plant-Microbe Interact,1997,10(1):21-29.
    149.Vedel, R., Pugin, A., Boccara, M. Characterization of a new, nonpathogenic mutant of Botrytis cinerea with impaired plant colonization capacity. New Phytol,2006,170: 537-550.
    150.Viaud, M., Pasquier, A., Brygoo, Y. Diversity of soil fungi studied by PCR-RFLP of ITS. Mycol. Res.,2000,104(9):1027-1032.
    151.Vilgal, Y. S., Geneti C. R. Relatedness among anastomosis groups in Rhizoctonia as measured by DNA/DNAhybridization. Phytopathology,1988,78:698-702.
    152.Vivier M. A., Pretorious I. S. Genetically tailored grapevines for the wine industry. Trends in Biotechnol.,2002,20:472-478.
    153.Wang, S. Y., Zhao, X. Y., and Ding, G. W. Foliar diseases of broad bean in Gansu province and factors affecting their epidemics. Gansu Agri. Sci. Technol.,1998,2: 73-75.
    154.Whetzel, H. H. A synopsis of the genera and species of the Sclerotiniaceae, a family of stromatic inoperculate discomycetes. Mycologia,1945,37:648-714.
    155.White, T. J., Bruns, T., Lee, S., Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In:Innis, M.A., Gelfand, D. H., Sninsky, J. J., White T. J., eds. PCR protocols:a guide to methods and applications. Academic Press, San Diego,1990, pp 315-322.
    156.Williamson, B., Tudzynski, B., Tudzynski, P., Van Kan, J. A. L. Botrytis cinerea:the cause of grey mould disease. Mol. Plant Pathol.,2007,8:561-580.
    157.Yohalem D.S., Nielsen, K., Nicolaisen, M. Taxonomic and nomenclatural clarification of the onion neck rotting Botrytis species. Mycotaxon,2003,85: 175-182.
    158.Yohalem, D. S., Nielsen, K., Nicolaisen, M. Taxonomic and nomenclatural clarification of the onion neck rotting Botrytis species. Mycotaxon,2003,85: 175-182.
    159.Yu, T. F. The red-spot disease of broad beans (Vicia faba L.) caused by Botrytis fabae Sardina in China. Phytopathology,1945,35:945-954.
    160.Yu, T. F. Diseases of broadbeans. Sci. Press (Beijing),1979, pp.20-32.
    161.Zhang J, Li G. Q., Jiang D. H. Characterization of Botrytis species on Allium crops in Hubei Province of China. In:Peng YL, Wang ZZ, eds. Proceedings of the Annual Meeting of Chinese Society for Plant pathology (2008). Beijing:Chinese Agri.Sci. Technol. Press,2008, p 155.
    162.Zhang J, Li, G. Q., Jiang, D. H. First report of garlic leaf blight caused by Botrytis porri in China. Plant Dis.,2009,93:1216.
    163.Zhang R.Y., Wang J. G. Identification of Botrytis causing grey mould diseases of garlic in China. China Vegetables,1993,1:17-18.
    164.Zhang, H.Y., Wang, L., Dong, Y., Jiang, S., Cao, H., Meng, R. J. Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis. Biol. Control,2007,40:287-292.
    165.Zhao, H., Kim, Y. K., Huanga, L., Xiao, C. L. Resistance to thiabendazole and baseline sensitivity to fludioxonil and pyrimethanil in Botrytis cinerea populations from apple and pear in Washington State. Postharvest Biol. Technol.,2010,56: 12-18.
    166.Zheng J. Y, Lou Q. S., Zheng X. L., Chen B. L. Epidemics of chocolate spot of broad bean and control measures. J. Heilongjiang Agri. Sci,2008,3:161.
    167.Ziogas B. N., Nikou D., Markoglou, A. N., Malandrakis, A. A., Vontas, J. Identification of a novel point mutation in the β-tubulin gene of Botrytis cinerea and detection of benzimidazole resistance by a diagnostic PCR-RFLP assay. Eur J Plant Pathol,2009,125:97-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700