用户名: 密码: 验证码:
复合材料构件热压罐成型工装设计关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热压罐成型是复合材料构件的主要制造方法之一,在该方法中,构件的几何形状是由成型工装来保证的,因此,工装的质量直接影响复合材料构件的质量。在目前生产实际中,影响复合材料构件成型精度的主要因素是固化过程中的变形,现有的解决方法是通过大量的实验、反复试凑对工装型面以及结构进行修改,这样难免使得工装的制造出现加工迭代,生产效率低且成本高。本文试图通过对热压罐成型中复合材料构件的变形预测,将变形补偿纳入到成型工装的设计中,达到以成型中的反变形来提高构件几何精度的目的。针对该问题,本文对复合材料构件热压罐成型工装设计的若干关键技术进行了研究,具体包括:复合材料构件热压罐成型传热规律、变形预测及其工装型面补偿技术、复合材料构件工装快速设计技术等。所取得的主要成果如下:
     针对热压罐成型中工装对复合材料构件内部温度场的影响,分析了复合材料构件沿厚度方向的传热规律,建立了热压罐成型的复合材料构件一维热传导模型。该模型将工装支撑结构等效为改善工装模板下表面传热效果的扩展装置,能有效的描述工装对复合材料构件传热的影响。通过解析法对热传导模型进行求解,得出了复合材料构件、工装模板以及工装支撑沿复合材料构件厚度方向的温度分布方程;利用傅立叶级数对温度分布方程进行了简化,得到复合材料构件和工装结构沿厚度方向的近似温度分布方程,该方程可用于分析不同工装材料以及升(降)温速率对复合材料构件温度分布的影响。
     提出了基于有限元方法的复合材料构件热压罐成型变形预测方法和基于构件型面节点变形的工装型面补偿算法。在分析固化过程中不同形态下的树脂力学性能的基础上,建立了不同形态下树脂的复合材料力学模型和复合材料固化过程中的三维热-化学模型,通过Newton ? Raphson迭代法对该模型进行了求解,基于有限元方法实现了对复合材料构件变形的预测;根据变形预测的结果,以成型后的反变形来提高复合材料构件的几何精度为目标,实现了对工装型面的补偿。通过与现有文献中的实验结果进行比较验证了本文方法的正确性,并将该方法应用于某飞机蒙皮的变形预测及其工装型面的补偿。
     针对工装模板的快速设计,提出了复合材料构件工装型面快速等距算法,该算法能将工装型面和等距曲面通过同一隐式曲面进行表达,较好的保持原始曲面的细节特征,避免传统设计方法中烦琐的曲面修复、等距、裁剪等操作。针对模具支撑结构的快速设计,提出了工装支撑结构的级联参数化设计方法,将工装支撑的设计参数分为支撑层、具体层和草图层,设计者只需关注支撑层的设计参数就可通过级联驱动规则设计出支撑结构。提出了复合材料构件工装型面的可加工性多属性评价算法,设计人员可利用工装型面以及工装结构本身的几何特征信息判断工装的可加工性,对复合材料构件工装设计有较大的参考价值。
     提出了基于八元集合模板和专用模块的工装设计系统集成方法,该方法通过模板技术将设计过程中的专家知识和经验集成于设计系统中,以此支持工装设计过程中的创新设计活动中,克服了模块化设计方法柔性不足的问题,同时结合模块化设计方法的优点,对工装结构相对固定的部分,采用专用模块的方法集成于工装设计系统中。基于以上的工装设计系统集成方法,开发了复合材料构件工装设计系统。
Autoclave processing is one of the most popular manufacture methods of the composite part, in which the part shape is determined by the tool surface, thus the tool quality will directly influence the manufactutre quality of the composite part. In practice, the main factor which influences the manufacture precision of composite part is the deformation during cure process, and with the exisiting methods a lot of experiments and trial-and-error efforts must be done to modify the tool surface and structures, and all of these methods are costly and time-consuming. In order to improve the geometrical precision by using the part reverse deformation, the author proposes the measures to predict the part deformation during the cure process, and compensates the deformation to the tool design. In this thesis, some key technologies in tool design of composite parts undergoing autoclave processing are researched, which include heat transfer rules of the parts during the cure process, deformation predication of the composite parts and the tool compensation methods, and the rapid design methods of the tool surface and structures etc..The main contents and contributions of the thesis are as follows:
     Aiming at the tool influence on the internal temperature distribution of the composite parts in the autoclave process, a one-dimensional heat transfer model in the transverse direction of the composite parts is established after analyzing the heat transfer rules of the compoiste parts. In this model the tool eggcracting structures are treated as expanding devices of improving the heat transfer effects of the bottom surface of the tool body, and this method can effectively describe the tool influence on the composite part. The temperature distribution solutions of the composite part, the tool boby and the eggcracting strutures in the transverse direction of the composite part are given by an analytical approach. Then, the approximate temperature distribution equations of the structures can be derived by the Fourier progression. These approximately temperature distribution equations can be used to analyze the influence of the tool materials and the temperature rise (drop) rate on the temperature distribution of the composite parts, etc.
     A Finite Element based predication method of the composite part during the autoclave processing and a tool surface compensation method based on the nodes deformation of the part surface are proposed. A material mechanical model based on the resin state and a three-dimensional thermal-chemical model based on this material model are established by analyzing the resin mechanical performances in different states during the cure process. The Newton-Raphson method is employed to solve this non-linear material model and thermal-chemical model, then, the part deformation can be predicated by the Finite Element method. With the predication result, the tool surface is compensated by using the part reverse deformation after curing process. Finally, all the methods and algorithms are verified by comparing the results to the experimental results in the references, and the methods are applied to predict the deformation of an aircraft skin structure and the tool surface compensation.
     As for the rapid design of the tool body, a rapid offset algorithm of the composite part tool surface is introduced, and this algorithm can express the tool surface and the offset surface with implicit surface type, and this implicit surface can keep the most detailed feature of the initial surface. Moreover, the algorithm can release the designers from the complicated trial-and-error efforts on the operation of surface repairing, surface offsetting and surface trimming etc. To design the tool eggcracting structure, a concatenated parametrical design method is proposed. In this method the structure design parameters are divided into three layers: the support layer, the substance layer and the sketch layer, and the designers can get the structures by inputting the support layer parameters by this concatenated parametrical design method. An algorithm of multi-attribute evaluation in manufacturability analysis for the tool surface of the composite part is proposed. The designers can evaluate the tool surface’s manufacturability according to the geometrical features of the tool surface and the tool structures, and also the algorithm has great value to the tool design.
     An integrated method of the tool design system based on the eight element set design pattern and dedicated module is introduced. This method integrates the design knowledge and experiences of the experts into the design system by the template technology, so the design system can support the creative design activity during the design process, and overcome the disadvantages of lacking flexibility with the module design method. Combining with the merits of the module design method, the dedicated module design method can be applied to integrating the comparatively steady tool structure into the design system. Finally, a composite tool design system is developed.
引文
[1]陈功.复合材料构件数字化制造若干支撑技术研究,[博士学位论文].南京:南京航空航天大学,2007.
    [2] Andrew A.Johnston. An Integrated Model of the Development of Process-Induced Deformation in Autoclave Processing of Composite Structure [D]. Canada: The University of British Columbia, 1997.
    [3]范玉青,张丽华.超大型复合材料基体部件应用技术的新进展.航空学报,2009,30(3):534 -543.
    [4]赵渠森,郭恩明.先进复合材料手册.北京:机械工业出版社,2003,5.
    [5]张纪奎,关志东,郦正能.热固性复合材料固化过程中温度场的三维有限元分析.复合材料学报,2006,23(2):175-179.
    [6]李君,姚学锋,刘应华等.复合材料固化过程中温度及应变场分布的解析解.清华大学学报(自然科学版),2009, 49(5):126-130.
    [7]王永贵,梁宪珠,曹正华.热压罐工艺成型先进复合材料构件的温度场研究综述.玻璃钢/复合材料,2009,206(3):81-85.
    [8] Heisler, M.P. Temperature Charts for Induction and Constant-Temperature Heating. Transactions of the ASME, 1947, 69:227-236.
    [9] Gurney, H.P. and Lurie, J., Charts for Estimating Temperature Distributions in Heating or Cooling Solid Shapes. Industrial and Engineering Chemistry, 1923, 15(11):1170-1172.
    [10] Newman, A.B., Heating and Cooling Rectangular and Cylindrical Solids. Industrial and Engineering Chemistry, 1936, 28(5):545-548.
    [11] Alirasekh, Efficient Method for Non-Linear Termochemical Analysis of Composite Structures Undergoing Autoclave Processing [D]. Canada: The University of British Columbia, 2007.
    [12] Yuzhi Sun, Indrek S.Wichman. On Transient Heat Conduction in a One-dimensional Composite Slab. International Journal of Heat and Mass Transfer, 2004, 47(6-7):1555-1559.
    [13] F.de Monte. Transient Heat Conduction in One-dimensional Composite Slab. A‘natural’Analytic Approach. International Journal of Heat and Mass Transfer, 2000, 43(19):3607-3619.
    [14] X. Lu, P.Tervola, M.Viljanen. Transient Analytical Solution to Heat Conduction in Multi-dimensional Composite Cylinder Slab. International Journal of Heat and Mass Transfer, 2006, 49(1-2):1107-1114.
    [15] X. Lu, P.Tervola, M.Viljanen. A New Analytical Method to Solve the Heat equation for a Multi-dimensional Composite Slab. Journal of Physics. A, Mathematical and General, 2005, 38(13):2873-2890.
    [16] X. Lu, P.Tervola. Transient Heat Conduction in the Composite Slab-analytical Method. Journal of Physics. A, Mathematical and General, 2005, 38(1):81-96.
    [17] H.Sadat. A General Lumped Model for Transient Heat Conduction in One-Dimensional Geometries. Applied Thermal Engineering, 2005, 25(4):567-576.
    [18] Sung Yi, H.H.Hilton, M.F.Ahmad. A Finite Element Approach for Cure Simulation of Thermasetting Matrix Composites. Computers and Structures, 1997, 64(1-4):383-388.
    [19] H.C.Park, S.W.Lee, Cure Simulation of Thick Composite Structures Using the Finite Element Method. Journal of Composite Material, 2001, 35(3):118-201.
    [20] Hoon Cheol Park, Nam Seo Goo, Kyung Jae Min, etc. Three-dimensional Cure Simulation of Composite Structures by the Finite Element Method. Composite Structures, 2003, 62(1):51-57.
    [21] Qi Zhu, Philipe H.Geubelle. Dimensional Accuracy of Thermoset Composites: Simulation of Process-Induced Residual Stress. Journal of Composite Material, 2001, 35(24):2171-2205.
    [22] F.P.Incropera, D.P.Dewitt, T.L.Bergman.传热和传质的基本原理(第6版)(葛新石,叶宏译).北京:化学工业出版社,2007,4.
    [23] James V.Beck, Robert L.McMasters. Solutions for Multi-dimensional Transient Heat Conduction with Solid Body Motion. International Journal of Heat and Mass Transfer, 2004, 47(17-18):3757-3768.
    [24] A.Cheung, Y.Yu, K.Pochiraju. Three-dimensional Finite Element Simulation of Curing of Polymer Composites. Finite Elements in Analysis and Design, 2004, 40(8):895-912.
    [25]张纪奎,郦正能,关志东等.热固性复合材料固化过程三维有限元模拟和变形预测.复合材料学报,2009,26(1):174-178.
    [26]陈祥宝,邢丽英,周正刚.树脂基复合材料制造过程温度变化模拟研究.航空材料学报,2009,2:61-65.
    [27] Zhan-Sheng Guo, Shanyi Du, Boming Zhang. Temperature Field of Thick Thermoset Composite Laminates during Cure Process. Composites Science and Technology, 2005, 65(3-4):517-523.
    [28]左德峰,朱金福,黄再兴.树脂基复合材料固化过程中温度场的数值模拟.南京航空航天大学学报, 1999, 31(6):701-795.
    [29]杨正林,陈浩然.层合板在固化过程中瞬态温度场及固化度的有限元分析.玻璃钢/复合材料,1997, 3:3-7.
    [30]谭华,晏石林.热固性树脂基复合材料固化过程的三维数值模拟.复合材料学报, 2004, 21(6):167-172.
    [31]闫相桥,武海鹏.正交各向异性材料三维热传导问题的有限元列式.哈尔滨工业大学学报, 2003, 35(4):405-409.
    [32]齐乐华,周计明,王玉山等.考虑预热情况的液固挤压复合材料模具非稳态温度场分析及实验验证.中国有色金属学报, 2008, 18(8):1466-1471.
    [33]白树成,王清海,刘梦媛等.大尺寸复合材料构件热压罐成型工艺温度场均匀性控制.第十三届全国复合材料学术会议论文集:复合材料:成本、环境与产业化(NCCM13复合材料-成本、环境与产业化),2004:989-993.
    [34] Michael Hudek. Examination of Heat Transfer during Autoclave Processing of Polymer Composites [M]. Canada: University of Manitoba, 2001.
    [35]梁宪珠,薛向晨.一种复合材料构件成型用框架式模具,中国,实用新型专利,ZL200820132313.2,2009年5月27.
    [36]林再文,陈辉,石建军.树脂基复合材料内网格加强筋结构的模具及构件成型方法,中国,发明专利,200710144815.7,2008年5月14.
    [37] Gniatczyk, Jeffrey, L. Deaver, Dann,T. Composite Molding Tools and Parts and Processes of Forming Molding Tools,USA, B29C 33/38, PCT/US00/21745, 9 August 2000.
    [38] Michael Chu-Yu Niu,Michael Niu.Composite Airframe Structures. Hong Kong Conmilit Press Ltd, 2005, 5.
    [39] Magali Duval. Investigation and Modelling of the Heat Transfer Process in Carbon FIBRE/EPOXY Composite Tools [D]. Canada: Carleton University, 2005.
    [40]王永贵,梁宪珠,薛向晨等.热压罐工艺的传热分析和框架式模具温度场分布.航空制造技术, 2008,22:80-87.
    [41]彭建,程勇.组合件热压罐固化程序设计[J].第十三届全国复合材料学术会议论文集:复合材料:成本、环境与产业化(NCCM13复合材料-成本、环境与产业化),2004:1153-1156.
    [42] Chen Songdong. Dimension Variation Predication and Control for composites [D]. USA: The Florida state university, 2003.
    [43] V.Antonucci, A.Cusano, M.Giordano, etc.. Cure-induced Residual Strain Build-up in a Thermoset Resin. Composites Part A: Applied Science and Manufacturing, 2006, 37(4):592-601.
    [44] S.C.Joshi, X.L.Liu, Y.C.Lam. A Numerical Approach to the Modeling of Polymer Curing in Fibre-reinforced Composites. Composites Science and Technology, 1999, 59(7):1003-1013.
    [45] M.R.Wisnom, M.Gigliotti, N.Ersoy, etc. Mechanisms Generating Residual Stresses andDistortion during Manufacture of Polymer-matrix Composite Structures. Composites Part A: Applied Science and Manufacturing, 2006, 37(4):552-529.
    [46] J.M.Svanberg, J.A.Holmberg. An Experiment Investigation on Mechanisms for Manufacturing induced Shape Distortions in Homogeneous and Balanced Laminates. Composites Part A: Applied Science and Manufacturing, 2001, 32(6):827-838.
    [47] J.Magnus.Svanbern. Predication of Manufacturing Induced Shape Distortions-High Performance Thermoses Composites [D]. Sweden: Lulea University of technology, 2002.
    [48] J.Magnus.Svanbern, J.Anders Holmberg. Predication of Shape Distortions PartⅠ: FE-implementation of a Path dependent Constitutive Model. Composites Part A: Applied Science and Manufacturing, 2004, 35(6):711-721.
    [49] J.Magnus.Svanbern, J.Anders Holmberg. Prediction of Shape Distortions. Part II. Experimental Validation and Analysis of Boundary Conditions, Composites Part A: Applied Science and Manufacturing, 2004, 35(6):723-734.
    [50] G.Fernlund, A.Osooly, A.Poursartip, etc. Finite Element Based Predication of Process-induced Deformation of Autoclaved Composite Structures using 2D Process Analysis and 3D Structural Analysis. Composite Structures, 2003, 62(2):223-234.
    [51] Goran Fernlund, Karl Nelson, and Anoush Poursartip. Modeling of Process Induced Deformation of Composite Shell Structures. 45th International SAMPE Symposium, 2000:169-176.
    [52] Fernlund G, Courdji R, Poursartip A, etc. Process Induced Deformation of the Boeing 777 Aft Strut Trailing Edge Fairing. The 33th International SAMPE Technical Conference, Seattle, 2001:347-355.
    [53] Graham Twigg, Anoush Poursartip, Goran Fernlund. An Experiment Method for Quantifying Tool-shear Interaction during Composites Process. Composites Science and Technology, 2003, 63(13):1985-2002.
    [54] Proefschrift. Finite Element Simulations of Laminated Composite Forming Process [D]. Holand: University of Twente, 2007.
    [55] R.H.W. Ten Thije, R.Akkerman, J.Huetink. Large Deformation Simulation of Anisotropic Material using an Updated Lagrangian Finite Element Method. Computer Methods in Applied Mechanics and Engineering, 2007, 196(33-34):3141-3150.
    [56] Y.Abou Msallem, F.Jacquemin, N.Boyard, etc. Material Characterization and Residual Stresses Simulation during the Manufacturing Process of Epoxy Matrix Composites. Composites Part A: Applied Science and Manufacturing, 2010, 41(1):108-115.
    [57] V.Antonucci, M.Giordano, L.Nicolais. Effect of the Segmental Mobility Restriction on the Thermoset Chemical Kinetics. Journal of Polymer Science: Part A: Polymer Chemistry, 2002, 40(21), 3757-3770.
    [58] W.I.Lee, A.C.Loos, G.S.Springer. Heat of reaction, Degree of Cure, and Viscosity of Hercules 3501-6 Resin. Journal of Composite Materials, 1982, 16(6):510-520.
    [59] Ridgard C. Accuracy and Distortion of Composite Parts and Tools: Causes and Solutions. Tooling for Composite Conference 1993, Pasadena, California, USA, 1993: 93-113.
    [60] Graham Twigg, Anoush Poursartip, Goran Fernlund. Tool-Part Interaction in Composites Processing. PartⅠ:Experimental Investigation and Analytical Model. Composites Part A: Applied Science and Manufacturing, 2004, 35(1):121-133.
    [61] Graham Twigg, Anoush Poursartip, Goran Fernlund. Tool-Part Interaction in Composites Processing. PartⅡ: Numerial Modeling. Composites Part A: Applied Science and Manufacturing, 2004, 35(1):135-141.
    [62] Allan S. Crasto, RANY. Kim, John D Russell. In Situ Monitoring of Residual Strain Development during Composite Cure. Polymer Composites, 2002, 23(3):454-463.
    [63] G.Fernlund, N.Rahman, R.Courgji, etc. Experimental and Numberical Study of the Effect of Cure Cycle, Tool Surface, Geometry, and Lay-up on the Dimensional Fidelity of Autoclave-processed Composite Parts. Composites Part A: Applied Science and Manufacturing, 2002, 33(3):341-351.
    [64] Jun Li, Xuefeng Yao, Yinghua Liu, etc. A Study of the Integrated Composite Material Structures under Different Fabrication Processing. Composites: Part A, 2009, 40(4):455-462.
    [65] Abdul Rahim Ahamed Arafath, Reza Vaziri, Anoush Poursartip. Closed-form Solution for Process-induced Stresses and Deformation of a Composite Part Cured on a Solid Tool: Part I– Flat Geometries. Composites Part A: Applied Science and Manufacturing, 2008, 39(7):1106-1117.
    [66] Abdul Rahim Ahamed Arafath, Reza Vaziri, Anoush Poursartip. Closed-form Solution for Process-induced Stresses and Deformation of a Composite Part Cured on a Solid Tool: Part II– Curved Geometries. Composites Part A: Applied Science and Manufacturing, 2009, 40 (10):1545-1557.
    [67]张纪奎,郦正能,关志东等.热固性树脂基复合材料固化变形影响因素分析.复合材料学报,2009,26(1):179-184.
    [68]张纪奎,郦正能,关志东等.固化度与固化收缩对非对称复合材料层合板固化变形的影响.复合材料学报,2007,24(2):120-124.
    [69] Ajith K. Gopal, Sarp Adali, Viktor E. Verijenko. Optimal Temperature Profiles for Minimum Residual Stress in the Cure Process of Polymer Composites. Composite Structure, 2000, 48(1-3):99-106.
    [70] Chang MH, Chen CL, Young WB. Optimal Design of the Cure Cycle for Consolidation of Thick Composite Laminates. Polymer Composites, 1996, 17(5):743-750.
    [71] Rai N, Pitchumani R. Optimal Cure Cycles for the Fabrication of Thermosetting Matrix Composites. Polymer Composites, 1997, 18(4):566-581.
    [72] Pillai VK, Beris AN, Dhurjati PS. Implementation of Model based Optimal Temperature Profiles for Autoclave Curing of Composites using a Knowledge-based System. Industrial & Engineering Chemistry Research, 1994, 33(10):2443-2452.
    [73] Madhukar, M.S., Genidy, M.S., etc. A New Method to Reduce Cure-Induced Stress in Thermoset Polymer Composites, Part I: Test Method. Journal of Composite Materials, 2000, 34 (22):1882-1904.
    [74] Genidy, M.S., Madhukar, M.S., etc. A New Method to reduce cure-Induced Stress in Thermoset Polymer Composites, Part II: Closed Loop Feedback Control System. Journal of Composite Materials, 2000, 34 (22): 1905-1925.
    [75] Russell, J.D., Madhukar, etc. A New Method to Reduce Cure-Induced Stress in Thermoset Polymer Composites, PartⅢ: Correlating Stress History to Viscosity, Degree of Cure and Cure Shrinkage. Journal of Composite Materials, 2000, 34 (22): 1926-1947.
    [76] R.de Oliveira, S.Lavanchy, R.Chatton, etc. Experimental Investigation of the Effect of the Mould Thermal Expansion on the Development of Internal Stresses during Carbon Fibre Composite Processing. Composites Part A: Applied Science and Manufacturing, 2008, 39(7):1083-1090.
    [77] G.Sohlenius. Concurrent Engineering. Annals of the CIRP. 1992, 41(2):645-655.
    [78]刘晓健,张树有,徐伟.本体与过程关联的快速响应设计技术.计算机集成制造系统. 2009, 15(9):1673-1689.
    [79]王新,谭建荣,张树有.大批量定制下产品报价快速响应技术研究.计算机辅助设计与图形学报. 2005, 17(8):1717-1724.
    [80]晏斌.基于WEB Service的敏捷制造企业联盟ERPⅡ系统分析与设计.江苏科技大学学报(自然科学版), 2009, 23(5):442-445.
    [81]童秉枢,陈继忠.产品敏捷设计支持系统中的集成与数据交换技术.工程图学学报. 2009, 30(2):15-22.
    [82]候亮,唐任仲,徐燕申等.机械产品柔性模块化设计知识库系统的研究.浙江大学学报(工学版). 2004, 38(1):44-47.
    [83]肖新华,史明华,郝霄鹏等.基于产品数据管理的并纱机模块化配置系统研究.计算机集成制造系统. 2008, 14(6):1078-1084.
    [84] Kees Dorst, Pieter E. Vermaas. John Gero’s Function-Behaviour-Structure Model of Designing: a Critical Analysis. Research in Engineering Design. 2001, 16(1-2):17-26.
    [85]李国喜,吴建忠,张萌等.基于功能-原理-行为-结构的产品模块化设计方法.国防科技大学学报,2009,31(5):75-80.
    [86] Suh U P. The Principle of Design. Oxford: Oxford University Press, 1990.
    [87] Karl Ulric. The Role of Product Architecture in the Manufacturing Firm. Research Policy, 1995, 24(3):419-440.
    [88]王爱民,孟明辰,黄靖远等.多目标约束环境下的模块化产品族设计方法研究.机械科学与技术. 2003, 22(4):521-524.
    [89]王爱民,肖田元,赵银燕等.面向产品族模块化设计和制造的工艺聚类分析方法.清华大学学报(自然科学版). 2004, 44(10):1394-1406.
    [90]樊蓓蓓,祁国宁,纪杨建.基于复杂网络的产品族模块化过程.农业机械学报. 2009, 40(7):187-191.
    [91]常艳,潘双夏,郭峰等.面向模块化设计的客户需求分析.浙江大学学报(工学版). 2008, 42(2):248-252.
    [92]刘夫云,祁国宁,杨青海.基于复杂网络的产品模块化程度比较方法.浙江大学学报(工学版).2007, 41(11):1881-1885.
    [93] Xiao Yanqiu, Xue Qing, Sun Houfang, et al. Engineering Approach for Modular Design Based on Network of Constrains and Relationships. Journal of System Simulation. 2008, 20(19):5268-5274
    [94]朱晓魏,林忠钦,金先龙等.面向大批量定制产品的快速设计系统的研究.计算机集成制造系统. 2003, 9(9):817-822.
    [95] John S. Gero, Udo Kannengiesser. The Situated Function–Behaviour–Structure Framework. Design Studies, 2004, 25(4):373-391.
    [96] Umeda. Y, Ishii M, Yoshioka M. Supporting Conceptual Design Base on the Function-Behavior–State Modeler. Artificial Intelligence in Engineering Design, Analysis and Manufacturing, 1996, 10(4):275-288.
    [97] Merideth Gattis. Structure Mapping in Spatial Reasoning. Cognitive Development. 2002, 17(2): 1157-1183.
    [98] Ulrich. K, K Tung. Fundamentals of Product Modularity. Proceeding of ASME Winter Annual Meeting Symposium on Design and Manufacturing Integration, Atlanta, 1991:73-79.
    [99]高卫国,徐燕申,陈永亮等.广义模块化设计原理及方法.机械工程学报, 2007, 43(6):48-54.
    [100]黎旭,徐燕申,黄艳群.广义模块化设计及报价系统通用平台的构件及其应用.机械工程学报,2007,43(4):205-210.
    [101]候亮,徐燕申,唐任仲等.面向广义模块化设计的产品族规划方法研究.中国机械工程,2003,14(7):596-560.
    [102]钟伟弘,徐燕申,胡亚辉.整体框架式液压机广义模块化产品族建模技术的研究.中国机械工程, 2005,16(6):479-482.
    [103]王永娟,赵军,钟远龙.自动武器广义模块化快速设计研究域系统开发.兵工学报, 2008, 29(4):390-395.
    [104]贡智兵.基于产品平台的快速设计关键技术研究及实现, [博士学位论文].南京:南京理工大学,2006,10.
    [105]黎业飞.面向服务的机械结构快速设计分析关键技术, [博士学位论文].浙江:浙江大学, 2008,7.
    [106]陈军.基于模板的汽车覆盖件冲压工艺快速设计关键技术研究, [博士学位论文].天津:天津大学,2003,7.
    [107]陈军,徐燕申,常世平.基于模板的汽车覆盖件冲压工艺快速设计集成系统的研究.汽车技术,2003,1:30-32.
    [108]陈军,徐燕申.产品装配信息快速自动识别的研究.组合机床与自动化加工技术. 2002,7:29-31.
    [109]高常青.机械产品快速创新设计及其关键技术的研究,[博士学位论文].山东:山东大学, 2006,4.
    [110]解安生.型架设计中的计算机辅助分析,[硕士学位论文].西安:西北工业大学. 2001.
    [111]杨铁江.飞机装配型架结构快速分析技术研究,[硕士学位论文].西安:西北工业大学. 2005,3
    [112]张庆梅.基于网络的工装快速准备技术,[硕士学位论文].西安:西北工业大学. 2003.
    [113]梁云.基于实例的型架设计技术研究,[硕士学位论文].西安:西北工业大学. 2003.
    [114]余功炎.型架快速设计与变形分析,[硕士学位论文].西安:西北工业大学. 2004,3
    [115]李洋.计算机辅助飞机装配型架概念设计技术研究与实现,[硕士学位论文].南京:南京航空航天大学. 2007,1.
    [116]蒋红岩.飞机装配型架骨架快速设计技术研究与实现,[硕士学位论文].南京:南京航空航天大学. 2007,1
    [117]朱春生.基于UG的飞机工装标准件库技术的研究与实现,[硕士学位论文].南京:南京航空航天大学. 2007,1
    [118]许文超.飞机装配型架接头定位器快速设计技术研究与实现,[硕士学位论文].南京:南京航空航天大学. 2007,1.
    [119]顾雨甜.飞机装配型架卡板快速设计及分析技术研究与实现,[硕士学位论文].南京:南京航空航天大学. 2007,1.
    [120]张虹.飞机复合材料构件工装设计知识库系统研究与开发,[硕士学位论文].南京:南京航空航天大学. 2008,1.
    [121]陈光荣.复合材料构件成型过渡模CAD技术研究与开发,[硕士学位论文].南京:南京航空航天大学. 2008,1.
    [122]张富官.复合材料构件成型模具的参数化设计技术研究,[硕士学位论文].南京:南京航空航天大学. 2009,1.
    [123]费莲.复合材料构件工装标准件/组合件库及其快速装配技术,[硕士学位论文].南京:南京航空航天大学. 2007,1.
    [124]王仁龙.飞机工装的参数化组件库技术研究,[硕士学位论文].南京:南京航空航天大学. 2009,1.
    [125]李汝鹏.飞机装配型架骨架CAD技术研究与实现,[硕士学位论文].南京:南京航空航天大学. 2009,1.
    [126] Johnston. A, Hubert. P, Fernlund.G, Vaziri. R, etc. Process Modeling of Composite Structures Employing a Virtual Autoclave Concept, Science and Engineering of Composite Materials, 1996,5(3-4):235-252
    [127] Y. Abou Msallem, F. Jacquemin, N. Boyard, etc.. Material Characterization and Residual Stress Simulation during the Manufacturing Process of Epoxy Matrix Composites. Composites: Part A, 2010,41(1):108-115.
    [128]陈烈民,杨宝宁.复合材料的力学分析.北京:中国科学技术出版社,2006,9.
    [129]张义同.热黏弹性理论.天津:天津大学出版社,2002,11.
    [130] Kim YK, White SR. Stress Relaxation of 3501-6 Epoxy Resin during Cure. Polymer Engineering Science. 1996, 36(23):2852-2862.
    [131] N.Rabearison, Ch.Jochum, J.C.Grandidier. A FEM Coupling Model for Properties Prediction during the Curing of an Epoxy Matrix. Computational Materials Science. 2009, 45(3):715-724.
    [132] Ch. Jochum, J.-C.Grandidier, M.A.Smaali. Experimental Study of Long T300 Carbon FibreUndulations during the Curing of LY556 Epoxy Resin. Composites Science and Technology, 2007, 67(11-12):2633-2642.
    [133] Chun Li, Kevin Potter, Michael R. Wisnom, etc. In-situ Measurement of Chemical Shrinkage of MY750 Epoxy Resin by a Novel Gravimetric Method. Composites Science and Technology, 2004,64(1):55-64.
    [134]张克,黄培.环氧树脂固化动力学研究进展.材料导报:综述篇,2009,23(7):58-81.
    [135]刘天舒,张宝艳,陈祥宝. 3234中温固化环氧树脂体系的固化反应动力学研究.航空材料学报,2005,25(1):45-52.
    [136]鲁自界,李劲,周钟泉.环氧粉末涂料固化程度的表征.腐蚀科学与防护技术,2000,12(2): 117-120
    [137] Liu F S, Zhou S X, You B, etc. Kinetic study on the UV-induced Photo Polymerization of Epoxy Acylate/TiO2 Nano-composites by FTIR Spectroscopy. Journal of Applied Polymer Science, 2006, 99(6):3281-3287.
    [138] Vinnik R M, Roznyatovsky V A. Kinetic Method by using Calorimetry to Mechanism of Epoxy-amine Cure Reaction. Journal of Thermal Analysis and Calorimetry, 2006, 83(1): 193-198.
    [139]李德尚.飞机复材零件热压罐成型复材工装设计技术,[硕士学位论文].南京:南京航空航天大学,2010.
    [140]杨帆.复合材料树脂固化过程的数值模拟,[硕士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [141] J. E. K. Schawe. A Description of Chemical and Diffusion Control in Isothermal Kinetics of Cure Kinetics. Thermochimica Acta, 2002, 388(1-2):299-312.
    [142] James Lua. Thermal-mechanical Cell Model for Unbalanced Plain Weave Woven Fabric Composites. Composites Part A: Applied Science and Manufactring, 2007, 38(3): 1019-1037.
    [143] James Lua, Jeff O’Brien, Christopher T. Key, et al. A Temperature and Mass Dependent Thermal Model for Fire Response Predication of Marine Composites. Composites Part A: Applied Science and Manufactring, 2006, 37(7):1024-1039.
    [144] S.Subramanian, K.L.Reifsnider, W.W.Stinchcomb. A Micromechanics Model for the Prediction of Static Strength of Off-axis Unidirectional Laminates. Applied Composite Materials, 1994, 1(1):75-79.
    [145] Jingquan Cheng. Carbon Fiber Composites: Structural and Thermal Properties. National Radio Astronomy Observatory, Tucson, USA.
    [146] M. Shimbo, M. Ochi, Y. Shigeta. Shrinkage and Internal Stress during Curing of Epoxide Resins. Journal of Applied Polymer Science. 1981,26(7):2265-2277
    [147] A.R. Plepys and R.J. Farris. Evolution of Residual Stresses in Three-dimensionally Constrained Epoxy Resins. Polymer, 1990, 31(10):1932-1936.
    [148] Robert D. Cook, David S. Malkus, Michael E. Plesha等著.有限元分析的概念和应用(关正西,强洪夫等译)(第四版).西安:西安交通大学出版社,2007年9月.
    [149] F Bressan, F De Bona, A Soma. Design of Composite Laminates with Low Thermal Expansion. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Material: Design and Applications. 2004, 218(3):201-209.
    [150] Zheng Ming Huang. Simulation of the Mechanical Properties of Fibrous Composites by the Bridging Micromechanics Model. Composites: Part A: Applied Science and Manufacturing. 2001, 32(2):143-172.
    [151]杨进军,张佐光,李敏等.纤维分布均匀性对T300/BMP316复合材料层压板力学性能的影响.复合材料学报. 2007, 24(1):22-27.
    [152] A. M. Harte, J.F. Mc Namara. Use of Micromechanical Modelling in the Material Characterisation of Overinjected Thermoplastic Composites. Journal of Materials Processing Technology. 2006, 173(3): 376–383.
    [153] Data Sheet: Hot Curing Epoxy System Based on Araldite LY 556 / Aradur 917 / Accelerator DY 070. HUNTSMAN, July 2003.
    [154]盛步云.企业集成化动态制造资源建模.武汉汽车工业大学学报. 2000, 22(2):19-21.
    [155]程锦.面向网络化制造资源的垂直搜索技术研究与应用, [硕士学位论文].贵州:贵州大学,2005,5.
    [156]徐金亭,孙玉文,刘伟军.复杂曲面加工检测中的精确定位方法.机械工程学报. 2007, 3(6) :175-179
    [157]李桂东,周来水.复合材料构件成型模具设计方法.南京航空航天大学学报.2009,41(6): 777-782.
    [158] Rossignac JR, Requicha AAG. Offsetting Operations in Solid Modeling. Computer Aided Geometry Design, 1986, 3(2):129–148.
    [159] Forsyth M. Shelling and Offsetting Bodies. Proceedings of the ACM Symposium on Solid Modeling and Applications, 1995:373-381.
    [160] Gokul Varadhan, Dinesh Manocha. Accurate Minkowski Sum Approximation of Polyhedral Models, Graphical Models. 2006, 68(4): 343-355.
    [161] Jyh-Ming Lien, Nancy M. Amato. Approximate Convex Decomposition of Polyhedra and its Applications. Computer Aided Geometric Design. 2008, 25(7):503-522.
    [162] Chen Y, Wang H, Rosen DW and Rossignac J. Filleting and Rounding Using a Point- based Method. ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2005:24-28.
    [163]张丽艳.逆向工程中模型重建关键技术研究,[博士学位论文].南京航空航天大学,2001,5.
    [164]卫炜,张丽艳,周来水.一种快速搜索海量数据集K-近邻空间球算法.航空学报,2006, 27(5):944-948.
    [165]王青,王融青,鲍虎军,彭群生.散乱数据点的增量快速曲面重建算法.软件学报,2000, 11(9):1221-1227.
    [166] Hoop H, DeRose T, Duchamp T, etc. Surface Reconstruction From Unorganized Points. Proceedings of the 19th annual conference on Computer graphics and interactive techniques. 1992:71-78.
    [167] Carr J C, Beatson R K, Cherrie J B, et al. Reconstruction and Representation of 3d Objects with Radial Basis Functions. Proceedings of the 28th annual conference on Computer graphics and interactive techniques, 2001:67–76.
    [168] Ohtake Y, Belyaev A, Alexa M, et al, Level Partition of Unity Implicits. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2003), 2003, 22(3):463-470.
    [169] Kazhdan M, Bolitho M and Hoppe H. Poisson Surface Reconstruction. Proceedings of the fourth Eurographics symposium on Geometry processing, 2006: 61-70.
    [170] Shengjun Liu, Charlie C.L. Wang. Duplex Fitting of Zero-level and Offset Surface. Computer-Aided Design. 2009, 41(4):268–281.
    [171] Yutaka Ohtake, Alexander Belyaev, Hans-Peter Seidel. Multi-scale and Adaptive CS-RBFs for Shape Reconstruction from Clous of Ponints. Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization, 2005, Part 3: 143-154.
    [172] Ohtake Y, Belyaev A and Seidel H. 3D Scattered Data Interpolation and Approximation with Multilevel Compactly Supported RBFs. Graphical Models. 2005, 67(3):150–165.
    [173]杜佶.径向基函数在逆向工程中的应用研究,[博士学位论文].南京:南京航空航天大学,2005,2.
    [174]乔立红,马涛,汪叔淳.毛坯可制造性分析中的多属性评价算法研究.机械工程学报.1999, 35(4):42-46.
    [175]盛步云.企业集成化动态制造资源建模.武汉汽车工业大学学报. 2000, 22(2):19-21.
    [176]徐金亭,孙玉文,刘伟军.复杂曲面加工检测中的精确定位方法.机械工程学报. 2007, 3(6) :175-179
    [177] C, Alexande. The Timeless Way of Building [M]. Ox-ford University Press, New York, 1979.
    [178] T.J. Menzies. Applications of Abduction: Knowledge Level Modeling. International Journal of Human Computer Studies, September, 1996,45(3): 305-335.
    [179] Douglas C. Schmidt. A Family of Design Patterns For Flexibly Configuring Network Services in Distributed Systems. Third International Conference on Configurable Distributed Systems (ICCDS '96), 1996: 124-135.
    [180]邓昕,陈意云,史翔.支持面向对象技术的设计模板.小型微型计算机系统,1998,19(6): 1-7.
    [181] Erich Gamma, Richard Helm, Ralph Johnaon, John Vlissides. Deign patterns: Abstraction and Reuse of Object-Oriented Design.In European Conference on Object-Oriented Programming Proceedings (ECOOP'93), volume 707 of Lecture Notes in Computer Science, 1993: 406-431.
    [182] William F, Opdyke and Ralph E, Johnson. Refactoring: An Aid in Designing Application Frameworks and Evolving Object-oriented Systems.In SOOPPA Conference Proceedings, 1990: 145-16l.
    [183]胡玉杰,李善平,郭鸣.基于本体的产品知识表达.计算机辅助设计图形学报,2003,15(12):1531-1537
    [184]伍奎,李润方,刘景浩.智能化系统的知识表达与推理机制.机械工程学报,2005,41(5):98-103
    [185]谢永春,朱才朝,张晶.旋转机械故障诊断KBE系统中的知识表达技术.中国机械工程,2004,15(14):1262-1265
    [186] Chandrasekaran B. Functional Representation: A Brief Historical Perspective. Applied Artificial Intelligence. 1994, 8(2):173-197.
    [187] Iwasaki Y, Vescovi M, Fikes R, et al. Casual Functional Representation Language with Behavior-based Semantics. Applied Artificial Intelligence, 1995, 9(1):5-31.
    [188] Luca Bogoni. More than Just Shape: A Representation for Functionality. Artificial Intelligence in Engineering. 1998, 12(4):337-354.
    [189]侯亮,唐任仲,徐燕申.产品模块化设计理论、技术与应用研究进展.机械工程学报,2004, 40(1): 56-61
    [190]高卫国,徐燕申,陈永亮,章青.广义模块化设计原理及方法.机械工程学报,2007,43(6): 48-54
    [191] Y. Ito and H. Shinno, Structural Description and Similarity Evaluation of the Structural Configuration in Machine Tools. International Journal of Machine Tool Design and Research, 1982, 22(2): 97–110.
    [192] Fujita K. Product Variety Optimization under Modular Architecture. Computer-Aided Design, 2002, 34(12): 953-965.
    [193]陈永亮,徐燕申,齐尔麦.机械产品快速设计平台的研究与开发.天津大学学报. 2002,35(6):744-748.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700