用户名: 密码: 验证码:
汽轮机DEH系统快控方法和故障诊断及容错控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代汽轮发电机组的汽门调节控制系统从机械液压调节过渡到了以计算机为核心的数字电液调节(DEH),摆脱了长期以来可靠性差、调节精度低、稳定性不好的局面,提高了功率、频率的调节品质,但目前我国现有的大部分汽轮机DEH系统不具备汽门快速控制功能。汽轮机汽门快速控制是使电力系统在受到干扰时保持稳定运行的一种经济有效的措施,如果应用在电网结构比较薄弱的地区,可大幅度的提高电力系统的暂态稳定水平。本文以200MW汽轮机数字电液调节控制系统作为研究对象,对电网故障时汽门快速控制的原理和机构设计与优化控制进行了系统的理论分析与实验研究。同时对DEH系统的泄漏、堵塞、卡涩等故障诊断及其容错控制进行研究。分析了电网故障下汽门快速控制的作用原理,提出了对汽轮机DEH系统实现电液快控的新方法与优化控制策略,对所设计的快控系统进行了系统的理论分析与实验研究。同时,研究了DEH系统的故障机理和诊断方法,并首次提出基于位移、流量、压力反馈的汽轮机DEH系统容错控制方法。
     论文各章内容分述如下:
     第一章,阐述了本课题的相关研究背景和意义,在查阅国内外相关研究文献的基础上,综述了汽轮机调节系统的研究发展和应用现状,介绍了汽轮机快控系统的特点及应用,分析了汽轮机调节系统研究所面临的主要问题,给出了本课题的研究内容。
     第二章,完成了由机液调节系统到电液调节系统的改造并设计了汽轮机新型快控机构。分析了现有快控汽门的常用控制方法,阐述了汽轮机进汽阀门的工作原理及结构特点,对阀门进行了详细的受力分析。对200MW中间再热凝汽式汽轮机的机液调节系统进行电液改造,在此基础上设计出新型快控系统,具有对汽轮机进汽阀门的快速关闭和快速开启功能。
     第三章,建立快控系统的数学模型并进行仿真与实验研究。对整个电液伺服及快控系统进行数学建模,为全文提供了理论基础。利用AMESIM对调节系统进行了建模与仿真,分析了影响快开系统调节性能的多种因素,研究了快开系统的工作死区,在此基础上提出对死区区间内开度进行恢复的优化控制策略。搭建了快控调节系统实验台并完成了快控系统性能测试实验,对比分析了仿真和实验结果,通过实验验证了快控系统的快速调节性能。
     第四章,研究了汽轮机电液调节系统的内泄漏问题。首先分析了汽轮机电液系统产生内泄漏的原因,详细分析了系统中几种常见内泄漏故障机理并建立了数学模型,对传统内泄漏故障诊断方法存在的问题进行分析。然后分别研究了调节系统中的油动机、错油门滑阀、伺服比例阀部件在不同内泄漏量和不同泄漏部位下,活塞调节时间、油动机油压、流量等参数的变化情况,比较了对称泄漏和非对称泄漏对系统的影响。在仿真分析基础上给出了对系统内泄漏进行辨识的特征表,最后通过实验对分析结果进行验证。
     第五章,研究了调节汽门操纵机构的卡涩故障和DEH系统中伺服阀的堵塞故障。分析了汽轮机调节汽门操纵机构的结构和卡涩机理,针对特有的弹簧偏心卡涩故障展开研究,推导出弹簧偏心距的理论计算方程,在此基础上展开三种卡涩诊断方法的研究。对DEI-I系统中伺服阀工作状态下系统的输出信号进行分析,从而提取伺服阀堵塞时的故障特征并进行诊断,在仿真分析基础上得到伺服阀堵塞故障特征表,提出采用双重神经网络并根据据系统中活塞位移、油压等特征量的变化对伺服阀的堵塞情况进行诊断。研制出用于汽轮机DEH系统伺服阀的智能测试与故障分析诊断系统,可对各种常用伺服阀、伺服比例阀、比例阀进行全面的性能测试分析。提出伺服阀静态和动态性能一次测试的思想,首次在伺服阀测试系统中使用插装阀控制油路,系统具有全自动、响应快、流量大等优点,可以完成GB/T 15623-1995中的各项检测实验,对发电厂对伺服阀的检修及故障分析起到重要作用。
     第六章,提出汽轮机电液调节系统多反馈容错控制新方法。介绍了容错技术在汽轮机电液控制系统中的应用现状,设计了基于位移、流量、压力反馈的FTC汽轮机调节系统,制定了传感器故障诊断规则与容错控制规则,通过建模仿真比较了三种闭环反馈控制方式下系统的调节性能,最后通过实验验证了FTC汽轮机调节系统的可行性。
     第七章,总结本文的主要工作,阐述了本课题的研究结论和创新点,并对后续研究工作做出了展望。
The steam valve regulating system of modern steam turbine unit has transmitted from mechanical hydraulic regulation to digital electro-hydraulic(DEH) regulatinon, which improve the quality of adjusting, realize the complex control algorithm, strengthen the system security and enhance the regulating quality of power and frequency. However, there is no fast control valving function in most DEH systems of our country. Fast control valving is an effective measure that kept the electric power system running stably. Especially when it is applied in area where the electric network structure is weak, the transient stabilization ability of electric power system can be enhanced obviously. In this paper, regulating system in 200MW steam turbine is studied. The protection principle of fast valving under the malfunction of electric network, devise of fast control system and optimization operation tactic are all analyzed and experiment research are made. At the same time, the faults such as interal leakage, plugging and jam in DEH system and fault tolerant control of the system are studied deeply. The chapters of the paper are arranged as following:
     In chapter 1, the related study background and significance of the subject are expounded. On the basis of referring to domestic and international associated documents, the research development and the current application situation of the regulating system in steam turbine are summarized. Characteristics and application of fast control system in steam turbine are introduced. Then the main problems in the study of the regualting system are analyzed. The main study work is proposed.
     In chapter 2, retrofit of regulating system from mechanical hydraulic control to elecro-hydraulic control is implemented and new type steam turbine fast valving mechanism is devised. The commonly used control rule of fast valving is analyzed. The operation principle and structure of steam valve is set forth. The forces received by valve are analyzed in detail.The retrofit of regulating system in 200MW reheated condensing steam turbine from mechanical hydraulic control to elecro-hydraulic control is implemented, based on which new type fast valving system is devised. There is function of both fast closing valve and fast opening valve.
     In chapter 3, the mathematic model of the whole fast valving system is built up and the simulation of and experiment are fulfilled. First the mathematic model of the system is given, providing theoretic basis for paper. With the use of software-AMESIM, the model of regulating system is built up. The factors influencing the performance of fast opening system is analyzed and the operation dead zone is studied, based on which optimization control tactic in dead zone is brought forward. The experiment platform of fast valving system is built up and test is realized.The simulation results and experiment results are compared, which validated the correctness of the devise.
     In chapter 4, the internal leakage in steam turbine electro-hydraulic system is studied. The reasons of leakage in system are analyzed. Several leakage fault mechanisms and their mathematic models are analyzed in detail. The problems of conventional diagnosis methods of internal leakage are given. The internal leakage of oil servo motor, regulating valve and servo-proportional valve are studied respectively. The changes of parameters including regulating time, oil pressure and so on are compared under the conditions of different internal leakage slit and flux. Besides, the influences of symmetrical and asymmetrical internal leakage on system are also compared. After simulation, characteristic table is given to diagnose internal leakage. In the end of this chapter internal leakage experiment is made to validate the analysis results.
     In chapter 5, the jam fault in manipulative mechanism of steam turbine regulating system and the plugging fault of servo valve in DEH system are studied. The structure of manipulative mechanism and the jam fault cause are both analyzed. Research is done about the particular jam fault caused by spring excursion and the theory formulas of spring excursion length are educed. Based on theory analysis and simulation three diagnosis methods are studied. The online output signals of DEH regulating system are analyzed in order to extract the fault characteristics of the servo valve directly. Based on simulation the characteristic table of the servo valve plugging is given. With characteristic parameters such as the displacement and the oil pressure, the duo-neural network is put forward to achieve an online diagnose on the plugging fault. Intelligent test and fault diagnosis system for servo valve in DEH system of steam turbine is developed, with which general characteristic analysis on common servo valve, servo-proportional valve and proportional valve can be fulfilled. The idea that static and dynamic characteristics of servo valve are analyzed once is advanced. For the first time cartridge valve is applied in servo valve test system to switch oil pipe. There are many advantages in the system such as full automation, fast response, great flux, and etc, with which test in GB/T 15623-1995 can be implemented. It plays an important role in repair and fault diagnosis of servo valve in power plant.
     In chapter 6, the fault tolerant control method of steam turbine based on multi-feedback is advanced. First the application situation of fault tolerant technique in steam turbine electro-hydraulic control system is introduced. Then the fault tolerant control regulating system based on displacement, flux and pressure feedback is devised. The fault diagnosis rules of sensors and fault tolerant control rules are put forward. The regulating performance under three closed loop control modes are compared based on simulation. Finally the experiment is carried out to demonstrate the feasibility of the design.
     In chapter 7, the major work of the study is summarized, and the conclusions and innovations of the study are elaborated. At the same time, future development is predicted in order to provide references for the further research on this project.
引文
[1]刘浩.大型进口汽轮机组调节保安系统的现状及发展.山东电力技术,2002,6:27-30.
    [2]齐砚东.DEH应用中常见故障及处理方法.东北电力技术,2002,5:19-21.
    [3]房德明.汽轮发电机严重损坏事例及分析.中国电力,1994,5:38-42.
    [4]杨昆,傅忠广.快控汽门过程中单元机组系统压力的瞬态变化.中国电力,1995,7:15-19.
    [5]倪维斗,徐基豫.自动调节原理与透平机自动调节.机械工业出版社,1984.
    [6]徐基豫,王淑琳,张子栋.锅炉汽轮机自动调节.机械工业出版社,1986.
    [7]哈尔滨汽轮机厂.20万千瓦汽轮机的结构.水利电力出版社,1992.
    [8]Nat Obleto.Turbine controls: Past,Present and future.Turbo machinery International,1993,July.
    [9]ABB AG.Emergency valve in hydraulic safety system.U S patent,5217199.
    [10]陈旭,周曦.微机在汽轮机中的应用.水利电力出版社,1995.
    [11]叶道益.容错技术在汽轮机数字控制系统中的应用.动力工程,1994,5:48-52.
    [12]Westinghouse Electric Corp.Overspeed prodection apparatus for aturbomachine.US Patent,5292225.
    [13]吴凡.125MW汽轮机控制系统的改造及运行.浙江电力,2001,4:34-36.
    [14]冯永禄,贾利生.200MW汽轮机DEH系统的改造.内蒙古电力技术,2001,19(1):32-34.
    [15]王源景,许顺祥.300MW汽轮机电液控制系统技术改造.中国电力,2003,36(10):38-41.
    [16]魏建华,路甬祥,吴根茂.工业汽轮机调节系统的电液控制改造.汽轮机技术,1 994,36(4):204-207.
    [17]李立军,陈向东,樊印龙.汽轮机数字电液调节系统在液调机组改造中的应用研 究.浙江电力,2001,4:27-30.
    [18]张剑萍.汽轮机DEH控制系统的改造及运行.华东电力,2002,6:14-16.
    [19]李连相,杨伟光,王可夫.国产200MW汽轮机调节配汽机构改造.中国电力,1997,9:15-16.
    [20]阎青.东汽产300MW汽轮机调速系统改造.华北电力技术,2000,8:49-51.
    [21]孙卫东,陈清华.NI00-90/535型汽轮机保安系统的改造.山东电力技术,2002,5:80-82.
    [22]王力彪,全茂峰.200MW供热汽轮机DEH系统的改造.华北电力技术,2002,8:29-30.
    [23]蒋辉.B25-8.83/0.981型汽轮机电液改造故障分析.湖北电力,2005,29:71-73.
    [24]赵庆恩,姚建村.200MW汽轮机控制系统DEH改造.河南电力,2001,3:45-47.
    [25]Rarnnarayan Patel,T S Bhatti,D P Kothari.A novel control logic for fast valving operations.IEEE Trans on Power Engineering,2002,22:43-46.
    [26]蔡泽祥.大规模电力系统在线暂态稳定分析及紧急控制的研究.清华大学博士论文,1991.
    [27]张友.快关汽门提高电力系统稳定水平的研究与实验.电网技术,1996,20(7):19-21.
    [28]倪安华.汽轮机的快关与电网稳定.安徽电力,1990,1:1-4.
    [29]倪安华.安全保护系统:大型火电机组热控自动化介绍之六.华东电力,1992,11:50-52
    [30]Kundur P.,Paserba J.,Vitet S..Overview on definition and classification of power system stability.Quality and Security of Electric Power Delivery System,2003,8:1-4.
    [3l]李文云.汽轮发电机组快关汽门控制方案及实施.科技兴电,2005,3:38-39.
    [32]金爱濠,李佩章.汽轮机调节系统应用快关阀问题的商榷.发电设备,1991,2:2-4.
    [33]Ulrich D..为提高系统可靠性的汽轮机阀门快关.安徽电力,1991,1:77-81.
    [34]谭伟.660MW单元机组“快关汽门”功能实验分析.广东电力,1998,11(2):38-41.
    [35]邱宇,陈学允.快关汽门与励磁的协调控制增强发电机组暂态稳定.大电机技 术,2002,4:56-59.
    [36]Kundur P.,Surrey.Effective Use of Power System Stabilizers for Enhancement of Power System Reliability.IEEE Power Engineering Society Summer Meeting,1999,1:96-103.
    [37]Kundur P.,Morison G.K.,Wang L..Techniques for on-line transient stability assessment and control.IEEE Power Engineering Society Winter Meeting,2000,1:46-51.
    [38]Bhatt N.B..Field experience with momentary fast turbine valving and other special stability controls employed at AEP's Rockport plant.IEEE Transactions on Power Systems,1996,11(1): 155-161.
    [39]Delfino B.,Denegri G.B.,Pinceti P.,et al.Impact of turbine fast-valving on generator and transformer protective relays.APT 93'Proceedings International Power Conference,1993,2:727-731.
    [40]袁宇春,张保会.汽门快关的开启时刻对系统稳定性影响的研究.继电器,1998,26(2):6-9.
    [41]叶灵慧.135MW机组调速系统快关时间的整定.发电设备,2003,1:26-27.
    [42]陈宗金,蒋宪珍,苑举伟,等.300MW机组中调门快关控制分析.电力建设,2006,2:18-21.
    [43]于达仁,杨永滨,毛志伟等.复杂快关控制规律在DEH系统中的实现.汽轮机技术,1997,39(3):157-160.
    [44]都兴有.关于快控汽门(快关)技术研讨介绍冲国电力,1999,6:23-27.
    [45]Karady G.G.,Mohamed M.A..Improving transient stability using fast valving based on tracking rotor-angle and active power.Power Engineering Society IEEE Summer Meeting,2002,3:1576-1581.
    [46]Hassan F.F.,Balasubrarnanian R.,Bhatti T.S..Fast valving scheme using parallel valves for transient stability improvement.Proceeding IEE Generation Transmission and Distribution,1999,3:330-336.
    [47]Qi Chen,Shaohua Tan,Yingduo Han,et al.Adaptive fuzzy scheme for efficient,fast valving control.Control Engineering Practice,1997,5:811-821.
    [48]Yingduo Han,Lincheng Xiu,Zhonghong Wang.Artificial neural networks controlled fast valving in a power generation plant.IEEE Transactions on Neural Networks,1997,8(2):373-389.
    [49]Xue-shu Xie,Yan Lu.Optimization control of fast turbine valve.Proceedings of the 32nd IEEE Conference on Decision and Control,1993,4:3742-3743.
    [50]Karady G.G.,Daoud A.A.,Mohamed M.A..On-line transient stability enhancement using multi-agent technique.IEEE Power Engineering Society Winter Meeting,2002,2:893-899.
    [51]Qi Chen,Shaohua Tan,Yingduo Han.Fast valving control using radial-basis function neural network.IEEE International Conference on Neural Networks,1995,5: 2247-2251.
    [52]Lizi Zhang,Jinping Kang,Xianshu Lin,et al.Application of neural networks trained with an improved conjugate gradient algorithm to the turbine fast valving control.International Conference on Power System Technology,2000,3:1679-1682.
    [53]肖智宏,周晖,朱启晨.基于非线性模型预测控制的快控汽门的研究.华北电力技术,2005,8:17-19.
    [54]于达仁,杨永滨,崔涛等.大范围线性化最优鲁棒容错快关控制系统的设计.中国电机工程学报,2002,9:25-29.
    [55]霍捷,闵勇,侯凯元.基于电力系统稳定边界理论的急控制决策方法研究.现代电力,2005,22(5):7-12.
    [56]翁一武,于达仁,徐基豫.针对转速偏差调节和汽门快关控制的连续阀门控制的研究.动力工程,2002,22(5):1965-1968.
    [57]于达仁,杨永滨.最优容错控制与开关控制相结合的再热机组快关控制.哈尔滨工业大学学报,1997,29(4):5-8.
    [58]李福尚,魏建华,路甬祥等.实现汽轮机阀门快关在线实验的一种容错控制策 略.动力工程,1997,17(4):10-13.
    [59]于达仁,鲍文,杨永滨.汽轮发电机组快速汽门控制系统的容错最优设计.哈尔滨工业大学学报,1997,29(5):1 1-13.
    [60]李福尚.压力型汽轮机调节与保安电液控制系统的研究.浙江大学博士学位论文,1998,2.
    [61]李福尚.汽轮机新型快控阀的研究.山东电力技术,1999,4:1-3.
    [62]张继君.快关阀液压系统动态仿真及可靠性分析.硕士学位论文,西华大学,2006.
    [63]李凤武,刑卫平,俞海燕等.三偏心蝶阀.阀门,2000,3:6-7.
    [64]肖增弘,徐丰.汽轮机数字电液调节系统.北京:中国电力出版社,2003.
    [65]于达仁,曹建明.汽轮机液压转速调节系统几种常见故障诊断分析.热能动力工程,1992,7(5):259-263.
    [66]徐基豫,于达仁,康敏,等.汽轮机液调系统的故障诊断方法.中国电机工程学报,1990,10(4):1-7.
    [67]王志伟,黄瑞.200MW汽轮机电调改造后存在的问题及相应措施.吉林电力,2005,4:50-52.
    [68]蒋辉.B25-8.83/0.981型汽轮机电调改造故障分析.湖北电力,2005,29:71-73.
    [69]姜焕龙,罗丽英,王晨瑜.漳泽发电厂第4机组DEH改造后调节汽门摆动问题分析.电站系统工程,2002,18(6):59-60.
    [70]于达仁,曹全喜.DEH功频调节对快关的影响.汽轮机技术,1994(6).
    [71]文福拴.智能系统在电力系统中应用的新动向(上,下).电力系统自动化,1996年,第6、7期.
    [72]CONMEC INC.Turbine speed regulating system.US Patent,5295783.
    [73]Lofe J.J.,Almhem P..Environmentally sound.high-efficiency PFBC plants rated to 750MW,ABB Review 4,1994.
    [74]倪维斗,徐基豫.自动调节原理与透平机自动调节.机械工业出版社,1984.
    [75]卢强,王仲鸿等.输电系统最优控制.科学出版社,1984.
    [76]蔡泽祥.大规模电力系统在线暂态稳定性分析及紧急的研究.清华大学博士学 位论文,1991.
    [77]于达仁,杨永滨.快速汽门的开闭环相结合的控制系统研究.电力系统自动化,1996,6:6-8.
    [78]杨昆,傅忠广.快控汽门过程中单元机组系统压力的瞬态变化.中国电力,1995,7:11-15.
    [79]陈洪溪,薛沐睿.亚临界和超临界600MW机组高压调节阀组气动特性分析.动力工程,1997,4:29-32.
    [80]朱丹书,韩瑜.核电汽轮机主汽阀调节阀动态分析.上海汽轮机,1993,2:55-60.
    [81]Karpenko M.,Sepehri N..Fault-tolerant control of a servohydraulic positioning system with crossport leakage.IEEE Transactions on Control Systems Technology,2005,13(1): 155-161.
    [82]An L.,Sepehri N..Leakage fault identification in a hydraulic positioning system using extended Kalman filter.Proceedings of the 2004 American Control Conference.Boston: [s.n.],2004,6(4): 3088-3093.
    [83]Haloua M.,Iggidr A.,Richard E..On the dynamic behavior of a hydraulic cylinder.Proceedings of the 39th IEEE Conference on Decision and Control.Sydney: IEEE-EM-BS,2000,12(2): 1321-1322.
    [84]周恩涛,李娜,杨文林,等.液压缸内泄漏分析方法的研究.润滑与密封,2005,168(2):96-99.
    [85]杨文林,廖生行,周恩涛.阀控非对称液压缸泄漏问题的分析研究.润滑与密封,2004,16l(1):38-40.
    [86]李福尚,张继木,郑广良,等.电液伺服阀的内泄漏特性及故障在线分析实例.山东电力技术,2006,148(2):20-.2l,29.
    [87]薛晓虎.液压系统缝隙内流体泄漏特性的分析.机械工程学报,2004,40(6):75-80.
    [88]方志宏,傅周东,陈章位.基于BP神经网络的液压系统泄漏故障诊断.机械技术与科学,1998,17(1):116-118.
    [89]杜文正.基于小波多尺度边缘检测的液压缸内泄漏故障诊断.液压与气动,2003,3:52-53.
    [90]方志宏,傅周东,张克南,等.基于压力积分的液压系统泄漏故障诊断方法.中国机械工程,2000,11(11):1263-1265.
    [91]于达仁.汽轮机调节系统卡涩故障机理及监测方法研究.哈尔滨:哈尔滨工业大学能源学院,1996.
    [92]于达仁,刘强.汽轮机调节系统卡涩故障的鲁棒诊断方法.中国电机工程学报,2003,23(3):179-1 82.
    [93]戴义平,邓仁刚,宋晓炜,等.汽轮机调节系统中存在摩擦与间隙的响应特征研究.热能动力工程,2001,16(5):275-277.
    [94]戴义平,宋晓炜,邓仁刚,等.汽轮机调节系统中摩擦与间隙的定位方法研究.热能动力工程,2001,16(7):415-417.
    [95]Craig T J,Robert D L.Experimental identification of friction and its compensation in pricise position controlled mechanisms.IEEE Transactions on Industry Applications,1992,28(6): 1392-1398.
    [96]Canudas D W,Lischinsky P.Adaptive friction compensation with partially known dynamic friction model.International Journal of Adaptive Control and Signal Processing,1997,11:65-80.
    [97]Vivas C,Rubio F R,Canudas D W.Gain-scheduling control of systems with dynamic friction.Proceedings of the 41st IEEE Conference on Decision and Control.Nevada,USA:IEEE CIIF,2002,12(1):89-94.
    [98]William S O,Elizabeth A C.The reduction of stick-slip friction in hydraulic actuators.IEEE/ASME Transactions on Mechatronics,2003,8(3):362-371.
    [99]西安电力学院编著.大功率汽轮机设备及运行.北京:电力工业出版社,1980.
    [100]陈庆辉.中压主汽门卡涩的原因分析及对策.湖北电力,2006,30(3):35-36.
    [101]郑生斌,张小三,张龙英.汽轮机调节汽门阀杆断裂问题分析与探讨.山西电力,2001,1 2(6):55-56.
    [102]朱庆玉.汽轮机主汽阀卡涩原因分析及防范措施.热力发电,2007,6(1):99-100.
    [103]马桂凤,李宝玉,高晓玲,等.解决汽轮机调速系统卡涩、负荷不稳定的措施.汽轮机技术,2000,42(1):52-53.
    [104]马桢干.汽轮机蒸汽控制阀存在的问题及改进措施.燃气轮机技术,2002,15(4):63-64.
    [105]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计.北京:清华大学出版社,2005.
    [106]张若青,裘丽华.基于动态神经网络的电液伺服阀实时故障诊断.机床与液压,2002,3:140-142.
    [107]曾良才,孙国正.基于特性曲线的电液伺服阀神经网络故障模式识别.中国机械工程,2003,13(10):835-837.
    [108]Weibo Lee.A sensor-less jam fault detection method for electro-hydraulic executive device of steam turbine.The sixth world congress on intelligent control and automation,2006,2: 5475-5478.
    [109]Dr.Igor,L.Krivts.Optimization of performance characteristics of electropneumatic (two-stage) servo valve.Transactions of the ASME,2004,126: 416-420.
    [110]Cao Keqiang,Zhang Jianbang,Hu Liangmou.Fault Diagnosis of Electro-hydraulic Position Servo Closed-loop System Based on Support Vector Regression,2007 IEEE international conference on automation and logistics,2007,8: 3044-3049.
    [111]Hu Liangmou,Cao Keqiang,Xu Haojun,etc.Fault Diagnosis of Hydraulic Actuator Based on Least Squares Support Vector Machines,2007 IEEE international conference on automation and logistics,2007,8: 985-989.
    [112]王庆国,郑晓舟.大型火电机组DEH系统中电液伺服阀典型故障分析.机床与液压,1995,5:56-57.
    [113]宋占国,聂强.DEH系统电液伺服阀典型故障原因分析.东北电力技术,2007, 28(1):32-34.
    [114]周园,胡乃文.300MW汽轮机组EH系统电液伺服阀常见问题分析及对策.电站系统工程,2006,22(2):31-32.
    [115]Berard R.V..Fault accommodation in linear system through self-reconfiguration.Rept MTV-71-1.Cambridge: Man Vehicle Lab,MIT,1971.
    [116]美国国家基金会,IEEE控制系统学会.对于控制的挑战-集体的观点(专题讨论会).控制与决策,1987(4):52-64.
    [117]葛建华,孙优贤.容错控制系统的分析和综合.杭州:浙江大学出版社,1994.
    [118]Narendra K.S..Intelligent control using neural networks.IEEE Control Syste,Magzine,1992,12(3):11-18.
    [119]胡立业.大机组可靠性现状分析.华东电力,1997,12:18-22.
    [120]于达仁,徐志强.超临界机组控制技术及发展.热能动力工程,2001,16:115-121.
    [121]朱北恒,尹峰,孙耘,等.火电厂热控系统的容错设计.浙江电力,2007,5:1-5.
    [122]杨国胜,谢东亮,侯朝桢.基于神经网络的传感器冗余方法研究.传感技术学报,2001,1:33-38.
    [123]彭著良,赵鹏程,宋生奎.基于模糊神经网络的自适应流量反馈控制策略研究.工矿自动化,2006,l:4-7.
    [124]袁群哲.基于神经网络传感器组故障诊断方法研究.信号与系统,2007,1:38-41.
    [125]程建兴,史仪凯.基于冗余信息的多传感器数据融合算法研究.传感器与微系统,2008,27(4):27-29.
    [126]袁小宏,屈梁生.故障诊断中多传感器信息冗余性的研究.振动测试与诊断,2003,23(1):58-61.
    [127]陈或卿.阀门反馈信号故障对汽轮机影响.高桥石化,2008,23(2):47-50.
    [128]薛艳玲.DEH控制系统常见故障浅析.山西电力,2008,2:25-28.
    [129]谭斌雄.降低汽机高压调门位移传感器LVDT故障率.湖北电力,2006,30(4):41-42.
    [130]李水康.DEH系统位移传感器故障原因分析与在线更换注意事项.新疆电力,2006,3:l0-11.
    [131]System Stability: Benefits and Other Considerations.IEEE Trans.on Bower Systems,1986,1:143-153.
    [132]GE CO.Electric actuators for steam turbine valve,US Patent,5333989.
    [133]GE.CO.Hydraulic control system.US Patent 5097744.
    [134]路甬祥,胡大宏.电液比例控制技术.机械工业出版社,1988.
    [135]ABB AG.Hydrauilc safety and regulating system for steam turbine,US Patent 5269141.
    [136]STECKI J..Design of a new type of hydraulic servoactuator for control of steamturbines.'93 ICFP Supplement.
    [137]陈金铨,吴林林,侯亚权,等.汽轮机4取2停机电磁阀冗余容错系统.液压气动与密封,2008,3:35-38.
    [138]于达仁,毛志伟,徐基豫.基于信息冗余的DEH系统传感器故障检测.动力工程,1999,19(6):455-459.
    [139]于达仁,鲍文,徐基豫.汽轮机负荷控制的容错控制方案.动力工程,1994,14(1):7-10.
    [140]吴盛林,岳继光,刘庆和.用流量反馈法拓宽电液位置伺服系统频带的研究.设计与研究,1997,6:9-10.
    [141]Tuncelli A.C.,Guner H.and Longchamp R..Hydraulic axis control using pressure feedback.IEEE International workshop on Intelligent Motion Control,BogaziGi University,Istanbul,August 1990:20-22.
    [142]Takashi M.,Naoshi S.,Kazuhiro N.,et al.Hydraulic screwdown control system for mandrel mill.IEEE Transactions on Industry Applications,1994,30(3):568-572.
    [143]Dong Liu,Jie Ma.Model reference adaptive control for time varying hydraulic systems.Proceedings of the Seventh International Conference on Machine Learning and Cybernetics,Kunming,July 2008: 12-15.
    [144]王春行.液压控制系统.机械工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700