用户名: 密码: 验证码:
大鼠血管平滑肌细胞蛋白组学的研究以及尼古丁对血管平滑肌细胞蛋白和基因表达影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
    近年来,随着人类基因组计划的顺利进行和完成,生物医学科学的研究进入了后基因组时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。蛋白质组学研究目前是生物医学研究领域热点课题之一,已经广泛的应用于基础医学和临床医学,并取得了较大的成绩。目前,蛋白质组学在临床医学研究中主要应用于各种肿瘤细胞的研究和心血管疾病的研究。
    近年来,心血管疾病的蛋白质组学研究主要集中在1. 心血管疾病蛋白差异表达的研究: 1992年,Baker 等人利用2DE 分离了1 500 多种人心肌蛋白,并对其中12个蛋白进行了鉴定。Corbett 及Weekes J 两个研究小组在对人及其动物模型牛的扩张性心肌病的研究中,发现与正常心肌组织相比,有100 多种蛋白质的表达是下调。2. 心血管疾病生物标志物的研究: Fromm 用蛋白质组学的研究手段着手监测MI发生后TnI的降解;You SA 等将蛋白质组的方法运用于寻找冠状动脉粥样硬化发病的生物标志物的研究,发现冠状动脉病患者的铁蛋白轻链的表达量显著增加。
    血管平滑肌细胞的增殖和凋亡在动脉粥样硬化、血管重构等病理状态的形成和发展过程中起着重要的作用。研究血管平滑肌细胞在生理和病理状态下的形态学、基因和蛋白表达的变化对研究动脉粥样硬化及其相关性疾病如:心血管疾病、中风等的发病机理有着不可替代的作用。目前,国外有学者报道了新生小鼠和成年小鼠血管平滑肌细胞的蛋白组学研究;Taurin S 等用蛋白组学的研究方法研究了对照组和喹巴因处理组平滑肌细胞的疏水和亲水蛋白,并鉴定了差异表达的蛋白。
    尼古丁是体内重要的致病因子,可以通过破坏血管内皮细胞的功能、调节脂质代谢、直接或间接的刺激血管平滑肌细胞增殖等方面来促进动脉粥样硬化及其相关性疾病如:心血管疾病、脑血管疾病、间歇性跛行以及肿瘤的形成和发展。但是其致病的分子生物学机制尚不是十分明了。因此:为了对尼古丁致病机理有一个全面的了解,我们在实验中应用蛋白组学的
Objective
    Recently, proteomic analysis technology has been used extensively in biological innovative researches and has become one of the most essential technologies in functional genomics. The proteomics is the study of various protein properties (expression level, post-translation modification, etc) at the whole cell level to obtain a global, integrated view of disease processes, physiological and biochemical processes of cells and regulatory networks at the protein level. Proteomic technology has also been applied in studying cell growth and regulation, stimulus response, protein function, etc. By using proteomic technology, it has become possible to analyze simultaneously hundreds or even thousands of protein.
    Epidemiological studies have shown that nicotine, the major component of cigarette smoking, is a dominant risk factor of cardiovascular disease. Although the underlying mechanisms are not completely understood, there are substantial evidences indicating that the primary role of cigarette smoking in cardiovascular disease is to promote the formation and development of atherosclerosis. Nicotine could promote atherosclerosis formation via its following effects: ①initiating changes in the lipid metabolism, resulting in decreased high-density lipoprotein cholesterol, increased low-density lipoproteins, and higher levels of oxidized LDL, an atherogenetic lipid; ②causing injury to the vascular endothelium by direct cytotoxicity and impairment of nitrogen monoxide (NO) bioactivity, leading to endothelial cell dysfunction and initiating the pathogenesis of atherosclerosis, which is the primary vascular lesion of cardiovascular disease); ③modulating the phenotype of SMCs and stimulating secretion of growth factors, and hence activating the medial smooth muscle cells migration into the intima to engender proliferation and producing extracellular matrix protein, which is a key event in the vascular response to injury. However, atherosclerosis is a multifactorial disease and the underlying
    mechanisms available are still controversial). Therefore, more basic information of nicotine-related SMCs pathophysiogical changes are yet to be ascertained.
    In this study, we used the high-resolution 2-D electrophoresis technology, PMF and MS/MS to analyze the possible protein expression changes of nicotine-stimulated SMCs. At the same time, using RealtimeRT-PCR methods studied the changes of all those encode genes. The aim of this study is to provide some evidences for further understanding of the molecular mechanisms of nicotine-related diseases such as atherosclerosis, cardiovascular diseases, and cancer, etc.
    Material and methods
    1. Cell culture: Healthy male Wistar rats weighting 300-350g were afforded. Aortic smooth muscle cells (SMCs) were isolated from medial explants of the thoracic aorta, and cultured in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% heat-inactivated fetal calf serum (FCS), 150mmol/L N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES), 100U/ml penicillin, and 100μg/ml streptomycin in a humidified atmosphere of 5% CO2 at 37°C. Cells passaged 3-10 were used in our experiment.
    2. The cytoactive effect of nicotine on SMCs: treating SMCs 24h with 0.1μM, 1.0μM, 10μM, 100μM or without nicotine to study the cell activity by two methods: MTT and LDH methods.
    3. Two-dimensional gel electrophoresis: after SMCs treated with 10μM 24h or without nicotine, the SMCs were lysised by lysis solution, and the cell total protein were acquired. Then, the total proteins were subjected to two-dimensional gel electrophoresis.
    4. Gel analysis: When the SDS-PAGE was finished, the Proteins were stained in a solution containing Coomassie brilliant blue R-250 (0.1% W/V), methanol (45%W/V) and acetic acid (10%W/V) for 4 hours. Destaining was carried out in the same solution without Coomassie brilliant blue. Gels were dried, exposed, scanned using an ImageScanner II (Amersham Biosciences) and
    analyzed by calculation of volumes and density of the spots with the ImageMaster 2D Platinum software
引文
1. Glantz GA, Parmley WW. Passive smoking and heart disease. Mechanisms and risk. JAMA. 1995; 273:1047-53.
    2. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med. 1999; 340:115-126.
    3. Stamler J, Dyer AR, Shekelle RB, Neaton J, Stamler R. Relationship of baseline major risk factors to coronary and all-cause mortality, and to longevity: findings from long-term follow-up of Chicago cohorts. Cardiology. 1993; 82:191–222.
    4. Stamler J, Stamler R, Neaton JD, Wentworth D, Daviglus ML, Garside D, Dyer AR, Liu K, Greenland P. Low risk-factor profile and long-term cardiovascular and noncardiovascular mortality and life expectancy: findings for 5 large cohorts of young adult and middle-aged men and women. JAMA 1999; 282:2012–2018.
    5. Benowitz NL. The Role of Nicotine in Smoking-Related Cardiovascular Disease. Prev Med. 1997; 26: 412–417.
    6. Heeschen C, Jang JJ, Weis M, pathak A, kaji s, Hu RS, Tsao PS, Johnson FL and Cooke JP. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med. 2001; 7: 833-839.
    7. Yamaguchi Y, Matsuno S, Kagota S, Haginaka J and Kunitomo M. Oxidants in cigarette smoke extract modify low-density lipoprotein in the plasma and facilitate atherogenesis in the aorta of Watanabe heritable hyperlipidemic rabbits. Atheroclerosis. 2001; 156:109-117
    8. Lin SJ, Hong CY, Chang MS, Chiang BN, Chien S. Long-term nicotine exposure increases aortic endothelial cell death and enhances transendothelial macromolecular transport in rats. Arterioscler Thromb. 1992; 12:1305-12.
    9. Zhang S, Day IN and Ye S. Microarray analysis of nicotine-induced changes in gene expression in endothelial cells. Physiol Genomics. 2001; 5: 187–192.
    10. Zhang S, Day IN and Ye S. Nicotine induced changes in gene expression by human coronary artery endothelial cells. Atherosclerosis. 2001; 154: 277-283.
    11. Michael PR. Cigarette smoking, endothelial injury and cardiovascular disease. Int J Exp Path. 2000; 81: 219-230.
    12. Miller VM, Clouse WD, Tonnessen BH, Boston US, Severson SR, Bonde S, Rud KS, Hurt RD. Time and dose effect of transdermal nicotine on endothelial function. Am J Physiol Heart Circ Physiol. 2000; 279: H1913-H1921.
    13. Thyberg, J. Effects of nicotine on phenotypic modulation and initiation of DNA synthesis in cultured arterial smooth muscle cells. Virchows Arch B Cell Pathol Incl Mol Pathol. 1986; 52:25-32.
    14. Carty C, Soloway PD, Kayastha S, Bauer J, Marsan B, Ricotta JJ, Dryski M. Nicotine and cotinine stimulate secretion of basic fibroblast growth factor and affect expression of matrix metalloproteinases in cultured human smooth muscle cells. J Vasc Surg. 1996; 24: 927–934.
    15. Cucina A, Sapienza P, Corvino V, Borrelli V, Mariani V, Randone B, Santoro D’Angelo Luciana, and Cavallaro A. Nicotine-induced smooth muscle cell proliferation is mediated through bFGF and TGF-β1. Surgery. 2000; 127: 316–322.
    16. Blackstock WP, Weir MP. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol. 1999; 17:121-127.
    17. Antelmann H, Bernhardt J, Schmid R, Mach H, Volker U, Hecker M. First steps from a two-dimensional protein index towards a
    response-regulation map for Bacillus subtilis. Electrophoresis.
    1997; 18: 1451-1463.
    18. Soskic V, Gorlach M, Poznanovic S, Boehmer FD, Godovac-Zimmermann J. Functional proteomics analysis of signal transduction pathways of the platelet-derived growth factor βreceptor. Biochemistry. 1999; 38: 1757-1764.
    19. Wang X, Li X, Yue TL, Ohlstein EH. Expression of monocyte chemotactic protein-3 mRNA in rat vascular smooth muscle cells and in carotid artery after ballon angioplasty. Biochim Biophys Acta. 2000; 1500:41-48.
    20. Ramagli LS. Quantifying protein in 2-D PAGE solubilization buffers. Methods Mol Biol. 1999; 112: 99-103.
    21. Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 2000;21: 1037-1053.
    22. Cecconi D, Astner H, Donadelli M, Palmieri M, Missiaglia E, Hamdan M, Scarpa A, Righetti PG. Proteomic analysis of pancreatic ductal carcinoma cells treated with 5-aza-2'-deoxycytidine. Electrophoresis. 2003; 24: 4291-4303.
    23. Macri J, Rapundalo ST. Application of proteomics to the study of cardiovascular biology. Trends Cadiovasc Med. 2001; 11: 66-75.
    24. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003; 112, 453–465.
    25. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Thomas Parsons J, Horwitz AR. Cell migration: integrating signals from front to back. Science. 2003; 302: 1704-1709.
    26. Abedi H, Zachary I. Signalling mechanisms in the regulation of vascular cell migration. Cardiovasc Res. 1995; 30:544-556.
    27. Cucina A, Sapienza P, Borrelli V, Corvino V, Foresi G, Randone B, Cavallaro A, Santoro-D'Angelo L. Nicotine reorganizes cytoskeleton of vascular endothelial cell through platelet-derived growth factor BB. J Surg Res. 2000; 92: 233–238.
    28. Li S, Zhao T, Xin H, Ye LH, Zhang X, Tanaka1 H, Nakamura A, and Kohama K. Nicotinic acetylcholine receptor α-7 subunit mediates migration of vascular smooth muscle cells toward nicotin. J Pharmacol Sci. 2004; 94: 334 –338.
    29. Araya E, Berthier C, Kim E, Yeung T, Wang X, and Helfman DM Regulation of Coiled-Coil Assembly in Tropomyosins. J Struct Biol. 2002; 137: 176–183.
    30. Helfman D. M., Berthier C, Grossman J, Leu M, Ehler E, Perriard E and Perriard J. Nonmuscle tropomyosin-4 requires coexpression with other low molecular weight isoforms for binding to thin filaments in cardiomyocytes. J Cell Sci. 1999; 112: 371-380.
    31. Abouhamed M, Reichenberg S, Robenek H, Plenz G. Tropomyosin 4 expression is enhanced in dedifferentiating smooth muscle cells in vitro and during atherogenesis. Eur J Cell Biol. 2003; 82:473-82.
    32. Glen Pyle W, Hart M.C, Cooper J.A, Sumandea, M.P, De Tombe P P, John Solaro R. Actin capping protein an essential element in protein kinase signaling to the myofilaments. Circ Res 2002; 90:1299-1306.
    33. Olofsson B. Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal. 1999; 11: 545–554.
    34. Etienne-Manneville S, Hall A. Rho GTPase in cell biology. Nature 2002; 420:629-635.
    35. He NG, Awasthi S, Singhal SS, Trent MB, and. Boor PJ. The role of Glutathione S-Transferases as a defense against reactive electrophiles in the blood vessel wall. Toxicol Appl Pharmacol.
    1998; 152: 83–89.
    36. Misra P, Srivastava SK, Singhal SS, Awasthi S, Awasthi YC and Boor PJ. Glutathione S-Transferases 8-8 is localized in smooth muscle cells of Rat aorta and is induced in an experimental model of atherosclerosis. Toxicol Appl Pharmacol 1995; 133: 27-33.
    37. Miller EA, Pankowb JS, Millikan RC, Bray MS, Ballantyne CM, Bell DA, Heiss G and Li R. Glutathione-S-transferase genotypes, smoking, and their association with markers of inflammation, hemostasis, and endothelial function: the atherosclerosis risk in communities (ARIC) study. Atherosclerosis. 2003; 171: 265–272.
    38. Keller A, Berod A, Dussaillant M, Lamande N, Gros F and Lucas M. Coexpression of alpha and gamma enolase genes in neurons of adult rat brain. J Neurosci Res. 1994; 38: 493–504.
    39. Cabiscol E, Piulats E, Echave P, Herrero E, Ros J. Oxidative stress promotes specific protein damage in Saccharomyces cervisiae.J Bion Chem. 2000; 275: 27393-27398.
    40. Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WM and Butterfield DA. Proteomic identification of oxidatively modified Proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase related protein II, α-enolase and heat shock cognate 71. J. Neurochem. 2002b; 82: 1524–1532.
    41. Old SE, Landa LE, Mohrenweiser HW. Hominoid triosephosphate isomerase: Regulatio of expression of the proliferation specific isozyme. Mol Cell Biochem. 1989; 89: 73-85.
    42. Yin MY, Gao XZ, Wang ZQ and Prewisler HD. Studies of the proliferation and differentiation of immture myeloid cells in vitro: 4: Preculture protooncogene expression and the behaviour of myeloid leukemia cells in vitro.Cell Biochem Funct. 1991; 9: 39-47.
    43. Yamaji R, Fujita K, Nakanishi I, Nagao K, Naito M, Tsuruo T, Inui H, Nakano Y. Hypoxic up-rugulation of triosephate isomerase expression in mouse brain capillary endothelial cells. Arch Biochem Biophys. 2004; 423: 332-342.
    44. Pockley AG. Heat shock proteins, inflammation, and cardiovascular disease. Circulation. 2002; 105:1012–1017.
    45. Xu Q, Wick G. The role of heat shock proteins in protection and pathophysiology of the arterial wall. Mol Med Today. 1996; 2:372–379.
    46. Reutelingsperger CP, van Heerde WL. Annexin V, the regulator of phosphatidylserine-catalyzed inflammation and coagulation during apoptosis. Cell Mol Life Sci. 1997; 53:527–532.
    47. Balch C, Dedman JR. Annexins II and V Inhibit Cell Migration. Exp Cell Res. 1997; 237: 259–263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700