用户名: 密码: 验证码:
肝素预抗凝对沙土鼠双侧颈总动脉夹闭和大鼠心肺复苏后脑复苏的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     心跳骤停后由于凝血激活而内源性纤蛋白溶解激活抑制,5-10分钟微血管内出现微血栓形成导致微循环障碍而影响CPCR及预后。因此本研究采用沙土鼠双侧颈总动脉夹闭前和大鼠窒息性心跳停止前(CA)肝素预抗凝改变血液凝固状态预防血栓形成动物实验,观察研究抗凝对沙土鼠直接脑缺血和大鼠窒息性心跳停止后心肺脑复苏影响。
     材料与方法
     一、抗凝对沙土鼠双侧颈总动脉夹闭10分钟后脑复苏影响实验
     成熟沙土鼠随机分为正常对照组(组Ⅰ,10只,无麻醉、手术),假手术组(组Ⅱ,10只,麻醉、手术),非抗凝组(组Ⅲ,30只,夹闭双侧颈总动脉10分钟但不抗凝)和抗凝组(组Ⅳ,30只,颈总动脉夹闭前肝素50IU/100g预抗凝)。组Ⅱ、Ⅲ、Ⅳ试验动物戊巴比妥钠40mg/kg体重腹腔注射麻醉。麻醉完善后三组实验动物颈部备皮消毒,正中切口,游离颈总动和右侧颈静脉并置入静脉套管针备实验中给药。实验动物分配到组Ⅰ后和灌注取脑之前进行神经学功能损害(ND)评分。组Ⅱ实验动物清醒后三通静脉注射生理盐水0.5ml后结扎血管缝合皮肤,并在实验前和实验结束后进行ND评分。组Ⅲ实验动物清醒后无创伤微血管动脉夹夹闭双侧颈总动脉阻断血流,10分钟时静脉给与肾上腺素0.01mg/kg,同时开放双侧动脉央恢复脑血流。组Ⅳ实验动物清醒前先行给与肝素50IU/100g,余同组Ⅲ。
     实验过程中观察记录组Ⅲ、Ⅳ颈总动脉夹闭后出现昏迷、呼吸困难的时间以及动脉开放后到意识,翻正反射、出现运动、觅食行为及运动平稳及出现的时间。对实验前四组,以及组Ⅲ、Ⅳ动脉开放后20 min、60 min、24h、48h和72h时四组神经系统功能损害(ND)进行评分。记录实验后前后各组体重以及组Ⅲ、Ⅳ实验过程中存活和死亡率的实验动物例数。显微镜下对四组实验动物的海马(CA1~3)区、皮层、丘脑、小脑、壳-尾核脑和小脑五脑区进行组织形态学损害差(HD)评分,观察海马区(CA1~3)神经元细胞形态学及超微结构变化,比较各组海马CA1~3区TNF-α,IL-1β免疫组化阳性染色细胞百分率差异性。
     二、抗凝对大鼠心跳骤停后心肺脑复苏(CPCR)影响实验
     SD雄性大鼠随机分为正常组(组Ⅰ,10只,无麻醉、手术),假手术组(组Ⅱ,10只,麻醉、手术但无窒息),非抗凝组(组Ⅲ,25只)和抗凝组(组Ⅳ,25只,窒息性心跳停止前肝素50IU/100g预抗凝)。实验动物分配到组Ⅰ后,称体重和神经系统损害(ND)评分后放回饲养笼饲养,72小时后再次称重和ND评分。分配到组Ⅱ、Ⅲ、Ⅳ试验动物称重和ND评分后戊巴比妥钠45mg/kg体重腹腔注射麻醉,完善后经口喉镜直视气管插管,深度5.0-5.5cm处固定。连接二氧化碳探头连续动态监测呼吸末二氧化碳分压(P_EtCO_2),吸入100%氧气机械通气,潮气量1ml/100g,频率40-60次/min,维持P_EtCO_2正常(35~45mmHg)。内置式传感器插入直肠连续监测体温,针式电极连续监测心率(HR)和ECG。游离右股动、静脉并置管,动脉接传感器连续监测平均动脉压(MABP),静脉接微量输液泵持续输液。实验过程中调整变温手术台温度,维持肛温(TR)正常(37.8~38.7℃)。组Ⅱ实验过程中肌肉松弛、持续机械通气、维持MABP(70~100mmHg)、HR(260~369次/min)、P_EtCO_2、TR在正常范围,60min后停止机械通气拔出气管导管,72小时后再次称重和ND评分。组Ⅲ、组Ⅳ(窒息性心跳停止前肝素50IU/100g预抗凝)实验动物窒息8分钟,肾上腺素和标准体外心肺复苏术(CPR)逆转停搏心脏恢复自主循环(ROSC),持续机械通气一小时后停止机械通气,达到拔管要求时拔出气管导管。同时记录两组实验过程中基础和自主循环恢复(ROSE)后即刻、10分钟、30分钟、60分钟时MABP、HR、P_EtCO_2、TR值,以及心跳停止时间(窒息到心跳停止(CA))、CPR时间(开始CPR到ROSC)、拔管时间(停止机械通气到气管导管拔除)、心肺复苏成功和72小时实验动物存活例数。对组Ⅲ、Ⅳ的实验动物于ROSC后2h、24h、48h、72h分别进行ND评分,最后一次ND评分后称体重。于72小时ND评分和称重后,四组实验动物麻醉脑灌注固定制备脑组织学损害检测标本,进行海马(CA1~3)区、皮层、丘脑、小脑和壳-尾核五脑区组织学损害(HD)评分,同时光学显微镜和电子显微镜下观察海马(CA1~3)区神经元细胞超微结构变化。海马(CA1~3)区TNF-α,IL-1β免疫组染色,显微镜下计数染色阳性和阴性细胞数。
     所得计量资料以(?)±s表示,计数资料已百分比表示。统计学分析比较实验后前后各组及组间体重变化、实验前组Ⅱ、Ⅲ、Ⅳ基础生理参数及ROSC后组Ⅲ和Ⅳ间相应时间生理参数统计学差异性。对组Ⅰ和组Ⅱ实验前后和组Ⅲ、ⅣROSC后2h、24h、48h、72h的ND评分,组Ⅲ、Ⅳ的心跳停止时间、CPR时间以及气管导管拔出时间,72小时后四组五脑区组织形态学损害差(HD)评分,各组海马CA1~3区TNF-α,IL-1β免疫组化阳性染色细胞百分率进行统计学分析。P<0.05为差异有统计学意义。
     结果
     一、抗凝对沙土鼠双侧颈总动脉夹闭后脑复苏影响实验
     实验结束后各组内部及各组之间体重变化无统计学差异。夹闭颈总动脉后,与组Ⅲ相比,组Ⅳ出现昏迷的时间无统计学差异(P>0.05),出现呼吸困难的时间组延长(P<0.05)。动脉开放后与组Ⅲ相比,组Ⅳ实验动物意识恢复、翻正反射、恢复运动、觅食行为及运动平稳时间明显缩短,P<0.01;动脉开放后20min、60 min、24h、48h、72h ND评分明显降低,P<0.01。与组Ⅲ相比,组Ⅳ实验过程中动物死亡率、72小时HD评分和TNF-α,IL-1β免疫组化阳性染色细胞百分率明显降低,P<0.01。实验前四组及72小时组Ⅰ、ⅡND评分为0,P>0.05,无显著性差异。组Ⅰ、Ⅱ海马(CA1~3)、皮层、丘脑外侧网状核、壳-尾核和小脑HD评分为0,TNF-α,IL-1β免疫组化无阳性染色细胞,两组间无显著性差异,P>0.05。
     正常对照组和假手术组海马(CA1~3)区神经元细胞在光学显微镜下细胞分布和形态结构正常,电子显微镜下细胞核膜染色质及细胞器形态结构正常,TNF-α,IL-1β免疫组化无阳性染色细胞(P>0.05)。非抗凝组和抗凝组海马(CA1~3)区在光学显微镜下神经元细胞分布、形态结构遭受不同程度损害,电子显微镜下细胞核膜、染色质及细胞器超微结构也程度不同破坏,非抗凝组损害程度明显重于抗凝组。
     二、抗凝对大鼠心跳骤停后CPCR影响实验
     SD大鼠窒息性呼吸骤停心肺脑复苏实验中实验前后组Ⅰ、Ⅱ两组及两组之间体重变化无显著性差异(P>0.05),组Ⅲ和Ⅳ两组内体重变化有显著性差异(P<0.05),而组间无差异性(P>0.05)。组Ⅲ、Ⅳ窒息8分钟可造成至少4~5分钟以上心跳停止。窒息前组Ⅱ、Ⅲ和Ⅳ间MABP,HR,RT和P_EtCO_2基础值无显著性差异,P>0.05。与组Ⅲ相比,组ⅣROSC后即刻MAP明显升高(P<0.01),心跳停止时间明显延长(P<0.01)、CPR时间明以及气管导管拔除时间明显缩短(P<0.01),心肺复苏成功率(P<0.05)、72小时存活率明显升高(P<0.05),ND和HD评分、TNF-α,IL-1β免疫组化阳性染色细胞百分率明显降低(P<0.01)。组Ⅰ、Ⅱ实验前后ND和HD评分无显著性差异,P>0.05。与沙土鼠实验相似,实验结束后正常对照组和假手术组海马(CA1~3)区在光学显微镜下神经元细胞分布和形态结构正常,电子显微镜下细胞核膜、染色质及细胞器超微结构正常,TNF-α,IL-1β免疫组化无阳性染色细胞。非抗凝组和抗凝组海马(CA1~3)区神经元细胞在光学显微镜下细胞分布和形态结构遭受不同程度损害,电子显微镜下细胞核膜染色质及细胞器形态结构也程度不同地受到破坏,非抗凝组损害程度明显重于抗凝组。
     结论
     肝素预抗凝预可明显提高沙土鼠颈总动脉夹闭10分钟后全脑缺血脑复苏转归,包括神经系统功能和脑组织形态学和免疫组织化学三个方面。肝素预抗凝可以明显提高SD大鼠窒息性心跳停止后心肺复苏成功率和72小时存活率,并减轻72小时组织形态学和免疫组织化学损害,提高心肺复苏后脑复苏的转归。因此,肝素预抗凝可明显改善和提高沙土鼠双侧颈总动脉夹闭10分钟后脑复苏和SD大鼠窒息性心跳停止后心肺脑复苏转归和预后,减轻实验条件下脑缺血性损害。
     Background
     After cardiac arrest (CA) of 5 to 10 minutes, a marked activation of blood coagulation occurs and the presence of microthrombiare found in cerebral vessels.These micro-circulatory disturbances directly affect the outcome on cardiopulmonary resuscitation (CPR). Therefore, this study involved the comparison of the effect of anticoagulation and non-anticoagulation to prove the beneficial effect of thrombolysis treatment by using two types animal experiment. Thus, the study was carried out on the experiment one: comparison of the effect of anticoagulation on cerebral resuscitation after brain ischemia induced by occlusion of bilateral common carotid artery between two groups in gerbilles, and the experiment two: comparison of the effect of anticoagulation on cardiopulmonary-cerebral resuscitation (CPCR) after asphyxial CA in rats between two groups.
     Materials and Methods
     There were two experiments in this study, including experiment one (whole brain ischemia by clamping bilateral common carotid artery in gerbils) and experiment two (CPCR after asphyxial CA in rats).
     Experiment one: Matured gerbils were randomly divided into normal control group (groupⅠ, had 10 gerbiles without anesthesia and operation), a sham group (groupⅡ, had 10 gerbiles with anesthesia and operation ), non-anticoagulation group (group
Background
     After cardiac arrest(CA) of 5 to 10 minutes, a marked activation of blood coagulation occurs and the presence of microthrombiare found in cerebral vessels.These micro-circulatory disturbances directly affect the outcome on cardiopulmonary resuscitation(CPR). Therefore, this study involved the comparison of the effect of anticoagulation and non-anticoagulation to prove the beneficial effect of thrombolysis treatment by using two types animal experiment. Thus, the study was carried out on the experiment one: comparison of the effect of anticoagulation on cerebral resuscitation after brain ischemia induced by occlusion of bilateral common carotid artery between two groups in gerbilles, and the experiment two: comparison of the effect of anticoagulation on cardiopulmonary-cerebral resuscitation(CPCR) after asphyxial CA in rats between two groups.
     Materials and Methods
     There were two experiments in this study, including experiment one(whole brain ischemia by clamping bilateral common carotid artery in gerbils) and experiment two(CPCR after asphyxial CA in rats).
     Experiment one: Matured gerbils were randomly divided into normal control group(groupⅠ, had 10 gerbiles without anesthesia and operation), a sham group(groupⅡ, had 10 gerbiles with anesthesia and operation), non-anticoagulation group(group Ⅲ, had 30 gerbiles with anesthesia and operation and whole brain ischemia induced by clamping of bilateral common carotid artery), and anticoagulation group(groupⅣ, had 30 rats with anesthesia, operation and heparinization before whole brain ischemia). The animal in groupsⅡ,ⅢandⅣwere anesthetized with pentobarbital sodium 40mg/kg through intraperitoneal injection. After the anesthesia took full effect, a surgical incision was made at the middle line in the neck at supine position and the bilateral common carotid arteries were carefully isolated without damage of the vessels and nerve fibre and an intravenous cannula was put in at one side of the neck venous in all the animals of these three groups. The gerbilles which were assigned to groupⅠwere assessed for the neurological deficit(ND) scores after selected for the test and before the fixation of brain for histological exams. The animal in groupⅡwas given normal saline 0.5ml after awakening from anesthesia then removed the cannula, ligated the venous and sutured the incision. And the ND scores were evaluated before experiment and the fixation of brain for histological exams. After awakening from anesthesia, the bilateral common carotid arteries were blocked with bulldog clamp for 10 minutes in the animals of groupⅢ. After clamping for 10 minutes, epinephrine 0.01mg/kg was administrated and the arteries re-opened to supply blood to brain by unclamping the bulldog clamp. In groupⅣ, except for administrating 50IU/100g after the animal awakening from anesthesia and before clamping the arteries, all the other procedures were same as groupⅢ.
     In this experiment the time intervals from whole brain ischemia to coma and dyspnea, and from unclamping of common carotid artery to regaining of consciousness, righting reflex, movement on limbs, foraging, and stable movement on limbs were studied during the experiment. Neurological deficit(ND) scores of four groups before experiment, and at 20 min、60 min、24h、48h between groupsⅢandⅣafter unclamping of common carotid artery and at 72h of four groups were compared(at 72h,the ND scores were compared between groupsⅠandⅡ, and groupsⅢandⅣ,(ND scores 0%=best; 100%=worst). Mortality of the animals between groupsⅢandⅣ during the experiment was compared. Positive expression rate of TNF-aand IL-1βin hippocampus region(CA1~3)and brain histopathological damage (HD) scores of ischemic neurons in five regions between groupⅢandⅣwere compared after 72 hours of unclamping of common carotid artery.
     Experiment two: Male Sprague-Dawley rats were randomly divided into four groups. Based on study protocol, normal control group (groupⅠ, had 10 rats), a sham group (groupⅡ, had 10 rats), non-anticoagulation arrest group (groupⅢ, had 25 rats), and anticoagulation arrest group (groupⅣ, had 25 rats) were studied. GroupⅠhad no anesthesia and surgery, groupⅡhad anesthesia and surgery but no asphyxia. GroupⅢhad apneic asphyxia of 8 min. GroupⅣwas the same as groupⅢexcept that heparin 50IU/100g was administered before CA. All rats in groupⅢandⅣwere given epinephrine and standard external cardiopulmonary resuscitation to restore spontaneous circulation (ROSC).
     For the animals in groupⅡ,ⅢandⅣ, anesthesia was induced with pentobarbital sodium 45mg/kg injected intraperitoneally. At the onset of unconsciousness and relaxation without lash reflex, the rats were immediately intubated with a 16-G plastic catheter by direct laryngoscope. The tracheal cannula was connected to rodent piston ventilator; end-tidal partial pressure of carbon dioxide (P_EtCO_2) and inhaled oxygen concentration were monitored The ventilator was initially preset to deliver tidal volumes of 1ml/100g, a positive end-expiratory pressure of 3 cm H_2O, and at a ventilation rate of 40-50/min. Mechanical ventilation was later adjusted to control P_EtCO_2 between 30 to 40mmHg. The fraction of inspired oxygen (FiO_2) was maintained at 0.70 to 0.85. Electrocardiograph (ECG) electrodes were attached to monitor leadⅡECG waves, and heart rate (HR). A temperature (RT) probe was inserted into the rectum of the rats up to a depth of 1 to 1.5cm to monitor temperature changes. The rats were placed on a heating pad and secured to a surgical board with adhesive tape. The RT was controlled throughout the experiment at a normal range of between 37.8 to 38.7℃by using the heating system inside the operation table and the aid of a lamp. Under aseptic technique an incision was made in the right groin. 24-G catheters (length, 5.5 cm) were advanced into the abdominal aorta and inferior vena cava through femoral artery and vein, and connected to an arterial pressure transducer and intravenous infusion pump respectively. An intravenous dose of vecuronium 2mg/kg was then administered. The mean arterial blood pressure (MABP), RT, P_EtCO_2 and HR were recorded at 10-15 min before the ischemic insult and after ROSC at 10, 30 and 60 min
     The differences of MABP, HR, RT and end-tidal partial pressure of carbon dioxide (P_EtCO_2) of baseline values among groupⅡ,ⅢandⅣ, and at time points: immediately after ROSC, 10 min after ROSC, 30 min after ROSC, 60 min after ROSC between groupⅢandⅣ, were compared. The time intervals from asphyxia to CA, CPR to ROSC, and after stopping mechanical ventilation to extubation between groupⅢandⅣwere compared. Achievement ratio of CPR and 72 hours survival rate after CPR were compared between groupⅢandⅣ. Neurological deficit (ND) was compared between groupsⅢandⅣbefore CA and after CPR at 2h,24h,48h,and 72h (0%=best; 100%=worst). Positive expression rate of TNF-aand IL-1βin hippocampus region(CA1~3)and brain histopathological damage (HD) of ischemic neurons in five regions between groupⅢandⅣwere compared after 72 hours of CPR.
     Results
     The results of experiment one: The time intervals from whole brain ischemia to coma and dyspnea,and from unclamping of common carotid artery to regaining of consciousness, righting reflex, movement on limbs, foraging, and stable movement on limbs between groupsⅢandⅣwere significantly different, P<0.01. The difference of the ND scores between groupⅢandⅣwas detected, P<0.01.There were significant differences of the mortality, HD scores and the positive expression rate of TNF-aand IL-1βbetween groupsⅢandⅣ, P<0.05 or 0.01.
     The results of experiment two: After asphyxiation of 8 min of the rats in groupⅢandⅣ, cardiac arrest of 4 to 5 min was obtained. The differences of MABP, HR, RT and P_EtCO_2 of baseline values among groupⅡ,ⅢandⅣwere not significant. Only the difference of MABP between groupⅢandⅣwas found at immediately after ROSC,P<0.01. The rest parameters had no significant difference between groupⅢandⅣat the time points: immediately after ROSC, 10 min after ROSC, 30 min after ROSC, 60 min after ROSC. The time intervals from asphyxia to CA, CPR to ROSC, and from weaning off mechanical ventilation to extubation between groupⅢandⅣ, the achievement ratio of CPR and the survival rate at 72 hours, and the ND and HD between groupⅢandⅣwere significantly different, P<0.05 or 0.01. The positive expression rates of TNF-a and IL-1βbetween groupsⅢandⅣwere statistically different, P<0.05 or 0.01.
     Conclusion
     It appears that anticoagulation with heparin may obviously improve the outcome and prognosis of brain ischemia induced by clamping of bilateral common carotid artery in for 10 minutes, including improvement of neurological function recovery, prevention of morphological damage of brain and immuno-histochemistry injury. And also it shows that anticoagulation with heparin may increase the achievement ratio of CPR after cardiac arrest and survival rate of 72 hours after CPR in rats. At the same time the recovery of neurological function is improved, and the morphological damage of brain and immuno-histochemistry injury are prevented. Therefore the future clinical studies may be carried out to evaluate the relevance of administration of heparin as early as possible during CA and even before administration adrenaline for CPR.
引文
1 王佩显.临床基础心脏病学.天津科学技术出版社,1999:133
    2 Basu S,Liu X,Nozari A,et al.Evidence for time-dependent maximum increase of free radical damage and eicosanoid formation in the brain as related to duration of cardiac arrest and cardio-pulmonary resuscitation.Free Radic Res.2003;37:251~256.
    3 Liu XL,Wiklund L,Nozari,et al.Differences in cerebral reperfusion and oxidative injury after cardiac arrest.Acta Anaesthesiol Scand.2003;47:958~967.
    4 Teschendorf P,Krumnikl JJ,Vogel P,et al.Transgenic expression of antiapoptotic Baculovirus protein p35 increases survival following cardiac arrest in rats.Abstr.Anesthesiology.2001;95:761.
    5 Chan PH,Kawase M,Murakami K,et al.Over expression of S0D1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion.J Neurosci.1998;18:8292~8299.
    6 Bokesch PM,Marchand J.Seirafi PA,et al.Immediate-early gene expression in ovine brain after cardiopulmonary bypass and hypothermic circulatory arrest.Anesthesiology.1996;85:1439~1446.
    7 Kumar R,Krause GS,Yoshida H,et al.Dysfunction of the unfolded protein response during global brain ischemia and reperfusion.J Cereb Blood Flow Metab.2003;23:462~471.
    8 Eisenburger P,Safar P.Life supporting first aid(LSFA)training of the public:Review and recommendations.Resuscitation.1999;41:3~18.
    9 Krep H,Fischer M,Hoeft A.The role of endothelin-1 in regional cerebral perfusion during prolonged ventricular fibrillation.Resuscitation 2003,57:317~318.
    10 Safar P,Behringer W.Brain resuscitation after cardiac arrest.In:Layon AJ,Gabrielli A,Friedman WA.Textbook of Neurointensive Care.Philadelphia:WB Saunders,2003. 457~498.
    11 Sterz F,Leonov Y,Safar P,et al.Hypertension with or without hemodilution after cardiac arrest in dogs.Stroke.1990;21:1178~1184.
    12 Leonov Y,Sterz F,Safar P,et al.Hypertension with hemodilution prevents multifocal cerebral hypoperfusion after cardiac arrest in dogs.Stroke.1992;23:45~53.
    13 Safar P,Behringer W,B?ttiger BW,et al.Cerebral resuscitation potentials for cardiac arrest.Crit Care Med.2002;30(suppl):140~144.
    14 Holzer M,Sterz F.Therapeutic hypothermia after cardiopulmonary resuscitation.Expert Rev Cardiovasc Ther.2003;1:317~325.
    15 Sterz F,Holzer M,Roine R,et al.Hypothermia after cardiac arrest:a treatment that works.Curr Opin Crit Care.2003;9:205~210.
    16 Leonov Y,Sterz F,Safar P,et al.Mild cerebral hypothermia during and after cardiac arrest improves neurologic outcome in dogs.J.Cereb Blood Flow Metab.1990;10:57~70.
    17 Sterz F,Safar P,Tisherman S,et al: Mild hypothermic cardiopulmonary resuscitation improves outcome after prolonged cardiac arrest in dogs.Crit Care Med 1991;19:379~389.
    18 Weinrauch V,Safar P,Tisherman S,et al:Beneficial effect of mild hypothermia and detrimental effect of deep hypothermia after cardiac arrest in dogs.Stroke.1992;23:1454~1462.
    19 Kuboyama K,Safar P,Radovsky A,et al:Delay in cooling negates the beneficial effect of mild resuscitative cerebral hypothermia after cardiac arrest in dogs.Crit Care Med 1993;21:1348~1358.
    20 Safar P,Xiao F,Radovsky A,et al: Improved cerebral resuscitation from cardiac arrest in dogs with mild hypothermia plus blood flow promotion.Stroke.1996;27:105~113.
    21 Hekmatpanah J.Cerebral blood flow dynamics in hypotension and cardiac arrest.Neurology.1973;23:174~180.
    22 B?ttiger BW,Martin E:Thrombolytic therapy during cardiopulmonary resuscitation and the role of coagulation activation after cardiac arrest. Curr Opin Crit Care. 2001; 7: 176~83.
    23 Serguei Liachenko, Pei Tang, Ronald L, et al.: A Reproducible Model of Circulatory Arrest and Remote Resuscitation in Rats for NMR Investigation. Stroke 1998; 29: 1229~38.
    24 Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia Ann Neurol. 1982; 11: 491~498.
    25 Hendrickx HHL, Safar P Miller A. Delayed recovery of behavior after anesthesia in rats. Resuscitation. 1984; 12: 211~221.
    26 Laurence Katz, Ewe Ebmeyer, Peter Safar, et al. Outcome model of asphyxial cardiac arrest in rat. Journal of cerebral blood flow and metabolism. 1995;15: 1032~1039.
    27 Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 4thed. San Diego: Academic Press, 1999.
    28 全国第四届脑血管病学术会议.脑卒中患者临床神经功能缺损程度评分标准(1995).中华神经科杂志,1996,29:381-383.
    39 Lin T, Clark RK, McDonnell Pc, et al. Tumor necrosis factor 2 expression inischemia neurous. Stroke. 1994; 25: 481~484.
    30 Yamasaki Y, Marsuo Y, Matasuura N, et al. Transient increase of cytokine2in2duced neutrophil chemoattractant, a member of the interleukin 28 family , in ischemia brain areas after forcal ischemia in rats. Stroke. 1995; 26: 318~321.
    31 Liqun Yang, Peter C. Blumbergs, Nigel R. Jones, et al. Early Expression and Cellular Localization of Proinflammatory Cytokines Interleukin-1-Beta, Interleukin-6, and Tumor Necrosis Factor-Alpha in Human Traumatic Spinal Cord Injury. Spine. 2004; 29 : 966~971.
    32 Knoblach SM, Fan L, Faden AI. Early neuronal expression of tumor necrosis factor-alpha after experimental brain injury contributes to neurological impairment. J Neuroimmunol. 1999; 95: 115~125.
    33 Yan P,Li Q,Kim GM,et al.Cellular localization of tumor necrosis factor-alpha following acute spinal cord injury in adult rats.J Neurotrauma.2001;18:563-568.
    34 Giulian D,Baker TJ,Shih LC,et al.Interleukin-1 of the central nervous system is produced by ameboid microglia.J Exp Med.1986;164:594~604.
    35 Lee SC,Liu W,Dickson DW,et al.Cytokine production by human fetal microglia and astrocytes:differential induction by lipopolysaccharide and IL-1 beta.J Immunol.1993;150:2659~2667.
    36 Wang CX,Nuttin B,Heremans H,et al.Production of tumor necrosis factor in spinal cord following traumatic injury in rats.J Neuroimmunol.1996;69:151~156
    37 McLaurin J,D'Souza S,Stewart J.Effect of tumour necrosis factor alpha and beta on human oligodendrocytes and neurons in culture.Int J Dev Neurosci.1995;12:369~381.
    38 Talley AK,Dewhurst S,Perry SW.Tumour necrosis factor alpha-induced apoptosis in human neuronal cells:protection by the antioxidant N-acety1-cysteine and the genes bc(?)-2 and crmA.Mo1 Cell Biol.1995;15:2359~2366.
    39 Tzeng SF,Kahn M,Liva S,et al.Tumor necrosis factor-alpha regulation of the Id gene family in astrocytes and microglia during CNS inflammatory injury.Glia.1999;26:139~152.
    40 Sawada M,Suzumura A,Marunouchi T.TNF-alpha induces IL-6 production by astrocytes but not by microglia.Brain Res.1992;583:296~299.
    41 Yoshida K,Gage FH.Cooperative regulation of nerve growth factor synthesis and secretion in fibroblasts and astrocytes by fibroblast growth factor and other cytokines.Brain Res.1992;569:14~25.
    42 Dinarello CA.Interleukin-1. In:Thomson AW,ed.The Cytokine Handbook.3rd ed.San Diego:Academic Press,1998. 35~73.
    43 D'Souza S,Alinauskas K,McCrea E,et al.Differential susceptibility of human CNS-derived cell populations to TNF-dependent and independent immune-mediated injury.J Neuros.1995;15:7293~7300.
    44 Redford EJ,Hall SM,Smith KJ.Vascular changes and demyelination induced by the Intraneural injection of tumour necrosis factor.Brain.1995;118:869~878.
    45 Schwartz M,Solomon A,Lavie V,et al.Tumor necrosis factor facilitates regeneration of injured central nervous system axons.Brain Res.1991;545:334~338.
    46 Zhang M,Tracey KJ.Tumor necrosis factor.In:Thomson AW,ed.The Cytokine Handbook.3rd ed.San Diego:Academic Press,1998. 517-549.
    47 Botchkina GI,Meistrell ME 3rd,Botchkina IL,et al.Expression of TNF and TNF receptors(p55 and p75) in the rat brain after focal cerebral ischemia.Mol Med.1997;3:765~781.
    48 Sipe KJ,Srisawasdi D,Dantzer R,et al.An endogenous 55 kDa TNF receptor mediates cell death in a neural cell line.Brain Res Mol Brain Res.1996;38:222~232.
    49 Chao CC,Hu S.Tumor necrosis factor-alpha potentiates glutamate neurotoxicity in human fetal brain cell cultures.Dev Neurosci.1994;16:172~179.
    50 Faden AI,Demediuk P,Panter SS,et al.The role of excitatory amino acids and NMDA receptors in traumatic brain injury.Science.1989;244:798~800.
    51 Bethea JR.Spinal cord injury-induced inflammation:a dual-edged sword.Prog Brain Res.2000;128:33~42.
    52 Klusman I,Schwab ME.Effects of pro-inflammatory cytokines In experimental spinal cord injury.Brain Res.1997;762:173~184.
    53 Fritz Sterz,Peter Safar,David W.Johnson,et al.Effects of U74006F on Multifocal Cerebral Blood Flow and Metabolism After Cardiac Arrest in Dogs.Stroke.1991;22:889~895.
    54 王怀良.临床药理学.北京:高等教育出版社.2004. 289~290.
    55 Jack Hirsh,MD;Sonia S.Anand,MD,et al.Guide to Anticoagulant Therapy:Heparin:A Statement for Healthcare Professionals From the American Heart Association.Circulation.2001;103:2994~3018.
    56 Kenneth S.Kilgore,Elaine J.Tanhehco,Keith B.Naylor,et al.Ex Vivo Reversal of Heparin-Mediated Cardioprotection by Heparinase After Ischemia and Reperfusion.The Journal of Pharmacology and Experimental Therapeutics.1999;290:1041~1047.
    1 Safar P.Cerebral resuscitation after cardiac arrest:Research initiatives and future directions.Ann Emerg Med.1993;22:324~349.
    2 Safar P,Bircher NG.Cardiopulmonary Cerebral Resuscitation.An Introduction to Resuscitation Medicine.Guidelines by the World Federation of Societies of Anaesthesiologists(Third Edition).London:Stavanger,1988. 2~21.
    3 Safar P.Resuscitation:Controversial Aspects.International Symposium,Vienna,1962. 3~16.
    4 Safar P.History of cardiopulmonary-cerebral resuscitation.In:Cardiopulmonary Resuscitation.Kaye W,Bircher N(Eds).New York:Churchill Livingstone,1989. 1~53
    5 Safar P,Grenvik A,Abramson NS,et al. International resuscitation research symposium on the reversibility of clinical death.Crit Care Med.1988;16:919-1086.
    6 Rosomoff HL,Shulman K,Raynor R,et al.Experimental brain injury and delayed hypothermia.Surg Gynecol Obstet.1960;110:27~32.
    7 White RJ,Albin M.Spinal cord injury.Sequential morphology and hypothermia stabilization.Surg Forum.1969;20:432.
    8 Hossmann KA,Kleihues P.Reversibility of ischemic brain damage.Arch Neurol 1973;29:375~384.
    9 Safar P.Brain resuscitation.Crit Care Med.1978;6:199~292.
    10 Safar P,Stezoski SW,Nemoto EM.Amelioration of brain damage after 12 minutes cardiac arrest in dogs.Arch Neurol.1976;33:91~95.
    11 Lind B,Snyder J,Safar P.Total brain ischemia in dogs:Cerebral physiological and metabolic changes after 15 minutes of circulatory arrest.Resuscitation.1975;4:97~113
    12 Nemoto EM,Bleyaert AL,Stezoski SW,et al.Global brain ischemia:A reproducible monkey model.Stroke.1977;8:558~565.
    13 Abramson NS,Kelsey SF.Safar P,et al.Simpson's paradox and clinical trials: What you find is not necessarily what you prove.Ann Emerg Med.1992;21:1480~1482
    14 Traystman RJ,Kirsch JR,Koehler RC.Oxygen radical mechanisms of brain injury following ischemia and reperfusion.J Appl Physiol.1991;71:1185~1195.
    15 Hossmann K-A.Resuscitation potentials after prolonged global ischemia in cats.Crit Care Med.1988;16:964~971.
    16 Siesjo BK.Mechanisms of ischemic brain damage.Crit Care Med.1988;16:954~963.
    17 Kochanek PM,Uhl MW,Schoettle RJ.Hypoxic ischemic encephalopathy:Pathobiology and therapy for the postresuscitation syndrome in children.In:Pediatric Critical Care Medicine.Fuhrman B,Zimmerman J(Eds).St Louis:CV Mosby,1992. 637~657
    18 Pantridge JF,Geddes JS.A mobile intensive care unit in the management of myocardial infarction.Lancet.1967;2:271~273.
    19 Safar P,Xiao F,Radovsky A,et al.Improved cerebral resuscitation from cardiac arrest with mild hypothermia plus blood flow promotion in dogs.Stroke.1996;27:105~113
    20 Safar P,Behringer W.Brain resuscitation after cardiac arrest.In:Textbook of Neurointensive Care.Edited by Layon AJ,Gabrielli A,Friedman WA.Philadelphia:WB Saunders,2003. 457~498.
    21 Eisenburger P,Safar P.Life supporting first aid(LSFA)training of the public:Review and recommendations.Resuscitation.1999;41:3~18
    22 Warner DS.Effects of anesthetic agents and temperature on the injured brain.In:Textbook of Neuroanesthesia with Neurosurgicaland Neuroscience Perspectives.Edited by Albin MS.New York:McGraw-Hill,1997. 595~611
    23 Basu S,Liu X,Nozari A,et al.Evidence for time-dependent maximum increase of free radical damage and eicosanoid formation in the brain as related to duration of cardiac arrest and cardio-pulmonary resuscitation.Free Radic Res.2003,37:251~256.
    24 Liu XL,Wiklund L,Nozari,et al.Differences in cerebral reperfusion and oxidative injury after cardiac arrest.Acta Anaesthesiol Scand.2003;47:958~967.
    25 Padosch SA,Popp E,Vogel P,et al.Altered protein expression levels of Fas/CD95 and Fas ligand-differentially vulnerable brain areas in rats after global cerebral ischemia.Neurosci Lett.2003;338:247~251.
    26 Safar P,Behringer W,B?ttiger BW,et al.Cerebral resuscitation potentials for cardiac arrest.Crit Care Med.2002;30(suppl):140~144.
    27 Krep H,Fischer M,Hoeft A.The role of endothelin-1 in regional cerebral perfusion during prolonged ventricular fibrillation.Resuscitation.2003;57:317~318.
    28 Holzer F,Sterz F,Behringer W,et al.Endothelin-1 elevates regional cerebralperfusion during prolonged ventricular fibrillation cardiac arrest in pigs.Resuscitation.2002;55:317~327.
    29 Krep H,Bottiger BW,Bock C,et al.Time course of circulatory and metabolic recovery of cat brain after cardiac arrest assessed by perfusion-and diffusionweighted imaging and MR-spectroscopy.Resuscitation.2003;58:337~348.
    30 Schaafsma A,de Jong BM,Bams JL,et al.Cerebral perfusion and metabolism in resuscitated patients with severe post-hypoxic encephalopathy.J Neurol Sci.2003;210:23~30.
    31 Bokesch PM,Marchand J,Seirafi PA,et al.Immediate-early gene expression in ovine brain after cardiopulmonary bypass and hypothermic circulatory arrest.Anesthesiology.1996;85:1439~1446.
    32 Kumar R,Krause GS,Yoshida H,et al.Dysfunction of the unfolded protein response during global brain ischemia and reperfusion.J Cereb Blood Flow Metab.2003;23:462~471.
    33 Yenari MA,Zhao H,Giffard RG,et al.Gene therapy and hypothermia for stroke treatment.Ann N Y Acad Sci.2003;993:54~68.
    34 The Hypothermia After Cardiac Arrest study group.Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest.N Engl J Med.2002;346:549~556.
    35 Bernard SA,Gray TW,Buist MD,et al.Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia.N Engl J Med.2002;346:557~563.
    36 Holzer M,Sterz F.Therapeutic hypothermia after cardiopulmonary resuscitation.Expert Rev Cardiovasc Ther.2003;1:317~325.
    37 Sterz F,Holzer M,Roine R,et al.Hypothermia after cardiac arrest:a treatment that works.Curr Opin Crit Care.2003;9:205~210.
    38 Tiainen M,Roine RO,Pettil? V,et al.Serum neuron-specific enolase and S-100B protein in cardiac arrest patients treated with hypothermia.Stroke.2003;34:2881~2885.
    39 Radovsky A,Safar P,Sterz F,et al.Regional prevalence and distribution of ischemic neurons in dog brains 96 hours after cardiac arrest of 0 to 20 minutes.Stroke.1995;26:2127~2134.
    40 Brain Resuscitation Clinical Trial I Study Group.Randomized clinical study of thio-pental loading in comatose survivors of cardiac arrest.N Engl J Med.1986;314:397~403.
    41 Brain Resuscitation Clinical Trial Ⅱ Study Group.A randomized clinical study of a calcium-entry blocker(lidoflazine)in the treatmentof comatose survivors of cardiac arrest.N Engl J Med.1991;324:1225~1231.
    42 Abramson N,Kelsey S,Safar P,et al.Simpson's paradox and clinical trials:What you find is not necessarily what you prove.Ann Emerg Med.1992;21:1480-1482.
    43 Brain Resuscitation Clinical Trial Ⅲ Study Group.A randomized clinical trial of escalating doses of high dose epinephrine during cardiac resuscitation.Abstr.Crit Care Med.1995;23:178.
    44 B?ttiger BW,Martin E.Thrombolytic therapy during cardiopulmonary resuscitation and the role of coagulation activation after cardiac arrest.Curr Opin Crit Care.2001;7:176~183.
    45 B(?)ttiger BW,Schmitz B,Wiesser C,et al.Neuronal stress response and neuronal cell damage after cardiocirculatory arrest in rats.J Cereb Blood Flow Metab.1998;18:1077~1087.
    46 Petito CK,Feldmann E,Pulsinelli WA,et al.Delayed hippocampal damage in humans following cardiorespiratory arrest.Neurology.1987;37:1281~1286.
    47 Gillardon F,B(?)ttiger BW,Schmitz B,et al.neurons following ischemia and epilepsy.Brain Res Mol Brain Res.1997;50:16~22.
    48 Chen J,Nagayama T,Jin K,et al.Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia.J Neurosci.1998;18:4914~4928.
    49 Teschendorf P,Krumnikl JJ,Vogel P,et al.Transgenic expression of antiapoptotic baculovirus protein p35 increases survival following cardiac arrest in rats.Abstr.Anesthesiology.2001;95:761.
    50 Chan PH,Kawase M,Murakami K,et al.Over expression of S0D1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion.J Neurosci.1998;18:8292~8299
    51 Hossmann KA,Lechtape-Gruter H,Hossmann Ⅴ The role of cerebral blood flow for the recovery of the brain after prolonged ischemia.Z Neurol.1973;204:281-299.
    52 Safar P,Kochanek P.Cerebral blood flow promotion after prolonged cardiac arrest.Crit Care Med.2000;28:3104~31068.
    53 Sterz F,Leonov Y,Safar P,et al:Hypertension with or without hemodilution after cardiac arrest in dogs.Stroke.1990;21:1178~1184.
    54 Leonov Y,Sterz F,Safar P,et al.Hypertension with hemodilution prevents multifocal cerebral hypoperfusion after cardiac arrest in dogs.Stroke 1992;23:45~53
    55 Fischer M,Hossmann KA.Volume expansion during cardiopulmonary resuscitation reduces cerebral no-reflow.Resuscitation.1996;32:227~240.
    56 Krep H,Brinker G,Pillekamp F,et al.Treatment with an endothelin type A receptorantagonist after cardiac arrest and Resuscitation improves cerebral hemodynamic and functional recovery in rats.Crit Care Med.2000;28:2866~2872.
    57 Fischer M,B(?)ttiger BW,Popov-Cenic S,et al.Thrombolysis using plasminogen activator and heparin reduces cerebral no-reflow after resuscitation from cardiac arrest:An experimental study in the cat.Intensive Care Med.1996;22:1214~1223
    58 B(?)ttiger BW,Motsch J,B(?)hrer H,et al.Activation of blood coagulation after cardiac arrest is not balanced adequately by activation of endogenous fibrinolysis.Circulation.1995;92:2572~2578.
    59 B(?)ttiger BW,Bode C,Kern S,et al.Efficacy and safety of thrombolytic therapy after initially unsuccessful cardiopulmonary resuscitation:A prospective clinical trial.Lancet.2001;357:1583~1585.
    60 Bigelow WG,Lindsay WK,Greenwood WF.Hypothermia:Its possible role in cardiac surgery.Ann Surg.1950;132:849~866.
    61 Rosomoff HL,Shulman K,Raynor R,et al.Experimental brain injury and delayed hypothermia.Surg Gynecol Obstet.1960;110:27~32
    62 Benson DW,Williams GR,Spencer FC,et al.The use of hypothermia after cardiac arrest.Anesth Analg 1958;38:423~428.
    63 Safar P.Resuscitation from clinical death:Pathophysiologic limits and therapeutic potentials.Crit Care Med.1988;16:923-941.
    64 Safar P,Abramson NS,Angelos M,et al.Emergency cardiopulmonary bypass for resuscitation from prolonged cardiac arrest.Am J Emerg Med.1990;8:55~67.
    65 Leonov Y,Sterz F,Safar P,et al.Moderate hypothermia after cardiac arrest of 17 min indogs:Effect on cerebral and cardiac outcome.A preliminary study.Stroke.1990;21:1600~1606.
    66 Leonov Y,Sterz F,Safar P,et al:Mild cerebral hypothermia during and after cardiac arrest improves neurologic outcome in dogs.J Cereb Blood Flow Metab.1990;10:57~70.
    67 Sterz F,Safar P,Tisherman S,et al.Mild hypothermic Cardiopulmonary resuscitation improves outcome after prolonged cardiac arrest in dogs.Crit Care Med.1991;19:379~389.
    68 Weinrauch V,Safar P,Tisherman S,et al.Beneficial effect of mild hypothermia and detrimental effect of deep hypothermia after cardiac arrest in dogs.Stroke.1992;23:1454~1462.
    69 Kuboyama K,Safar P,Radovsky A,et al.Delay in cooling negates the beneficial effect of mild resuscitative cerebral hypothermia after cardiac arrest in dogs.Crit Care Med.1993;21:1348~1358.
    70 Safar P,Xiao F,Radovsky A,et al.Improved cerebral resuscitation from cardiac arrest in dogs with mild hypothermia plus blood flow promotion.Stroke 1996;27:105~113
    71 Busto R,Dietrich WD,Globus MY,et al.Postischemic moderate hypothermia inhibits CA1 hippocampal ischemia neuronal injury.Neurosci Lett.1989;101:299~304.
    72 Bernard SA,Gray TW,Buist MD,et al:Treatment of comatose survivors of out-ofhospital cardiac arrest with induced hypothermia.N Engl J Med.2002;346:557~563.
    73 Yanagawa Y,Ishihara S,Norio H,et al.Preliminary clinical outcome study of mild Resuscitative hypothermia after out-of-hospital cardiopulmonary arrest.Resuscitation.1998;39:61~66.
    74 Yamashita C,Nakagiri K,Yamashita T,et al.Mild hypothermia for temporary brain ischemia during cardiopulmonary support systems:Report of three cases.Surg Today.1999;29:182~185.
    75 Nagao K,Hayashi N,Kanmatsuse K,et al.Cardiopulmonary cerebral resuscitation using emergency cardiopulmonary bypass,coronary reperfusion therapy and mild hypothermia in patients with cardiac arrestoutside the hospital.J Am Coll ardiol. 2000;36:776~783.
    76 The Hypothermia After Cardiac Arrest Study Group:Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest.N Engl J Med.2002;346:549~556.
    77 Safar PJ,Kochanek PM:Therapeutic hypothermia after cardiac arrest.N Engl J Med.2002;346:612~613.
    78 Bernard S,Buist M,Monteiro O,et al.:Induced hypothermia using large volume,ice-cold intravenous fluid in comatose survivors of out-of-hospital cardiac arrest:preliminary report.Resuscitation.2003;56:9~13.
    79 Tisherman SA,Rodriguez A,Safar P:Therapeutic hypothermia in traumatology.Surg Clin North Am.1999;79:1269~1289.
    80 Bellamy R,Safar P,Tisherman SA,et al.Suspended animation for delayed resuscitation.Crit Care Med.1996;24(Suppl):24~47.
    81 Tisherman SA,Safar P,Radovsky A,et al.Profound hypothermia (5~10℃)compared with deep hypothermia(15℃)improves neurologic outcome in dogs after two hours'circulatory arrest induced to enable resuscitative surgery.J Trauma.1991;31:1051~1062.
    82 Capone A,Safar P,Radovsky A,et al.Complete recovery after normothermic hemorrhagic shock and profound hypothermic circulatory arrest of 60 minutes in dogs.J Trauma.1996;40:388~394.
    83 Safar P,Tisherman SA,Behringer W,et al.Suspended animation for delayed resuscitation from prolonged cardiac arrest that is unresuscitable by standard cardiopulmonary-cerebral resuscitation.Crit Care Med.2000;28(Suppl):214~218.
    84 Woods RJ,Prueckner S,Safar P,et al.Hypothermic aortic arch flushes for preservation during exsanguination cardiac arrest of 15 minutes in dogs.J Trauma.1999;47:1028~1038.
    85 Behringer W,Prueckner S,Safar P,et al.Rapid induction of mild cerebral hypothermia by cold aortic flush achieves normal recovery in a dog outcome model with 20-minute exsanguination cardiac arrest.Acad Emerg Med.2000;7:1341~1348.
    86 Behringer W,Prueckner S,Kentner R,et al.Rapid hypothermic aortic flush can achieve survival without brain damage after 30 minutes cardiac arrest in dogs.Anesthesiology.2000;93:1491~1499.
    87 Behringer W,Safar P,Kentner R.Survival of 60 min cardiac arrest in dogs with 15℃ vs.20℃ cerebral preservation by cold aortic flush:Study I.Abstr.Crit Care Med 2000;28:A67.
    88 Behringer W,Safar P,Kentner R,et al.Intact survival of 60,90,and 120 min cardiac arrest in dogs with 10℃ cerebral preservation by cold aortic f lush:Study Ⅱ.Abstr.Crit Care Med.2000;28:65.
    89 Behringer W,Prueckner S,Kentner R,et al.Exploration of pharmacologic aortic arch flush strategies for rapid induction of suspended animation (SA)(cerebral preservation)during exsanguination cardiac arrest (ExCA)of 20 min in dogs.Abstr.Crit Care Med.1999;27:65.
    90 Behringer W,Kentner R,Wu X,et al.Thiopental and phenytoin by aortic arch flush for cerebral preservation during exsanguinations cardiac arrest of 20 minutes in dogs:An exploratory study.Resuscitation.2001;49:83~97.
    91 Behringer W,Safar P,Kentner R,et al.Antioxidant Temopl enhances hypothermic Cerebral preservation during prolonged cardiac arrest in dogs.J Cereb Blood Flow Metab.2002;22:105~117.
    92 Safar P."On the future of Reanimatology."Keynote lecture at the Society for Academic Emergency Medicine(SAEM)Meeting,Boston,1999. Acad Emerg Med 2000;7:75~89.
    93 Negovsky VA,Gurvitch AM,Zolotokrylina ES.Postresuscitation Disease.Amsterdam:Elsevier,1983. 31~56
    94 Madl C,HasibederW,Lechleitner P,et al.Prognostic evaluation of erebral hypoxia after cardiopulmonary resuscitation-report of the Austrian Interdisciplinary Consensus Conference.Wien Klin Wochenschr.2002;114:422~427.
    95 Zandbergen EGJ,de Haan RJ,Stoutenbeek CP,et al.Systematic review of early prediction of poor outcome in anoxic-ischaemic coma.Lancet.1998;352:1808~1812.
    96 Robinson LR,Micklesen PJ,Tirschwell DL,et al.Predictive value of somatosensory evoked potentials for awakening from coma.Crit Care Med.2003;31:960~967.
    97 Logi F,Fischer C,Murri L,et al.The prognostic value of evoked responses from primary somatosensory and auditory cortex in comatose patients.Clin Neurophysiol.2003;114:1615~1627.
    98 Zingler VC,Krumm B,Bertsch T,et al.Early prediction of neurological outcome after cardiopulmonary resuscitation:a multimodal approach combining neurobiochemical and electrophysiological investigations may provide high prognostic certainty in patients after cardiac arrest.Eur Neurol.2003;49:79~84.
    99 Madl C,Kramer L,Yeganehfar W,et al.Detection of nontraumatic comatose patients with no benefit of intensive care treatment by recording of sensory evoked potentials.Arch Neurol.1996,53:512~516.
    100 Madl C,Kramer L,Domanovits H,et al.Improved outcome prediction in unconscious cardiac arrest survivors with sensory evoked potentials compared with clinical assessment.Crit Care Med.2000;28:721~726.
    101 Madl C,Grimm G,Kramer L,et al.Early prediction of individual outcome after cardiopulmonary resuscitation.Lancet.1993;341:855~858.
    102 Gendo A,Kramer L,H(?)fner M,et al.Time-dependency of sensory evoked potentials in comatose cardiac arrest survivors.Intensive Care Med.2001;27:1305-1311.
    103 Bauer E,Funk GC,Gendo A,et al.Electrophysiological assessment of the afferent sensory pathway in cardiac arrest survivors.Eur J Clin Invest.2003;33:283~287.
    104 Snyder-Ramos SA,Bottiger BW.Molecular markers of brain damage-clinical and ethical implications with particular focus on cardiac arrest.Restor Neurol Neurosci.2003;21:123~139.
    105 Meynaar IA,Straaten HM,van der Wetering J,et al.Serum neuron-specific enolase predicts outcome in post-anoxic coma:a prospective cohort study.Intensive Care Med.2003;29:189~195.
    106 Mussack T,Biberthaler P,Kanz KG,et al.Serum S-100B and interleukin-8 as predictive markers for comparative neurological outcome analysis of patients after cardiac arrest and severe traumatic brain injury.Crit Care Med.2002;30:2669~2674.
    107 Geppert A,Zorn G,Delle-Karth G,et al.Plasma concentrations of van Willebrand factor and intracellular adhesion molecule-1 for prediction of outcome successful cardiopulmonary resuscitation.Crit Care Med.2003;31:805~811.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700