用户名: 密码: 验证码:
大气细颗粒物对大鼠胸主动脉收缩、舒张功能的影响及与NOS/NO通路的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:通过制备大鼠胸主动脉血管环,观察大气细颗粒物(PM_(2.5))水溶成分对大鼠离体胸主动脉血管收缩、舒张有无影响,进一步探讨对内皮细胞的影响机制。
     研究方法:Wistar雄性大鼠18只,分离胸主动脉制备内皮完整、去内皮血管环,进行下列研究:1.大气PM_(2.5)水溶成分对正常大鼠胸主动脉收缩功能的影响:观察大气PM_(2.5)(0μg/ml、10μg/ml、100μg/ml )对不同浓度苯肾上腺素(PE)引发内皮完整血管环或去内皮血管环收缩的影响;内皮完整血管环同时以超氧化物歧化酶(SOD)联合二甲基亚砜(DMSO)干预,探讨干预对大气PM_(2.5)水溶成分(100μg/ml)作用有无影响。2.大气PM_(2.5)水溶成分对正常大鼠胸主动脉舒张功能的影响:内皮完整血管环以10-6NE预收缩,观察大气PM_(2.5)(0μg/ml、10μg/ml、100μg/ml )对不同浓度乙酰胆碱(ACH)引起的内皮依赖性舒张作用的影响,同时以SOD联合DMSO干预,探讨干预对大气PM_(2.5)水溶成分(100μg/ml)作用有无影响。
     研究结果:1.不同浓度大气PM_(2.5)水溶成分对静息状态的血管环无直接影响。2. PE在10-5mol/L水平,100μg/ml组收缩率(%)为88.04±2.34,高于0μg/ml组(79.10±7.95)、10μg/ml组( 80.83±5.41 )、SOD+DMSO+PM100组( P<0.05或P<0.01 );L-NAME+PM100组收缩率( 96.80±2.21 )高于100μg/ml组( P<0.05 ),SOD+DMSO+PM100组收缩率和0μg/ml组间无显著性差异(P>0.05)。3. ACH在10-5mol/L水平时,PM_(2.5)100μg/ml引起的舒张率(%)为36.80±5.41,小于对照组、PM_(2.5)10μg/ml组(P<0.01),SOD+DMSO+PM_(2.5)100μg/ml组与对照组无差别(P >0.05)。
     研究结论:大气PM_(2.5)水溶成分可内皮依赖性地加强PE对血管环的收缩作用,减弱ACH所致的血管舒张作用,其机制可能与其通过氧化应激引起内皮细胞功能障碍有关。
     研究目的:探讨大气PM_(2.5)水溶成分静脉染毒后1h、6h,正常大鼠、动脉粥样硬化大鼠胸主动脉血管环在两个时间点收缩、舒张功能有无差别。
     研究方法:雄性Wistar大鼠60只,随机分为对照组、对照1h组、对照6h组、动脉硬化组、动脉硬化1h组、动脉硬化6h组,每组10只。染毒组以大气PM_(2.5)水溶成分(1ml/kg)尾静脉注射1h、6h后,分别以25%乌拉坦腹腔注射(0.4ml/100g)麻醉后,迅速开胸取大鼠胸主动脉,制备血管环,置于张力换能器进行实验。
     研究结果: 1.动脉粥样硬化大鼠模型成功制备。2.舒张功能比较:(1) ACH舒张: ACH在10-5mol/L水平(10-6mol/LNE预收缩),对照1h组舒张率(47.62±13.19)%与对照组(68.69±6.52)%、对照6h组(65.65±7.09)%相比下降(P<0.01);后两组舒张率无显著性差异( P>0.05);ACH在10-5mol/L水平(60mmol/LKCL预收缩),对照组、对照1h组、对照6h组三组间无显著性差异;ACH在10-5mol/L水平(10-6NE预收缩),与动脉硬化组相比动脉硬化1h组舒张率下降32.63%(P<0.01),动脉硬化6h组与动脉硬化组舒张率无显著性差异;ACH在10-5mol/L水平(60mmol/LKCL预收缩),动脉硬化1h组舒张率降低42.72%(P<0.001),动脉硬化6h组与动脉硬化组无显著性差异( P>0.05)。(2)硝普钠(SNP)舒张:SNP在10-5mol/L水平(10-6mol/LNE预收缩),对照1h组舒张率(77.34±9.60)%与对照组(93.62±3.26)%、对照6h组(82.52±6.16)%相比下降(P<0.01),后两组舒张率无显著性差异( P>0.05);正常组大鼠在60mmol/LKCL预收缩,三组间舒张率无显著性差异( P>0.05),动脉硬化大鼠在10-6mol/LNE、60mmol/LKCL预收缩,三组间也无显著性差异( P>0.05)。3.收缩功能比较:正常大鼠胸主动脉在不同PE浓度水平收缩,三组间收缩率无显著差异( P>0.05)。动脉硬化大鼠,PE在10-5mol/L水平,动脉硬化1h组收缩率为(76.06±19.86)%,高于动脉硬化组(54.13±17.44)%及动脉硬化6h组(44.80±12.64)%(P<0.05),后两组间无显著性差异( P>0.05)。
     研究结论:1.大气PM_(2.5)水溶成分静脉染毒正常大鼠、动脉粥样硬化大鼠1h后可引起两组大鼠主动脉舒张减弱、动脉粥样硬化大鼠主动脉收缩增强,6h后该作用减弱。2.大气PM_(2.5)水溶成分对血管的直接损害可能不仅仅限于血管内皮。
     研究目的:本研究拟通过大气PM_(2.5)经尾静脉急性染毒正常大鼠、动脉粥样硬化大鼠,以染毒后1h为观察作用点,探讨大气PM_(2.5)对大鼠血管内皮细胞NOS/NO系统表达的影响。
     研究方法: 40只健康Wistar雄性大鼠,适应性喂养1周后,随机分为4组,每组10只,分别为:对照组、对照1h组、动脉硬化组、动脉硬化1h组。12周造模成功后开始试验。对照1h组、动脉硬化1h组尾静脉注射大气PM_(2.5)水溶成分(1ml/kg)。尾静脉注射1h后25%乌拉坦腹腔注射(0.4ml/100g)麻醉试验大鼠,迅速行右侧颈动脉插管,同步记录血压波形与心电图波形。待血压波形平稳后截取10min血压波形与心电图波形,计算血压平均值、心率平均值。记录完毕腹主动脉采取动脉血制备血清标本,心脏停跳前迅速开胸暴露心脏,取出主动脉并固定、制备石蜡切片。标本制备好后进行相应指标测定。
     研究结果: 1.大气PM_(2.5)对正常大鼠、动脉粥样硬化大鼠血压、心率的影响:(1)正常组染毒后1h,收缩压较对照组增高,(141.12±13.55) mmHg vs (122.24±13.92)mmHg,P<0.05。动脉硬化组染毒后1h,收缩压较动脉硬化组降低,(112.86±20.38) mmHg vs (131.50±13.55)mmHg,P<0.05。(2)正常组染毒后1h,心率较对照组增高,(377.48±41.45)次/min vs (345.69±38.82)次/min,P<0.05。动脉硬化组染毒后1h,心率较动脉硬化组降低,(204.07±23.66)次/min vs( 238.46±32.14)次/min,P<0.05。2.大气PM_(2.5)对正常大鼠、动脉硬化大鼠血清各指标的影响:(1)正常组染毒后1h,血清NO水平较正常组降低, P<0.01;同样动脉硬化组染毒后1h,血清NO水平较动脉硬化组降低, P<0.05。(2)正常组染毒后1h,血清iNOS水平较正常组升高,P<0.01;同样动脉硬化组染毒后1h,血清iNOS水平较动脉硬化组升高,P<0.05。(3)血清eNOS水平各组间比较,无显著性差异,P>0.05。3.大气PM_(2.5)对正常大鼠、动脉硬化大鼠血管内皮、内皮下iNOS、eNOS、Nrf2蛋白表达的影响:(1)正常组染毒后1h,胸主动脉内皮及内皮下eNOS蛋白水平较正常组减少,P<0.05;动脉硬化组染毒后1h,胸主动脉内皮、内皮下eNOS蛋白较动脉硬化组减少, P<0.05。(2)正常组染毒后1h,胸主动脉内皮及内皮下iNOS蛋白水平较正常组增高,P<0.05。动脉硬化组染毒后1h,胸主动脉内皮下iNOS蛋白较动脉硬化组增高, P<0.05。(3)正常组染毒后1h,胸主动脉内皮及内皮下Nrf2蛋白水平较正常组增加,P<0.05。动脉硬化组染毒后1h,胸主动脉内皮下Nrf2蛋白水平较动脉硬化组表达增加,而内皮Nrf2蛋白水平较动脉硬化组无显著性差别,P>0.05。
     研究结论: 1.大气PM_(2.5)急性染毒引起正常大鼠、动脉粥样硬化大鼠血压、心率改变,其机制与血管内皮及内皮下管壁NOS/NO系统表达异常有关。2.动脉粥样硬化大鼠内皮细胞NOS/NO表达异常,大气PM_(2.5)进一步加剧了NOS/NO的异常表达,提示大气PM_(2.5)染毒更易引起动脉粥样硬化大鼠发生心血管事件。3.大气PM_(2.5)在引起内皮细胞氧化应激的同时,可能引起内皮细胞抗氧化系统的激活。
Objective: By preparation of endothelium rings of rat thoracic aortas, to observe the effects of WSC of Fine Particulate Materials (PM_(2.5)) on the contraction and relaxation in isolated rat thoracic aortas and to discuss its possible mechanisms to affect endothelial cells.
     Methods: Isolated thoracic aortas of 18 Wistar rats were prepared and subjected to the following experiments: 1.the effects of PM_(2.5) on the contraction of thoracic aortas in normal rats: the effects of 0μg/ml、10μg/ml、100μg/ml PM_(2.5) on the contraction of intact endothelium rings and denude endothelium rings induced by Phenylephrine(PE) at different concentrations; intact endothelium rings being pretreated with superoxide dismutase(SOD) combined with Dimethyl sulphoxide (DMSO), to discuss the influence of pretreatment on effects of 100μg/ml PM_(2.5). 2. the effects PM_(2.5) on the relaxation of thoracic aortas in normal rats: intact endothelium rings being pre-contracted with 10-6NE, to observe the effects of 0μg/ml、10μg/ml、100μg/ml PM_(2.5) on the relaxation of denude endothelium rings induced by ACH at different concentrations, and to discuss the influence of pretreatment with superoxide dismutase(SOD) combined with Dimethyl sulphoxide (DMSO) on effects of 100μg/ml PM_(2.5).
     Results:1. no direct effect of WSC for PM_(2.5) at different concentrations on endothelium rings in quiescent condition. 2. PE at 10-5mol/L, concentration rate as 88.04±2.34 for 100μg/ml, higher than 0μg/ml (79.10±7.95) or10μg/ml (80.83±5.41)and SOD+DMSO + PM100(P<0.05或P<0.01);concentration rate of L-NAME+PM100 (96.80±2.21) was higher than 100μg/ml (P<0.05),no significant difference for 0μg/ml and SOD+DMSO+ PM100 (P>0.05). 3. Ach at 10-5mol/L, relaxation rate induced by 100μg/ml PM_(2.5) was 36.80±5.41, lower than control. No significant differences were observed among 10μg/ml PM_(2.5) (P<0.01),SOD+DMSO +PM_(2.5)100μg/m and control group (P >0.05).
     Conclusions: PM_(2.5) can markedly promote contraction of PE to endothelium rings and weaken relaxation induced by ACH, with probable mechanism related to oxidative impairment in endothelial cells.
     Objective: to discuss the difference of concentration and relaxation of thoracic aortas endothelium rings of both normal rats and arteriosclerosis rats, at 1h and 6h after being injected with WSC of PM_(2.5).
     Methods: Male Wistar rats being randomly divided into control group, 1h control group, 6h control group, atherosclerosis group, 1h atherosclerosis group, 6h atherosclerosis group, 10 for each group. For exposure group, 1h or 6h after intravenous injection of WSC of PM_(2.5) (1ml/kg), anesthesia with peritoneal injection (0.4ml/100g) of 25% urethan, to prepare endothelium rings with thoracic aortas, put endothelium rings on tonotransducer.
     Results: 1.successfully prepare atherosclerosis rats models. 2.Comparation of relaxation (1) ACH relaxation: Compared to control group, 6h control group, Ach at 10-5mol/L (10-6MNE pretreatment), relaxation of 1h control group decreased with significant difference (P<0.001); no significant difference on relaxation rate for control group and 6h control group( P>0.05); Ach at 10-5mol/L (precontracted with 60mmol/LKCL), no significant difference among control group, 1h control group and 6h control group; Ach at 10-5mol/L (precontracted with 10-6MNE), compared to atherosclerosis group, relaxation rate of 1h atherosclerosis rats decreased by 32.63% (P<0.01),no significant difference on relaxation rate for 6h atherosclerosis group and atherosclerosis group; Ach at 10-5mol/L(precontracted with 60mmol/LKCL),relaxation rate of 1h atherosclerosis group decreased by 42.72%(P<0.001), no significant difference for 6h atherosclerosis group and atherosclerosis group( P>0.05). (2)SNP relaxation: SNP at 10-5mol/L(precontracted with 10-6MNE),compared to control group (relaxation rate (93.62±3.26)%) and 6h control group (relaxation rate (82.52±6.16)%), relaxation rate of 1h control group dropped to (77.34±9.60)%(P<0.01); no significant difference on relaxation between later groups ( P>0.05);rats in control group precontracted at 60mmol/LKCL, no significant difference on relaxation rate among three groups( P>0.05),atherosclerosis rats precontracted at 10-6MNE or 60 mmol/LKCL, also no significant difference among three groups(P>0.05). 3.comparation of contractile function: thoracic aortas of rats in control group contracted at different PE concentrations, no significant difference on contraction rate among three groups ( P>0.05); for atherosclerosis rats, PE at 10-5mol/L, contraction rate for 1h group was (76.06±19.86)%, higher than atherosclerosis group (54.13±17.44)% and 6h atherosclerosis group (44.80±12.64)% (P<0.05). No significant difference between later two groups ( P>0.05).
     Conclusions: For normal rats and atherosclerosis rats, 1h after intravenous injection with WSC of PM_(2.5), relaxation is weakened. In addition, for atherosclerosis rats 1h after intravenous injection with WSC of PM_(2.5), contraction is enhanced, which will be weakened 6h later. The impairment of WSC of PM_(2.5) to vascular functions is not only limited to vascular endothelium.
     Objective: With normal rats and atherosclerosis rats injected by vein in the tail with WSC of PM_(2.5), at the basis of 1h after injection, to discuss the effects of WSC of PM_(2.5) on NOS-NO system in the endothelial cells from rat thoracic aortas
     Methods: 40 healthy male Wistar rats, being acclimatized for one week, were divided randomly into 4 groups (10 for each group) as: control group, 1h control group, atherosclerosis group, 1h atherosclerosis group. Experiment was made 12 weeks later. Control group and atherosclerosis group were injected by vein in the tail with saline water (1ml/kg), 1h control group and 1h atherosclerosis group were injected by vein in the tail with WSC of PM_(2.5).. l hour after injection , rats were anesthetized with intraperitoneal injection of urethane(0.4ml/100g), carotid spiled on the right, recording waveform of blood pressure and electrocardiogram. Investigating and recording waveform of blood pressure, intercepting 10min of blood pressure and electrocardiogram when stable, to calculate the average of blood pressure and heart rate. After recording, to prepare serum with arterial blood from abdominal aorta, to expose heart before stop beating, to remove aorta to fix and prepare paraffin section. The relevant indicators should be tested after the preparation of specimen.
     Results: 1.Effects of PM_(2.5) on blood pressure and heart rate of normal rats and arteriosclerosis rats. (1) For 1h control group, systolic pressure was higher than control group, (141.12±13.55) mmHg vs (122.24±13.92)mmHg,P<0.05. For 1h arteriosclerosis group, systolic pressure was lower than arteriosclerosis group, (112.86±20.38) mmHg vs (131.50±13.55)mmHg,P<0.05. (2) For 1h control group, heart rate was higher than control group, (377.48±41.45)times/min vs (345.69±38.82) times /min,P<0.05. For 1h arteriosclerosis exposure group, heart rate was lower than arteriosclerosis group, (204.07±23.66)times/min vs( 238.46±32.14) times /min,P<0.05. 2. Effect of PM_(2.5) on each item of blood-serum in normal rats and arteriosclerosis rats. (1) For 1h control group, NO level of blood-serum was lower than control group P<0.01. For 1h arteriosclerosis group, NO level of blood-serum was lower than arteriosclerosis group, P<0.05. (2) For 1h control group, iNOS level of blood-serum was higher than control group P<0.01. For 1h arteriosclerosis group, iNOS level of blood-serum was higher than arteriosclerosis group, P<0.05. (3) No significant difference on eNOS level of blood-serum among several groups P>0.05. 3. Effect of PM_(2.5) on iNOS, eNOS, Nrf2 proteins on endothelium and the wall under endothelium of blood vessel in normal rats and arteriosclerosis rats. (1) For 1h control group, eNOS protein level of aorta was lower than control group P<0.05;for 1h arteriosclerosis group, eNOS protein of aorta was lower than arteriosclerosis group P<0.05. (2) For 1h control group, iNOs protein level of aorta was higher than control group P<0.05. For 1h arteriosclerosis group, iNOs protein level of the wall under endothelium was higher than arteriosclerosis group P<0.05. (3) For 1h control group, Nrf2 protein level of endothelium and the wall under endothelium in aorta was higher than control group, P<0.05. For 1h arteriosclerosis group, Nrf2 protein level of the wall under endothelium in aorta was higher than arteriosclerosis group, but no significant difference on Nrf2 protein level of endothelium with arteriosclerosis group, P>0.05.
     Conclusions: Active exposure of WSC of PM_(2.5) induces a change of blood pressure and heart rate in both normal rats and atherosclerosis rats, which is related to oxidative stress in mechanism. The disorder of NOS/NO is one of the mechanisms of impairment of PM_(2.5) on endothelial cells. PM_(2.5) further strengthens the disorder of NOS/NO of endothelial cells in atherosclerosis rats. PM_(2.5) induces the activation of antioxidation system in endothelial cells.
引文
[1] Brook RD, Franklin B, Cascio W, et al. Expert Panel on Population and Prevention Science of the American Heart Association. Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation, 2004,109(21): 2655~2671
    [2] Brunekreef B, Holgate ST. Air pollution and health.Lancet,2002,360(9341):1233~1242
    [3] Daniels MJ, Dominici F, Samet JM et al. Estimating particulate matter-mortality dose-response curves and threshold levels: an analysis of daily time-series for the 20 largest US cities. Am J Epidemio.l, 2000, 152 (5): 397~406
    [4] Dockery DW, Pope CA, Xu X, et al. An association between air pollution and mortality in six US cities. N Engl J Med,1993, 329(24): 1753~1759
    [5] Dominici F, Peng RD, Bell M L,et al. Fine particulate air pollution and hospital admission for cardiovascular and respiretory diseases. JAMA,2006,295(10):1127~1134
    [6] Hetland RB, Cassee FR, Lag M, et al. Cytokine release from alveolar macrophages exposed to ambient particulate matter: heterogeneity in relation to size, city and season. Particle Fibre Toxicol,2005, 2:4
    [7] Künzli N, Jerrett M, Mack WJ, et al. Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect,2005, 113(2):201~206
    [8] Nawrot TS, Torfs R, Fierens F, et al. Stronger associations between daily mortality and fine particulate air pollution in summer than in winter: evidence from a heavily polluted region in western Europe. J Epidemiol Community Health,2007, 61(2):146~149
    [9] Pope CA3rd, Burnett RT,Thurston GD, et al. Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease.Circulation,2004, 109(1):71~77
    [10] Pope CA3rd, Burnett RT, Thun MJ, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA,2002, 287(9):1132~1141
    [11] Samet JM, Dominici F, Curriero FC, et al. Fine particulate air pollution and mortality in 20 U.S. cities,1987–1994. N Engl J Med,2000, 343(24):1742~1749
    [12] Tony R.Call to boost research on particulates.Nature,1998,392(6677):642~642
    [13] Mills NL, Donaldson K, Hadoke PW, et al.Adverse cardiovascular effects of air pollution.Nat Clin Pract Cardiovasc Med, 2009,6(1):36~44
    [14] Pope CA 3rd, Ezzati M, Dockery DW. Fine-particulate air pollution and life expectancy in the United States. N Engl J Med,2009,360(4):376~386
    [15] Brook RD, Brook JR, Rajagopalan S. Air pollution: the“heart”of the problem. Current Hypertendion Reports, 2003,5(1):32~39
    [16]戴海夏,宋伟民.大气颗粒物健康效应生物学机制研究进展.环境与职业医学,2003,20(4):308~311
    [17]吕永达,霍仲厚.特殊环境生理学.北京:军事医学科学出版,2003:251~252
    [18] Laden F, Neas LM, Dockery DW,et al. Association of fine particulate matter from different sources with different sources with daily mortality in six cities. Environ Health Perspect, 2000, 108 (10): 941~947
    [19] Haber G, Witberg G, Danenberg H. Air pollution and cardiovascular disease. Harefuah, 2007, 46(10):738~743
    [20] Miller KA, Siscovick DS, Sheppard L, et al. Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med, 2007, 356(5): 447~458
    [21] Sun Q, Yue P, Kirk RI, et al.Ambient air particulate matter exposure and tissue factor expression in atherosclerosis.Inhal Toxicol,2008,20(2):127~137
    [22] Lonati G, Giugliano M, Ozgen S. Primary and secondary components of PM2.5 in Milan (Italy). Environ Int,2008,34(5):665~670
    [23] Dominici F,Peng RD,Bell ML,et al.Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA, 2006,295(10):1127~1134
    [24] Pope CA 3rd,Muhlestein JB, May HT,et al.Ischemic heart disease events triggered by short- term exposure to fine particulate air pollution. Circulation, 2006, 114(23): 2443~2448
    [25] Nel A. Atmosphere. Air pollution-related illness: effects of particles. Science, 2005, 308(5723): 804~806
    [26] Ito T, Suzuki T, Tamura K, et al.Examination of mRNA expression in rat hearts and lungs for analysis of effects of exposure to concentrated ambient particles on cardiovascular function. Toxicology,2008,243(3):271~283
    [27] Gong KW, Zhao W, Li N, et al. Air-pollutant chemicals and oxidized lipids exhibit genome-wide synergistic effects on endothelial cells. Genome Biol, 2007,8(7):R149
    [28] Mann GE, Niehueser-Saran J, Watson A, et al. Nrf2/ARE regulated antioxidant gene expression in endothelial and smooth muscle cells in oxidative stress: implications for atherosclerosis and preeclampsia. Sheng Li Xue Bao,2007,59(2):117~127
    [29] Wu CC, Hsieh CW, Lai PH, et al. Upregulation of endothelial heme oxygenase-1 expression through the activation of the JNK pathway by sublethal concentrations of acrolein. Toxicol Appl Pharmacol, 2006,214(3):244~252
    [30]胡婧,邓芙蓉,郭新彪.大气细颗粒物对心肌细胞缝隙连接通讯的影响.环境与健康杂志,2008,25(7):565~568
    [31]赵金镯,钱孝琳,蒋蓉芳,等.肺灌注PM2.5对高血压大鼠心血管系统的炎性作用.环境与健康杂志,2007,24(8):567~570
    [32]张蕴晖,丁佳玮,曹慎等.大气细颗粒物PM2.5对心血管内皮细胞NOS的影响.环境科学学报,2006,26(1):142~145
    [33]孟紫强,张全喜.沙尘暴PM2.5对大鼠肺、心、肝组织的氧化损伤效应.卫生研究,2006,35(6):690~693
    [34] Johnson PR, Graham JJ. Analysis of primary fine particle national ambient air quality standard metrics. J Air Wasre Mang Assoc,2006,56(2):206~218
    [35]王玮,汤大钢,刘红杰,等.中国PM2.5污染状况和污染特征的研究.环境科学研究,2000, 13(1):1~5
    [36] BagatéK, Meiring JJ, Cassee FR, et al. The effect of particulate matter on resistance and conductance vessels in the rat. Inhal Toxicol,2004 ,16(6-7):431~436
    [37] Knaapen AM, den Hartog GJ, Bast A, et al. Borm PJ.Ambient particulate matter induces relaxation of rat aortic rings in vitro.Hum Exp Toxicol,2001,20(5):259~265
    [38] Cheng YW, Kang JJ.Inhibition of agonist-induced vasocontraction and impairment of endothelium - dependent vasorelaxation by extract of motorcycle exhaust particles in vitro. J Toxicol Environ Health A, 1999,57(2):75~87
    [39] Peretz A, Sullivan JH, Leotta DF, et al.Diesel exhaust inhalation elicits acute vasoconstriction in vivo. Environ Health Perspect, 2008,116(7):937~942
    [40] Campen MJ, Babu NS, Helms GA, et al. Nonparticulate components of diesel exhaust promote constriction in coronary arteries from ApoE-/- mice.Toxicol Sc, 2005,88(1):95~102
    [41] Tzeng HP, Yang RS, Ueng TH,et al. Motorcycle exhaust particulates enhance vasoconstriction in organ culture of rat aortas and involve reactive oxygen species. Toxicol Sci, 2003,75(1):66~73
    [42] Sun Q, Yue P, Ying Z, et al. Air pollution exposure potentiates hypertension through reactive oxygen species-mediated activation of Rho/ROCK.Arterioscler. Thromb Vasc Biol, 2008, 28(10): 1760~1766
    [43] Ikeda M, Suzuki M, Watarai K, et al. Impairment of endothelium– dependent relaxation by diesel exhaust particles in rat thoracic aorta. Jpn J Pharmacol,1995, 68(2):183~189 A19
    [44] Hiura TS, Kaszubowski MP, Li N, et al. Chemicals in diesel exhaust particles generate reactive oxygen radicals and induce apoptosis in macrophages.J Immunol.1999,163(10): 5582~5591
    [45] Fang SC, Cavallari JM, Eisen EA,et al. Vascular function, inflammation, and variations in cardiac autonomic responses to particulate matter among welders. Am J Epidemiol, 2009, 169(7):848~856
    [46] Rossner P Jr, Svecova V, Milcova A,et al. Oxidative and nitrosative stress markers in bus drivers. Mutat Res, 2007,617(1-2):23~32
    [47] Gius D, Botero A, Shah S, et al.Intracellular oxidation reduction status in the regulation of transcription factors NF-kappaB and AP-1. Toxicol Lett, 1999, 106(2-3):93~106
    [48] Xiao GG, Wang M, Li N, et al.Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line. J Biol Chem,2003,278(50):50781~50790
    [49] Gabelova A, Valovicova Z, Labaj J, et al.Assessment of oxidative DNA damage formation by organic complex mixtures from airborne particles PM(10). Mutat Res, 2007,620(1-2):135~144
    [50] Bernhard D, Rossmann A, Henderson B, et al. Increased serum cadmium and strontium levels in young smokers: effects on arterial endothelial cell gene transcription.Arterioscler Thromb Vasc Biol, 2006,26(4):833~838
    [51]陈瑗,周玫主编.自由基医学基础与病理生理.北京:人民卫生出版社,2002
    [52]陈瑗,周玫主编.自由基与衰老.北京:人民卫生出版社,2004
    [53]海春旭,冯安吉主编.自由基医学.西安:第四军医大学出版社,2006
    [54] Wietlisbach V, Pope CA 3rd, Ackermann-Liebrich U. Air pollution and daily mortality in three Swiss urban areas.Soz Praventivmed, 1996,41(2):107~115
    [55] Ohyama M, Otake T, Adachi S,et al. A comparison of the production of reactive oxygen species by suspended particulate matter and diesel exhaust particles with macrophages. Inhal Toxicol, 2007,19 Suppl1:157~160
    [56] Nemmar A, Hoet PH, Vanquickenborne B, et al. Passage of inhaled particles into the blood circulation in humans. Circulation, 2002, 105(4):411~414
    [57] Nemmar A, Vanbilloen H, Hoylaerts MF, et al. Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am. J. Respir, 2001,164(9): 1665~1668
    [58] Niwa Y, Hiura Y, Sawamura H, et al. Inhalation exposure to carbon black induces inflammatory response in rats. Circ J, 2008,72(1):144~149
    [59] Oberd?rster G, Sharp Z, Atudorei V, et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J. Toxicol. Environ. Health, 2002, 65(20):1531~1543
    [60] Costa DL, Dreher KL. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environ Health Perspect,1997,105 Suppl 5:1053~1060
    [61] Huang YC, Ghio AJ, Stonehuerner J, et al. The role of soluble components in ambient fine particles induced changes in human lungs and blood. Inhal Toxicol, 2003,15(4):327~342
    [62] Nemmar A, Inuwa IM. Diesel exhaust particles in blood trigger systemic and pulmonary morphological alterations. Toxicol Lett,2008,176(1):20~30
    [63] Nurkiewicz TR, Porter DW, Hubbs AF, et al. Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Part Fibre Toxicol,2008, 5:1
    [64] Hansen CS, Sheykhzade M, M?ller P,et al. Diesel exhaust particles induce endothelial dysfunction in apoE-/- mice.Toxicol Appl Pharmacol,2007,15; 219(1): 24~32
    [65] Mills NL, T?rnqvist H, Gonzalez MC, et al. Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N Engl J Med, 2007, 13;357(11):1075~1082
    [66]药红梅.PM2.5致冠状动脉粥样硬化大鼠ACS的可能机制及Atorvastatin的干预作用:[博士学位论文].山西:山西医科大学,2007
    [67]秦纲,吕吉元.大气细颗粒物与心血管疾病研究进展.中华心血管病杂志,2008,36(2):187~189
    [68] Wold LE, Simkhovich BZ, Kleinman MT, et al. In vivo and in vitro models to test the hypothesis of particle-induced effects on cardiac function and arrhythmias. Cardiovasc Toxicol, 2006,6(1):69~78
    [69] Xiao GG, Wang M, Li N, Loo JA, Nel AE. Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line. J Biol Chem. 2003,278(50): 50781~50790
    [70] Chahine T, Baccarelli A, Litonjua A, et al.Particulate air pollution, oxidative stress genes, and heart rate variability in an elderly cohort. Environ Health Perspect, 2007 , 115(11):1617~1622
    [71] Nemmar A, Hamoir J, Nemery B,et al. Evaluation of particle translocation across the alveolo-capillary barrier in isolated perfused rabbit lung model. Toxicology,2005, 208(1): 105~113
    [72] Schulz H, Harder V, Ibald-Mulli A, et al. Cardiovascular effects of fine and ultrafine particles. J Aerosol Med, 2005,18(1):1~22
    [73] Peters A, von Klot S, Heier M, et al. Exposure to traffic and the onset of myocardial infarction. N Engl J Med, 2004, 351(17): 1721~1730
    [74] Mills NL, T?rnqvist H, Robinson SD,et al. Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation,2005,112(25):3930~3936
    [75] T?rnqvist H, Mills NL, Gonzalez M, et al.Persistent endothelial dysfunction in humans after diesel exhaust inhalation. Am J Respir Crit Care Med, 2007,176(4): 395~400
    [76] O'Neill MS, Veves A, Zanobetti A, et al. Diabetes enhances vulnerability to particulate air pollution-associated impairment in vascular reactivity and endothelial function. Circulation, 2005,111(22): 2913~2920
    [77] Moi P, Chan K, Asunis I, et al.Isolation of NF-E2-related factor 2 (Nrf2), a NF- E2 -like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region.Proc Natl Acad Sci USA,1994,91(21):9926~9930
    [78] Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol,2007, 47:89~116
    [79] Nguyen T, Yang CS , Pickett CB. The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress . Free Radic Biol Med , 2004 , 37(4) : 433~441
    [80] Br?uner EV, M?ller P, Barregard L, et al.Exposure to ambient concentrations of particulate air pollution does not influence vascular function or inflammatory pathways in young healthy individuals. Part Fibre Toxicol, 2008,5:13
    [81] Li N , Venkatesan MI , Miguel A , et al. Induction of heme oxygenase-1 expression in macrophages by diesel exhaust particle chemicals and quinones via the antioxidantresponsive element . J Immunol ,2000 ,165(6): 3393~3401
    [82] Williams MA, Rangasamy T, Bauer SM,et al. Disruption of the transcription factor Nrf2 promotes prooxidative dendritic cells that stimulate Th2-like immunoresponsiveness upon activation by ambient particulate matte. J Immunol. 2008 ,181(7):4545~4559
    [83] Rubio V, Valverde M, Rojas E. Effects of atmospheric pollutants on the Nrf2 survival pathway. Environ Sci Pollut Res Int, 2009 Apr 15. [Epub ahead of print]
    [84] Jesus A, Araujo, Berenice Barajas, et al.Ambient Particulate Pollutants in the Ultrafine Range Promote Early Atherosclerosis and Systemic Oxidative Stress.Circ Res, 2008,102(5):589~596
    [85] Ying Z, Kampfrath T, Thurston G, et al. Ambient Particulates Alter Vascular Function through Induction of Reactive Oxygen and Nitrogen Species .Toxicol Sci, 2009 Apri 15. [Epub ahead of print]
    [86] Brandes RP, Kreuzer J. Vascular NADPH oxidases: molecular mechanisms of activation. Cardiovasc Res,2005,65(1):16~27
    [87] Dietrich M, Block G, Hudes M, et al.Antioxidant supplementation decreases lipid peroxidation biomarker F(2)-isoprostanes in plasma of smokers. Cancer Epidemiol Biomarkers Prev, 2002, 11(1): 7~13
    [88] Annuk M, Zilmer M, Fellstrom B. Endothelium-dependent vasodilation and oxidative stress in chronic renal failure : Impact on cardiovascular disease. Kidney Int Suppl,2003,84:S50~53
    [89] Skultetyova D,Filipova S,Riecansky I,et al.Endothelial dysfunction and the clinical application. Bratisl Lek Listy,2003,104(1) :40~41
    [90] Ross R. The pathogenesis of atherosclerosis : a perspective for the 1990s. Nature, 1993, 362(6423): 801~809
    [91] Sch?chinger V, Zeiher AM.Atherosclerosis-associated endothelial dysfunction. Z Kardiol. 2000, 89 Suppl 9:IX/70~74
    [92] Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature,1980,288(5789):373~376
    [93] Martin W, Furchgott RF, Villani GM, et al.Depression of contractile responses in rat aorta by spontaneously released endothelium-derived relaxing factor.J Pharmacol Exp Ther,1986, 237 (2): 529~538
    [94] Martin W, Furchgott RF, Villani GM, et al.Phosphodiesterase inhibitors induce endothelium -dependent relaxation of rat and rabbit aorta by potentiating the effects of spontaneously released endothelium-derived relaxing factor.J Pharmacol Exp Ther. 1986, 237(2): 539~547
    [95] Chatterjee A, Catravas JD. Endothelial nitric oxide (NO) and its pathophysiologic regulation.Vascul Pharmacol, 2008,49(4-6):134~140
    [96] Ischiropoulos H,al-Mehdi AB.Peroxynitrite-mediated oxidative protein modifications. FEBS Lett, 1995,364(3):279~282
    [97] Lafond-Walker A, Chen CL, Augustine S,et al. Inducible nitric oxide synthase expression in coronary arteries of transplanted human hearts with accelerated graft arteriosclerosis. Am J Pathol, 1997, 151(4):919~925
    [98] Poppa V, Miyashiro JK, Corson MA, et al. Endothelial NO synthase is increased in regenerating endothelium after denuding injury of the rat aorta. Arterioscler Thromb Vasc Biol, 1998, 18(8): 1312~1321
    [99] Bauersachs J, Sch?fer A. Tetrahydrobiopterin and eNOS dimer/monomer ratio--a clue to eNOS uncoupling in diabetes. Cardiovasc Res,2005,65(4):768~769
    [100] Stanger O, Weger M. Interactions of homocysteine, nitric oxide, folate and radicals in the progressively damaged endothelium. Clin Chem Lab Med,2003,41(11):1444~1454
    [101] Marsden PA,Heng HH,Duff CL,et a1. Localization of the human gene for inducible nitric oxide synthase (NOS2) to chromosome17ql1-q12.Genomics, 1994,19(1):l83~185
    [102] Wang Y, Marsden PA. Nitric oxide synthases: biochemical and molecular regulation.Curr Opin Nephrol Hypertens, 1995, 4(1):12~22
    [103] Kr?ncke KD,Fehsel K,Kolb-Bachofen V.Nitric oxide: cytotoxicity versus cytoprotection-- how, why, when, and where? Nitric Oxide, 1997,1(2):107~120
    [104] Weyrich AS, Ma XL, Buerke M, et al. Physiological concentrations of nitric oxide do not elicit an acute negative inotropic effect in unstimulated cardiac muscle.Circ Res, 1994, 75(4): 692~700
    [105] Yasmin W, Strynadka KD, Schulz R. Generation of peroxynitrite contributes to ischemia -reperfusion injury in isolated rat hearts. Cardiovasc Res, 1997,33(2):422~432
    [106] Zanobetti A, Schwartz J, Sher D, et al. Blood pressure and heart rate associated with PM2.5 in a cardiac rehabilitation study [Abstract]. In: Abstracts of the 98th International Conference of the American Thoracic Society,Atlanta,GA:American Thoracic Society,2002. Available: http://www. abstracts-on-line. com/ abstracts/ATS
    [107] Gong H, Linn WS, Terrell S, et al. Controlled exposures of healthy and asthmatic volunteers to concentrated ambient fine particles in Los Angeles. Inhal Toxicol, 2003,15(4):305~325
    [108] Ibald-Mulli A, Timonen KL, Peters A, et al.Effects of particulate air pollution on blood pressure and heart rate in subjects with cardiovascular disease: a multicenter approach. Environ Health Perspect, 2004,112(3):369~377
    [109] Naseem KM. The role of nitric oxide in cardiovascular diseases. Mol Aspects Med, 2005, 26(1-2):33~65
    [110] Negro R. Endothelial effects of antihypertensive treatment: focus on irbesartan. Vasc Health Risk Manag, 2008,4(1):89~101
    [1] Reichhardt T. Call to boost research on particulates. Nature,1998,392(6677):642~642
    [2] Brook RD, Franklin B, Cascio W,et al. Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation. 2004, 109(21): 2655~2671
    [3] Pope CA 3rd, Ezzati M, Dockery DW. Fine-particulate air pollution and life expectancy in the United States. N Engl J Med,2009,360(4):376~386
    [4] Schwartz J, Laden F, Zanobetti A. The concentration-response relation between PM2.5 and daily deaths. Environ Health Perspect,2002,110(10):1025~1029
    [5] Wichmann HE,Spix C,Tuch T,et al. Daily mortality and ultrafine particles in Erfurt. Germany: role of particle number and particle mass.Res Rep Health Eff Inst,2000,(98):5~86
    [6] Johnson PR, Graham JJ. Analysis of primary fine particle national ambient air quality standard metrics. J Air Wasre Mang Assoc.2006,56(2):206~218
    [7]钱孝琳,阚海东.大气颗粒物污染对心血管系统影响的流行病学研究进展.中华流行病学杂志,2005,25(12):999~1001
    [8] Dominici F, Peng RD, Bell ML,et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases.JAMA.2006,295(10):1127~1134
    [9] Pope CA 3rd,Muhlestein JB, May HT, et al. Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution. Circulation,2006,114(23):2443~2448
    [10] Nawrot TS, Torfs R, Fierens F, et al. Stronger associations between daily mortality and fine particulate air pollution in summer than in winter: evidence from a heavily polluted region in western Europe. J Epidemiol Community Health. 2007,61(2):146~149
    [11] Hetland RB, Cassee FR, Lag M, et al. Cytokine release from alveolar macrophages exposed to ambient particulate matter: heterogeneity in relation to size, city and season. Particle Fibre Toxicol ,2005, 2:4
    [12] Dockery DW, Pope CA, Xu X, et al. An association between air pollution and mortality in six US cities. N Engl J Med, 1993,329(24):1753~1759
    [13] Pope CA 3rd, Burnett RT, Thun MJ,et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution.JAMA,2002,287(9):1132~1141
    [14] Sun Q, Wang A,Ximei J,et al. Long-term Air Pollution Exposure and Atherosclerosis and Vascular Inflammation in an Animal Model.JAMA,2005,294(23):3003~3010
    [15] Ostro B, Feng WY, Broadwin R, et al. The Effects of Components of Fine Particulate Air Pollution on Mortality in California: Results from CALFINE. Environ Health Perspect. 2007,115(1):13~19
    [16] Gurgueira SA, Lawrence J, Coull B, et al. Rapid increases in the steady state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ HealthPerspect,2002,110(8):749~755
    [17] Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular disease. J Hypertens,2000,18(6):655~673
    [18] Sorensen M,Daneshvar B,Hansen M, et al. Personal PM2.5 exposure and markers of oxidative stress in blood. Environ Health Perspect,2003,111(2):161~166
    [19] Diez Roux AV, Auchincloss AH, Astor B,et al. Recent exposure to particulate matter and C-reactive protein concentration in the multi-ethnic study of atherosclerosis.Am J Epidemiol, 2006, 164 (5): 437~448
    [20] Pozzi R, De Berardis B, Paoletti L,et al. Inflammatory mediators induced by coarse (PM2.5-10) and fine (PM2.5) urban air particles in RAW 264.7 cells.Toxicology,2003,183(1-3):243~254
    [21] Hansen CS, Sheykhzade M, Moller P,et al. Diesel exhaust particles induce endothelial dysfunction in ApoE-/- mice.Toxicol Appl Pharmacol,2007,219(1):24~32
    [22] Rückerl R, Phipps RP, Schneider A, et al.Ultrafine particles and platelet activation in patients with coronary heart disease–results from a prospective panel study. Part Fibre Toxicol,2007,4:1
    [23] Alfaro-Moreno E, López-Marure R, Montiel-Dávalos A ,et al.E-Selectin expression in human endothelial cells exposed to PM10: the role of endotoxin and insoluble fraction. Environ Res, 2007, 103(2):221~228
    [24] Utell MJ, Frampton MW, Zareba W, et al. Cardiovascular effects associated with air pollution: potential mechanisms and methods of testing.Inhal Toxicol, 2002,14(12): 1231~1247
    [25] Park SK, O'Neill MS, Vokonas PS, et al.Effects of air pollution on heart rate variability: the VA normative aging study.Environ Health Perspect,2005,113(3):304~309
    [26] Chuang KJ, Chan CC, Su TC,et al. The effect of urban air pollution on inflammation, oxidative stress, coagulation,and autonomic dysfunction in young adults. Am J Respir Crit Care Med, 2007, 176 (4): 370~376
    [27] Zanobetti A, Schawart J. Are diabetics more susceptible to the health effects of airborne particles? Am J Respir Crit Care Med,2001,164(5):831~833
    [28] Skultetyova D , Filipova S , Riecansky I ,et al. Endothelial dysfunction and the clinical application. Bratisl Lek Listy ,2003 ,104 (1) :40~41
    [29] Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature,1980,288(5789):373~376
    [30] Yarnagisava M,Kurhara H ,Kimurs S , et al . A novel potent vasoconstrictior peptide produced by vascular endothelia1. Cells Nature ,1988 ,332 (6163) :411~415
    [31] de Gasparo M. Angiotensin II and nitric oxide interaction . Heart Fail Rev ,2002 ,7 (4) :347~358
    [32] Jugdutt BI. Nitric oxide and cardioprotection during ischemia-reperfusion. Heart Fail Rev, 2002 , 7(4) :391~405
    [33] Sagach V, Bondarenko A, Bazilyuk O,et al. Endothelial dysfunction: Possible mechanisms and ways of correction. Exp Clin Cardiol,2006,11(2):107~110
    [34] Gao Y, Liu C, Zhang X, et al. Circulating endothelial cells as potential markers of atherosclerosis. Can J Neurol Sci, 2008,35(5):638~642
    [35] Patel SH, Tsang J, Harbers G, et al.Endothelial cell function on a poly (acrylamide -co- polyethylene acid) interpenetrating polymer network: cardiovascular applications.Conf Proc IEEE Eng Med Biol Soc, 2004,7:5040~5043
    [36] Puranik R,Celermajer DS. Smoking and endothelial function. Prog Cardiovasc Dis, 2003 , 45(6) : 443~584
    [37] Ali-Raza J ,Movahed A. Current concepts of cardiovascular diseases in diabetes mellitus. Int J Cardiol ,2003 ,89(223) :123~134
    [38] Woodman CR, Price EM, Laughlin MH. Selected contribution: aging impairs nitric oxide and prostacyclin-mediation of endothelium-dependent dilation in soleus feed arteries. J Appl Physiol, 2003, 95(5) :2164~2170
    [39] Shah SV, Alam MG. Role of iron in atherosclerosis. Am J Kidney Dis,2003, 41 (3 suppl 1) : S80~S83
    [40] Handy DE, Loscalzo J. Homocysteine and atherothrombosis: diagnosis and treatment. Curr Atheroscler Rep ,2003 ,5 (4) :276~283
    [41] Lei YC, Hwang JS, Chan CC, et al. Enhanced oxidative stress and endothelial dysfunction in streptozotocin-diabetic rats exposed to fine particles. Environ Res, 2005,99(3):335-343
    [42] Poredos P. Endothelial dysfunction in the pathogenesis of atherosclerosis.Int Angiol , 2002 , 21 (2) : 109~116
    [43] Vita JA , Keaney J F. Endothelial function : a barometer for cardiovascular risk? Circulation , 2002 , 106 :640
    [44] Faulx MD ,Wright AT , Hoit BD. Detection of endothelial dysfunction with brachial artery ultrasound scanning. Am Heart J ,2003 ,145(6) :943~951
    [45] Laufs U , Gertz K,Dirnagl U,et al. Rosuvastatin ,a new HMG-CoA reductase inhibitor, upregulates endothelial nitric oxide synthase and protects from ischemic stroke in mice. Brain Res, 2002, 942 (1-2) :23~30
    [46] Woodman OL. Pharmacological approaches to preserving and restoring coronary endothelial function. Expert Opin Pharmacother ,2001 ,2(11) :1765~1775
    [47] de Gennaro-Colonna V ,Rossoni G,Rigamonti A,et al. Enalapril and quinapril improve endothelial vasodilator function and aortic eNOS gene expression in L-NAME-treated rats.Eur J Pharmacol , 2002 ,450(1) :61~66
    [48] Negro R. Endothelial effects of antihypertensive treatment: focus on irbesartan..Vasc Health Risk Manag,2008,4(1):89~101
    [49] Yao EH, Fukuda N, Matsumoto T, et al. Losartan improves the impaired function of endothelial progenitor cells in hypertension via an antioxidant effect.Hypertens Res. 2007,30(11): 1119~1128
    [50] Cianchetti S, Del Fiorentino A, Colognato R,et al. Anti-inflammatory and anti-oxidant properties of telmisartan in cultured human umbilical vein endothelial cells. Atherosclerosis. 2008, 198(1):22~28
    [51] Rodriguez JA ,Grau A ,Eguinoa E ,et al. Dietary supplementation with vitamins C and E prevents downregulation of endothelial NOS expression in hypercholesterolemia in vivo and in vitro. Atherosclerosis ,2002 ,165(1) :33~40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700