用户名: 密码: 验证码:
EW75镁合金大气腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金的主要服役环境为大气环境,因此镁合金大气腐蚀最为普遍。研究镁合金的大气腐蚀行为,了解不同环境中镁合金的腐蚀特性和腐蚀规律,对合理选用防护措施,延长设备和构件的使用寿命,减少经济损失,有重要的理论意义和广泛的应用价值。目前镁合金大气腐蚀的研究手段单一,可靠性差。本论文就镁合金大气腐蚀研究方面的不足,通过分析水溶性无机盐、相对湿度、C02浓度、氧化膜致密度系数(PBR)对不同状态EW75镁合金腐蚀行为的影响规律,结合大气腐蚀模拟实验和大气暴露实验,揭示腐蚀机理,为开发新型耐蚀镁合金以及确定防护工艺提供了可靠的科学依据。
     设计研制镁合金大气腐蚀模拟实验箱,通过控制箱体内的温度、湿度、腐蚀气体浓度、无机盐种类与浓度,保持实验周期不变,模拟真实大气环境对EW75镁合金腐蚀行为的影响,有效改进传统盐雾实验的不足,可以更加准确的掌握合金在自然大气环境中的服役状态。
     研究了大气环境中代表性水溶性无机盐Ca(NO3)2、NaCl、(NH4)2SO4对EW75合金腐蚀行为的影响规律。EW75合金的平均腐蚀失重顺序为:Ca(NO3)2     研究了相对湿度和Co2浓度对EW75合金腐蚀行为的影响规律,探索难溶性腐蚀产物膜对基体的防护机理,进行双因素相关度分析。RH=40%时,随着Co2浓度增加,腐蚀失重速率和力学性能损失量均增大,但合金表面腐蚀程度相对轻微;RH=70%时,Co2浓度增大,合金腐蚀加剧,但腐蚀程度远大于RH=40%的样品。RH=90%时,随着C02浓度增加,合金腐蚀程度出现先增大后减小的趋势(拐点处C02=800ppm)。相同C02浓度下合金腐蚀顺序为:RH40%F0.0001(2,6),FB=0.08750816>Fo.0001(3,6),2个因素影响均十分显著,且相对湿度的影响大于Co2浓度。EW75合金生产、存储及服役过程中,为了减小Co2的腐蚀作用,应该尽可能降低环境相对湿度(人工除湿)。
     模拟EW75合金在北京站和青岛站腐蚀不同时间。模拟北京站时效态合金的腐蚀失重速率曲线为:Y=A+B,*X+B2*X2+B3*X3, A=-5.60973, Bi=1.04291, B2=-0.01687,B3=1.17699×10-,相关系数为0.99251;模拟青岛站曲线为:Y=A+B1*X+B2*X2+B3*X3,A=-4.79713, B,=1.20479, B2=-0.01924, B3=1.31504×10-4,相关系数为0.99161,其中1≤x≤72。拟合曲线的系数均接近于1,相关性良好。
     进行EW75合金北京站和青岛站大气暴露实验。北京站腐蚀12个月,时效态、挤压态、固溶态挂片样品的平均腐蚀失重速率分别为42.4444,19.1833,18.4444g.m-2;时效态、挤压态、固溶态拉伸样品的平均剩余抗拉强度分别为365,306,290MPa。青岛站腐蚀12个月,时效态、挤压态、固溶态挂片样品的平均腐蚀失重速率分别为55.9334,25.7833,22.0389g-m-2;时效态、挤压态、固溶态拉伸样品的平均剩余抗拉强度分别为347,305,275MPa。2个站点不同状态的EW75合金大气暴露腐蚀程度顺序均为:北京站<青岛站。
     分析2个站点的大气暴露实验的腐蚀产物。时效态合金经过6个月大气暴露,2个站点腐蚀产物都含有Mg(oH)2和MgS04,但北京站MgS04峰强度高于青岛站,青岛站产物中出现MgC12衍射峰;经过12个月大气暴露,2个站点的Mg(OH)2衍射峰减弱,MgS04和MgC12衍射峰的增强,北京站出现MgS04"4H20衍射峰。合金在大气环境中的腐蚀过程,由水蒸汽吸附、腐蚀气体和水溶性无机盐在水膜中的溶解、合金表面电化学反应、表面干湿交替组成,这四个过程在合金表面交替发生,相互促进,最终使基体发生严重腐蚀。
     进行时效态AZ80、ZK60、EW75与铍青铜形成电偶对的大气电偶腐蚀实验。AZ80、ZK60. EW75电偶腐蚀的平均失重速率为3.0667g·m-2,5.6833g·m-2,6.5667g·m-2,其顺序为:AZ80     根据PBR理论,通过公式计算镁合金中常见金属间化合物被氧化后形成的氧化膜致密度系数。Mg12Nd和Mg24Y5氧化膜PBR在1-2之间,能对合金基体起到保护作用,Mg3Gd和MgNi2氧化膜PBR在2-3之间,存在压应力,Mg17Al12,MgZn2, Mg3Sb2,MgCu2,Mg2Ca,Mgl2Ce,MgAg,Mg2Si氧化膜PBR小于1存在张应力,对合金基体保护作用有限。
     通过T5、T6态EW75合金氧化膜对基体的作用,论证PBR理论。T5、T6态氧化膜厚度分别为0.6μm和10μm,PBR分别为1.1692和1.3440,氧化膜主要元素组成为O、Mg、Y、Nd、Gd。氧化膜致密性良好,腐蚀性介质很难透过接触基体。在实际合金开发过程中,设计成分使合金中形成氧化后PBR大于1的金属间化合物,便可以对合金直接加工成型,然后再进行热处理,该过程中合金表面形成的保护性复合氧化膜,能对减少防护工艺和降低成本起到重要的作用。
Magnesium alloys as structural materials are widely application in the atmospheric environment, resulted that the corrosion phenomenon is widespread. In order to prolong life of the magnesium alloys, atmospheric corrosion behaviors in different environments were researched to select reasonable protections. However, the current research methods are simple and unreliable, which are lack of many important influence factors. Thus, in this study, effects of inorganic salts, relative humidity, carbon dioxide and PBR on the corrosion behaviors of EW75alloys were researched by atmospheric exposure and accelerated corrosion experiments. The results of this investigation may guide the development of new corrosion-resistance alloys and find wider applications for magnesium alloys in atmospheric environments.
     The atmospheric corrosion experiment equipment was designed to simulate the corrosion behaviors of EW75alloys by controlling the temperature, relative humidity, carbon dioxide, inorganic salts. This research improved the shortage of the traditional salt fog testing effectively, which will analyze the atmospheric corrosion conditions for magnesium alloys precisely.
     The effect of NH4SO4, NaCl and Ca(NO3)2on corrosion behaviors of EW75alloys were investigated. The weight loss and residual mechanical properties indicated that the corrosion order was NH4SO4>NaCl>Ca(NO3)2. The radiuses of Ca2+and NO3-are99and121pm, respectively. They will pass through the product films to Mg substrate easily to form the alkaline Ca(OH)2, which will protect the alloy from corrosion. The Cl-(130pm) adsorbed into the product films to instead the location of H2O, OH-and O2-, reducing the corrosion reaction activation energy. Furthermore, Cl-accelerated the electron transfer process and increased the corrosion current density, so the corrosion in NaCl was serious. NH4+hydrolyzed to produce H+(1.2pm), which reached the a-Mg substrate easily and caused serious corrosion. Additionally, the Mg(OH)2changed to the soluble MgSO4, so the corrosion degree in (NH4)2SO4was the most serious. The radiuses of NH4+and SO42-are 148and295pm, respectively, therefore corrosion pits on the surface of alloy in (NH4)2SO4were relatively larger.
     The effects of relative humidity and carbon dioxide on the corrosion behaviors of EW75alloys were researched. When relative humidity equaled40%, both the weight and mechanical strength were obviously reduced with increasing of carbon dioxide. The EW75alloys corrode only a little area on the surface. When the relative humidity equaled70%, the corrosion degree was larger. When the relative humidity equaled90%, the corrosion degree increased and then decreased when the concentration of the carbon dioxide was more than800ppm. The specimens could be arranged in corrosion rates order:RH40%F0.0001(2,6), FB=0.08750816>F0.0001(3,6). Both the relative humidity and concentrations of carbon dioxide played an important influence on the corrosion behaviors of EW75alloys. In order to control the corrosion of CO2for EW75alloys during production, storage and application, relative humidity should be reduced by artificial dehumidification.
     Simulation analysis of EW75alloy on the corrosion behavior in Beijing and Qingdao sites, the specimens could be arranged in decreasing order of weight and mechanical strength:Qingdao>Beijing. The corrosion data curves were established according to weight loss, Beijing site:Y=A+B,*X+B2*X2+B3*X3, A=-5.60973, B1=1.04291, B2=-0.01687, B3=1.17699×10-4, correlation coefficient equaled0.99251; Qingdao site: Y=A+B1*X+B2*X2+B3*X3, A=-4.79713, B1=1.20479, B2=-0.01924, B3=1.31504×10-4, correlation coefficient equaled0.99161. Correlation coefficients were close to1, demonstrated that the outcomes of model fitting were both true.
     The atmospheric corrosion behaviors of EW75alloys in typical land (Beijing) and marine (Qingdao) environments were investigated. The corrosion rates for T5, T4and extrusion specimens at Beijing sites were42.4444,19.1833and18.4444g·m-2, respectively. The corrosion rates for T5, T4and extrusion specimens at Qingdao sites were55.9334, 25.7833and22.0389g·m-2, respectively. The test sites could be arranged in decreasing order of corrosion for EW75alloys:Qingdao>Beijing.
     Peak-aged EW75alloy exposure for6months, corrosion products contained Mg(OH)2and MgSO4in Beijing and Qingdao sites. However, the characteristic peak of MgSO4in the corrosion products at the Beijing site was higher than these at the Qingdao site, while the characteristic peak of Mg(OH)2was of little difference. The characteristic peaks of MgCl2were found in the corrosion products of Qingdao site. After12months exposure, the characteristic peaks of Mg(OH)2reduced while MgSO4and MgCl2enhanced, and the characteristic peaks of MgSO4·4H2O appeared in Beijing site. The corrosion process for EW75alloys in atmospheric environment included that adsorption of water vapor, dissolution of the corrosive gas and inorganic salts, electrochemical reactions on the surface of a-Mg substrate and dry-wet alternate process. The four processes occurred alternately and accelerated corrosion of alloys.
     The corrosion behaviors of EW75, AZ60and ZK80connected copper-beryllium alloys in Beijing site were researched. The corrosion weight loss of AZ80, ZK60and EW75galvanic coupling were3.0667,5.6833and6.5667·gm-2, respectively. The weight loss order was arranged as:AZ80     The value of PBR for common intermetallic compounds of magnesium alloys are calculated through the formula. The results show that the PBR of Mg12Nd and Mg24Y5are both between1to2, which will protect to magnesium alloys substrate from corrosion; the PBR of Mg3Gd and MgNi2are2to3; Mg17Al12, MgZn2, Mg3Sb2, MgCu2, Mg2Ca, Mg12Ce, MgAg, and Mg2Si are less than1, which will not play an effective protection.
     PBR theories were demonstrated by the oxide films formed on the surface of T5and T6alloys. The thicknesses of oxide films were0.6and1.0μm, while the PBR were1.1692and1.3440, respectively. The main elements consisted of O, Mg, Y, Nd, Gd. Compactness of the oxide films were excellent, which played an effective protection from corrosion. The formation for protective oxide films (PBR>1) will simplify the protection processing and reduce the costing in actual development.
引文
[1]刘正,张奎,曾小勤,等.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002:16-18
    [2]张津,章宗和.镁合金及应用[M].北京:化学工业出版社,2004:33-34
    [3]陈振华.镁合金[M].北京:化学工业出版社,2004:10-11
    [4]王建军,王智民,白衫.镁合金的应用与研究现状[J].中国铸造装备与技术,2006(4):5-8
    [5]王渤婳.镁合金的应用研究[J].工业技术,2009(30):70-71
    [6]Friedrich H.E, Mordike B.L. Magnesium Technology[M]. Berlin:springer,2005(3): 189-194
    [7]段亚利,张治民,薛勇.镁合金的应用及其塑性成型技术[J].湖南有色金属,2007,23(1):38-42
    [8]Mordike B.L, Ebert T. Magnesium Properties Applications Potential[J]. Materials Science and Engineering A,2001,30(2):37-45
    [9]丁文江,付彭怀,彭立明,等.先进镁合金材料及其在航空航天领域中的应用[J].航天器环境工程,2011,28(2):103-110
    [10]刘静安,盛春磊.镁及镁合金的应用市场发展前景[J].有色金属加工,2007,36(2):1-6
    [11]宋光铃.镁合金腐蚀与防护[M].北京:化学工业出版社,2006
    [12]Yingwei Song, Dayong Shan, Rongshi Chen, et al. Corrosion Characterization of Mg-8Li Alloy in NaCl Solution[J]. Corrosion Science,2009,51:1087-1094
    [13]Magnesium Alloys in Aerospace Applications, Past Concerns, Current Solutions[R]. Triennial International Aircraft Fire & Cabin Safety Research Conference,2007
    [14]Jian Chen, Jianqiu Wang, Enhou Han, et al. In Situ Observation of Pit Initiation of Passivated AZ91 Magnesium Alloy[J]. Corrosion Science,2009,51:477-484
    [15]吴振宁,李培杰,刘树勋.镁合金腐蚀问题研究现状[J].铸造,2001,50(10):583-586
    [16]黎文献.镁及镁合金[M].长沙:中南大学出版社,2005:437,451-452
    [17]施彦彦.典型金属材料大气腐蚀的模拟电化学研究[D].浙江大学博士学位论文,2008
    [18]张永君,严川伟,王福会,等.镁的应用及其腐蚀与防护[J].材料保护,2002,35(4):4-6
    [19]罗小萍,夏兰廷,臧东勉.合金元素对镁及镁合金腐蚀性能影响[J].实验研究,2007,3:24-27
    [20]郭冠伟,苏铁健,谭成文,等.镁合金腐蚀与防护研究现状及进展[J].材料与表面处理技术,2007,9:69-71
    [21]王福会,杜克勤,张伟.镁合金的腐蚀与防护研究进展[J].中国材料进展,2011,30(2):29-34
    [22]余刚,刘跃龙,李瑛,等.Mg合金的腐蚀与防护[J].中国有色金属学报,2002,12(6):1087-1098
    [23]250℃时效处理对Mg-10Gd-3Y-0.4Zr稀土镁合金腐蚀行为的影响[J].腐蚀科学与防护技术,2009,21(2):88-90
    [24]李冠群,吴国华,樊昱,等.镁合金的腐蚀研究现状与防护途径[J].材料导报,2006,19(11):60-64
    [25]Chunhua Xu, Wei Gao. Pilling-Bedworth Ratio for Oxidation of Alloys[J]. Materials Research Innovations,2000,3:231-235
    [26]李美栓,钱余海,辛丽.合金上氧化物的体积比的分析[J].1999,腐蚀科学与防护技术,11(5):284-289
    [27]Quantong Jiang, Kui Zhang, Xinggang Li, et al. The Corrosion Behaviors of Mg-7Gd-5Y-lNd-0.5Zr Alloy Under (NH4)2SO4, NaCl and Ca(NO3)2 Salts Spray Condition[J]. Journal of Magnesium and Alloys,2013,3(1):230-234
    [28]李华基,刘华堂,杨志远,等.混合稀土对ZM5镁合金表(界)面张力及氧化膜性 能的影响[J].铸造,2010,59(11):1205-1208
    [29]郑弃非,曹莉亚.镁合金的大气腐蚀实验研究[J].稀有金属,2004,28(1):101-103
    [30]梁健能,林翠.温度对AZ91D镁合金初期大气腐蚀行为的影响[J].失效分析与预防[J].2009,4(1):1-7
    [31]Martin Jonsson,Dan Persson, Christofer Leygraf. Atmospheric Corrosion of Field-exposed Magnesium Alloy AZ91D[J].Corrosion Science,2008,50:1406-1413
    [32]Godard H P,Jepson W B,Bothwell M,et al.The Corrosion of Light Metals[M].New York:Wiley and Sons,1967,360
    [33]Lindstrom R,Svensson J E,Johansson L G.The Influence of Carbon Dioxide on the Atmospheric Corrosion of some Magnesium Alloys in the Presence of NaCl[J]. Electrochemistry Society,2002.149(2):B103-B107
    [34]Jonsson M,Persson D,Thierry D.Corrosion Product Formation during NaCl Induced Atmospheric Corrosion of Magnesium Alloy AZ91D[J].Corrosion Science,2007, 49(3):1540-1558
    [35]Svensson J E,Johansson L G.A Laboratory Study of the Initial Stages of the Atmospheric Corrosion of Zinc in the Presence of NaCl;Influence of SO2 and NO2[J]. Corrosion Science,1993,34(5):721-740
    [36]Lijing Yang,Yanf.ang Li,Yinghui Wei,et al.Atmospheric corrosion of field-exposed AZ91D Mg alloys in a polluted environment[J]. Corrosion Science,2010.52: 2188-2196
    [37]Martin Jo"nsson,Dan Persson, Christofer Leygraf. Atmospheric Corrosion of Field-exposed Magnesium Alloy AZ91D[J].COrrosion Science,2008,50:1406-1413
    [38]胡婷婷,向斌,左秀丽,等.AZ91D镁合金在模拟酸雨溶液中的腐蚀行为[J].腐蚀 与防护,2009,30(7):477-479
    [39]Feng Liu, Yingwei Song,Dayong Shan, et al. Corrosion Behavior of AZ31 Magnesium Alloy in Simulated Acid Rain Solution[J].Transactions of Nonferrous Metals Society of China,2010,20:638-642
    [40]Graedel T E.Air Quality Reference Data for Corrosion Assessment[J].Material Performance,1977,16(8):17-25
    [41]张新明,易建龙,邓运来,等.微观组织和pH对Mg-Gd-Y-Zr镁合金酸雨腐蚀的影响[J].中南大学学报(自然科学版),2010,41(6):2138-2142
    [42]屈庆,严川伟,曹楚南,等.金属大气腐蚀实验技术进展[J].腐蚀科学与防护技术,2003,15(4):216-222
    [43]汪俊,韩薇,李洪锡,等.大气腐蚀电化学研究方法现状[J].腐蚀科学与防护技术,2002,14(6)333-336
    [44]郑润芬.纯镁及镁合金大气腐蚀和化学氧化工艺研究[D].大连理工大学博士学位论文,2007
    [45]贾素秋.镁合金的腐蚀行为与防护[D].吉林大学博士学位论文,2006
    [46]贾瑞灵.氯化纳污染条件下镁-铝合金的p相对其大气腐蚀行为的作用机制[D].哈尔滨工业大学博士学位论文,2008
    [47]贾志军,赵泉林,董超芳,等.主成分分析法综合评价13个我国大气腐蚀站点的气候因素[J].中国腐蚀与防护学报,2009,29(5):388-393
    [48]崔中雨,肖葵,董超芳,等.AZ31镁合金在西沙海洋大气环境下形成的锈层及其保护性研究[A].中国腐蚀电化学及测试方法专业委员会2012学术年会[C]
    [49]Zhongyu Cui, Xiaogang Li, Kui Xiao, et al. Atmospheric Corrosion of Field-exposed AZ31 Magnesium in a Tropical Marine Environment[J]. Corrosion Science,2013,76: 243-256
    [50]郭初蕾,郑弃非,赵月红,等.AZ31镁合金在海洋大气环境中的腐蚀行为[J].稀有金属,2013,37(1):21-26
    [51]夏兰廷,李晋英,王荣峰.AZ91D镁合金在临汾工业大气中的腐蚀行为[J].中国铸造装备与技术,2009,3:15-17
    [52]董超芳,肖葵,李久青,等.AM60镁合金与铍青铜及铝合金偶接后的大气腐蚀行为[J].中国有色金属学报,2005,15(12):1938-1944
    [53]张继心,张巍,李久青,等.镁合金在大气环境中的电偶腐蚀[J].北京科技大学学报,2006,28(5):454-460
    [54]李春芳.稀土Ce改性AZ91D镁合金腐蚀剩余强度研究[D].吉林大学博士论文,2008
    [55]钟丽应.稀土元素对AZ91镁合金组织结构和腐蚀行为的影响[D].浙江大学博士学位论文,2008
    [56]李肖丰,李全安,陈君,等.钐对Mg-6Al-1.2Y-0.9Nd镁合金组织和耐蚀性能的影响[J].中国稀土学报,2009,27(1):115-122
    [57]ASTM B117-1939, Standard Practice for Operating Salt Spray (Fog) Apparatus[S]. American:American National Standards Institute,1939
    [58]GM 9540/B-2004,汽车行业最新循环盐雾腐蚀测试标准[S].美国:美国通用汽车公司,2004
    [59]万晔,杨龙刚,严川伟,等.经NH4C1沉积的MB8镁合金在含So2气氛中的大气腐蚀[J].沈阳建筑大学学报(自然科学版),2008,24(6):1029-1034
    [60]Jianwei Chang, Xingwu Guo, Shangming He, et al. Investigation of The Corrosion for Mg-xGd-3Y-0.4Zr (x=6,8,10,12 wt%) Alloys in a Peak-aged Condition[J]. Corrosion Science,2008,50:166-177
    [61]Ming Sun, Guohua Wu, Wei Wang, et al. Effect of Zr on the Microstructure, Mechanical Properties and Corrosion Resistance of Mg-10Gd-3Y Magnesium Alloy[J]. Materials Science and Engineering A,2009,523:145-151
    [62]Svcnsson J E, Johansson L G. The Temperture-Dependence of the SO2 Induced Atmospheric Corrosion of Zinc[J]. Corrosion Science,1996,38(2):2225-2233
    [63]Lindstrom R, Svensson J E, Johansson L G. The Atmospheric Corrosion of Zinc in the Presence of NaCl the Influence of Carbon Dioxide and Temperature[J]. Journal of Electrochemistry Society,2000,147(5):1751-1757
    [64]万晔,严川伟.几种盐沉积和微量So2对AZ91D镁合金大气腐蚀的协同作用[J].中国有色金属学报,2006,16(1):176-182
    [65]Cui Lin, Xiaogang Li. Initial Corrosion of AZ91D Magnesium Alloy in Atmosphere Containing SO2[J]. The Chinese Journal of Nonferrous Metals,2004,14:1658-1665
    [66]崔常京,陈群志,王逾涯,等.模拟某机场大气环境下LY12CZ铝合金的腐蚀行为及其当量关系的建立[J].腐蚀科学与防护技术,2009,21(3):291-294
    [67]Guangling Song, Sarath Hapugoda, David St John. Degradation of the Surface Appearance of Magnesium and its Alloys in Simulated Atmospheric Environments [J]. Corrosion Science,2007,49:1245-1265
    [68]Wanqiu Zhou, Dayong Shan, Enhou Han, et al. Initial Corrosion Behavior of AZ91 Magnesium Alloy in Simulating Acid Rain under Wet-dry Cyclic Condition[J]. Transactions of Nonferrous Metals Society of China,2008,18:334-338
    [69]梁健能.室内模拟实验研究AZ91D镁合金的腐蚀行为[D].南昌航空大学硕士学位论文,2010
    [70]李晓刚.我国材料自然环境腐蚀研究进展与展望[J].中国科学基金,2012,5: 250-262
    [71]T. Rzychon, J. Michalska, A. Kielbus. Effect of Heat Treatment on Corrosion Resistance of WE54 Alloys[J]. Journal of Achievements in Materials and Manufacturing Engineering,2007,20:192-194
    [72]Kui Zhang, Xin Zhang, Xia Deng, et al. Relationship between Extrusion, Y and Corrosion Behavior of Mg-Y Alloy in NaCl Aqueous Solution[J]. Journal of Magnesium and Alloys,2013,1(2):134-138
    [73]N.D. Nam, J.G. Kim, K.S. Shin, et al. The Effect of Rare Earth Additions on the Electrochemical Properties of Mg-5Al-based Alloys[J]. Scripta Materialia,2010,63: 625-628
    [74]Xin Zhang, Kui Zhang, Xia Deng, et al. Corrosion Behavior of Mg-Y Alloy in NaCl Aqueous Solution[J]. Progress in Natural Science:Materials International,2012,22(2): 169-174
    [75]Qing Qu, Jie Ma, Lin Wang, et al. Corrosion Behavior of AZ31B Magnesium Alloy in NaCl Solutions Saturated with CO2[J]. Corrosion Science,2011,53:1186-1193
    [76]Guangling Song, Raja Mishra, Zhenqing Xu. Crystallographic Orientation and Electrochemical Activity of AZ31 Mg Alloy[J]. Electrochemistry Communications, 2010,12:1009-1012
    [77]R. Lindstrom, L.-G. Johansson, J.-E. Svensson. The Influence of NaCl and CO2 on the Atmospheric Corrosion of Magnesium Alloy AZ91[J]. Materials and Corrosion,2003, 54:587-594
    [78]Xianfei Wang, Shoumei Xiong. Oxidation Behavior of Molten Magnesium in Atmospheres Containing S02[J]. Corrosion Science,2011,53:4050-4057
    [79]Cui Lin, Jianneng Liang. Corrosion Behavior of AZ91D Magnesium Alloy in Atmosphere Containing S02[J]. Rare Metal Materials and Engineering,2011,40(3): 499-502
    [80]Jian Chen, Jianqiu Wang, Enhou Han, et al. Corrosion Behavior of AZ91D Magnesium Alloy in Sodium Sulfate Solution[J]. Materials and Corrosion,2006,57(10):789-793
    [81]肖葵,董超芳,李晓刚,等.镁合金在模拟污染气体环境中的初期腐蚀规律[J].装备环境工程,2006,5:21-25
    [82]亢海娟,李全安,周伟.镁合金的腐蚀特性与防护措施[J].腐蚀科学与防护技术, 2012,24(6):513-516
    [83]杨俊益.京津冀区域大气污染物浓度的变化特征研究[D].南京信息工程大学博士学位论文,2012
    [84]S. Bender, U. Holzhausenl, A. Heyn. Investigations of the Aqueous Corrosion of Pretreated Magnesium Alloys by Means of Electrochemical Noise Measurements [J]. Materials and Corrosion,2013,64(8):708-713
    [85]R. Arraball, A. Pardol, M. C. Merinol, et al. Corrosion Behavior of Mg/Al alloys in High Humidity Atmospheres[J]. Materials and Corrosion,2011,62(4):326-334
    [86]Martin Jonsson, Dan Persson, Christofer Leygraf. Atmospheric Corrosion of Field-exposed Magnesium Alloy AZ91D[J]. Corrosion Science,2008,50(5): 1406-1413
    [87]R. Arrabal, A. Pardo, M.C. Merino. Correlation Between the Surface Chemistry and the Atmospheric Corrosion ofAZ31, AZ80 and AZ9ID Magnesium Alloys[J]. Applied Surface Science,2009,255(7):4102-410
    [88]C. Fotea, J. Characterization of the Surface Chemistry of Magnesium Exposed to the Ambient Atmosphere [J]. Surface and Interface Analysis,2006,38(10):1363-1371
    [89]王凤平,李晓刚,林翠,等.AZ91D镁合金在北京地区的大气腐蚀行为研究[J].中国腐蚀与防护学报,2004,24(6):345-349
    [90]徐卫军,马颖,吕维玲.触变成型镁合金AZ91D在兰州城市大气中的腐蚀行为研究[J].腐蚀科学与防护技术,2007,27(6):31-34
    [91]Xuehua Zhou, Li Jiang, Panpan Wu, et al. Effect of Aggressive Ions on Degradation of WE43 Magnesium Alloy in Physiological Environment J]. International Journal of Electrochemical,2014,9:304-314
    [92]L. Yang, N. Hort, R. Willumeit, et al. Effects of Corrosion Environment and Proteins on Magnesium Corrosion[J]. Corrosion Engineering, Science and Technology,2012, 47(5):335-339
    [93]Quantong Jiang, Kui Zhang, Xinggang Li, et al. The Corrosion Behaviors of Mg-7Gd-5Y-1Nd-0.5Zr Alloy under (NH4)2SO4, NaCl and Ca(NO3)2 Salts Spray Condition[J]. Journal of Magnesium and Alloys,2013, 1(3):230-234
    [94]金鑫,程萌田,温天雪,等.北京冬季一次重污染过程中水溶性无机盐的变化特征[J].环境化学,2012,31(6):783-790
    [1]GB/T10125-1997,人造气氛腐蚀实验—盐雾实验[S].北京:中国标准出版社,1997
    [2]E. McCafferty. Validation of Corrosion Rates Measured by the Tafel Extrapolation Method[J]. Corrosion Science,2005,47:3202-3215
    [3]张奎,蒋全通,李兴刚,等.一种大气腐蚀模拟实验箱[P].中国专利:201320787724.6
    [4]Edward Ghali, Wolfgang Dietzel, Karl-Ulrich Kainer. General and Localized Corrosion of Magnesium Alloys:A Critical Review[J]. Journal of Materials Engineering and Performance,2004,13(1):7-23
    [5]Rongchang Zeng, Jin Zhang, Weijiu Huang, et al. Review of Studies on Corrosion of Magnesium Alloys[J]. Transactions of Nonferrous Metals Society of China,2006, 16(2):763-771
    [6]Rakel Lindstrom, Lars-Gunnar Johansson, George E. Thompson, et al. Corrosion of Magnesium in Humid Air[J]. Corrosion Science,2004,46(5):1141-1158
    [7]N. LeBozec, M. Jonsson, D. Thierry. Atmospheric Corrosion of Magnesium Alloys: Influence of Temperature, Relative Humidity, and Chloride Deposition[J]. Corrosion, 2004,60(4):356-361
    [8]郭晖,刘秀铭,郭雪莲,等.大气CO2浓度变化与全球气候变化关系初步探讨[J].亚热带资源与环境学报,2013,2:13-19
    [9]石广玉,戴铁,徐娜.卫星遥感探测大气CO2浓度研究最新进展[J].地球科学进展,2010,1:7-13
    [10]杨成荫,王汉杰,韩士杰,等.大气CO2浓度非均匀动态分布条件下的气候模拟[J].地球物理学报,2012,9:2809-2825
    [11]梁彩凤,侯文泰.大气腐蚀与环境[J].装备环境工程,2004,5:549-52
    [12]GB/T228-2002,金属材料室温拉伸实验方法[S].北京:中国标准出版社,2002
    [13]GB/T19291-2003,金属和合金的腐蚀—腐蚀实验一般原则[S].北京:中国标准出版社,2003
    [14]GB/T228.1-2010,金属材料拉伸实验—第1部分:室温实验方法[S].北京:中国标准出版社,2010
    [1]李永军,张奎,李兴刚,等.均匀化处理和挤压对Mg-Y-RE-Zr合金组织性能的影响[J].特种铸造及有色合金,2009,29(7):593-595
    [2]李永军.Mg-Y-RE-Zr合金的制备及组织与性能研究[D].北京有色金属研究总院博士学位论文,2009
    [3]梁成浩,郑润芬,黄乃宝.AZ31镁合金在含NaCl和Na2S04薄层液膜下的腐蚀行为[J].材料科学与工艺,2013,21(6):34-40
    [4]张新明,易建龙,邓运来,等.微观组织和PH对Mg-Gd-Y-Zr镁合金酸雨腐蚀的影响[J].中南大学学报(自然科学版),2010,41(6):2138-2142
    [5]郭初蕾,郑弃非,赵月红,等.AZ31镁合金在海洋大气环境中的腐蚀行为[J].稀有金属,2013,37(1):21-26
    [6]夏兰廷,李晋英,王荣峰.AZ91D镁合金在临汾工业大气中的腐蚀行为[J].中国铸造装备与技术,2009,3:15-17
    [7]王凤平,李晓刚,林翠,等.AZ91D镁合金在北京地区的大气腐蚀行为研究[J].中国腐蚀与防护学报,2004,24(6):345-349
    [8]Tao Zhang, Xiaolan Liu, Yawei Shao, et al. Electrochemical Noise Analysis on the Pit Corrosion Susceptibility of Mg-10Gd-2Y-0.5Zr, AZ91D Alloy and Pure Magnesium Using Stochastic Model[J]. Corrosion Science,2008,50:3500-3507
    [9]GuangLing Song, Raja Mishra, ZhenQing Xu. Crystallographic Orientation and Electrochemical Activity of AZ31 Mg Alloy[J]. Electrochemistry Communications, 2010,12:1009-1012
    [10]Chunfang Li, Yaohui Liu, Qiang Wang, et al. Study on the Corrosion Residual Strength of the 1.0wt.%Ce Modified AZ91 Magnesium Alloy [J]. Materials Characterization,2010,61 (1):123-127
    [11]张新.Mg-RE基稀土镁合金组织、性能与腐蚀机理研究[D].北京有色金属研究总院博士学位论文,2013
    [12]余刚,刘跃龙,李瑛,等.Mg合金的腐蚀与防护[J].中国有色金属学报,2002,12(6):1087-1098
    [13]张奎,蒋全通,李兴刚,等.一种用于原位记录观察镁合金微观组织腐蚀行为的方法[P].中国专利:201310641922.6
    [1]郭晖,刘秀铭,郭雪莲,等.大气C02浓度变化与全球气候变化关系初步探讨[J].亚热带资源与环境学报,2013,2:13-19
    [2]杨成荫,王汉杰,韩士杰,等.大气C02浓度非均匀动态分布条件下的气候模拟[J]. 地球物理学报,2012,9:2809-2825
    [3]Edward Ghali, Wolfgang Dietzel, Karl-Ulrich Kainer. General and Localized Corrosion of Magnesium Alloys:A Critical Review[J]. Journal of Materials Engineering and Performance,2004,13(1):7-23
    [4]何杰颖,张升伟.人工神经网络反演算法反演北京地区湿度廓线[J].遥感应用,2010.5:54-61
    [5]何清,魏文寿,李祥余,等.塔克拉玛干沙漠腹地沙尘暴过境时近地层风速、温度和湿度廓线特征[J].沙漠与绿洲气象,2008,2(6):6—11
    [6]Rakel Lindstrom, Lars-Gunnar Johansson, George E. Thompson, et al. Corrosion of Magnesium in Humid Air[J]. Corrosion Science,2004,46(5):1141-1158
    [7]Lindstrom R, Svensson J E, Johansson L G. The Influence of Carbon Dioxide on the Atmospheric Corrosion of some Magnesium Alloys in the Presence of NaCl[J]. Journal of the Electrochemical Society,2002,149(4):B103-B107
    [8]Lin, Cui, Xiaogang Li. Role of CO2 in the Initial Stage of Atmospheric Corrosion of AZ91 Magnesium Alloy in the Presence of NaCl[J]. Rare Metals,2006,25(2): 190-196
    [9]Martin Jonsson, Dan Persson, Christofer Leygraf. Atmospheric Corrosion of Field-exposed Magnesium Alloy AZ91D[J]. Corrosion Science,2008,50:1406-1413
    [1]宋光铃.镁合金腐蚀与防护[M].北京:化学工业出版社,2006.
    [2]Zhongyu Cui, Xiaogang Li, Kui Xiao, et al. Atmospheric Corrosion of Field-exposed AZ31 Magnesium in a Tropical Marine Environment[J]. Corrosion Science,2013,76: 243-256
    [3]Shuangqing Sun, Qifei Zheng, Defu Li, et al. Long-term Atmospheric Corrosion Behavior of Aluminium Alloys 2024 and 7075 in Urban, Coastal and Industrial Environments[J]. Corrosion Science,2009,51:719-727
    [4]郭初蕾,郑弃非,赵月红,等.AZ31镁合金在海洋大气环境中的腐蚀行为[J].稀有金属,2013,37(1):21-26
    [5]Lijing Yang, Yanfang Li, Yinghui Wei, et al. Atmospheric Corrosion of Field-exposed AZ91D Mg Alloys in a Polluted Environment [J]. Corrosion Science,2010, (52): 2188-2196
    [6]Xuehua Zhou, Li Jiang, Panpan Wu, et al. Effect of Aggressive Ions on Degradation of WE43 Magnesium Alloy in Physiological Environment[J]. International Journal of Electrochemical Science,2014,9:304-314
    [7]郑弃非,孙霜青,温军国.铝及铝合金在我国的大气腐蚀及其影响因素分析[J].腐蚀与防护,2009,30(6):359-363
    [8]Qiang Wang, Yaohui Liu, Lina Zhang, et al. Study on the Effect of Corrosion on the Tensile Behavior of an AZ91 Magnesium Alloy [J]. Materials and Corrosion,2010,61: 222-228
    [9]杨丽景.AZ91D镁合金显微组织对其在特定环境下腐蚀行为的影响[D].太原理工大学博士学位论文,2010
    [10]Yonggang Li, Yinghui Wei, Lifeng Hou, et al. Atmospheric Corrosion of AM60 Mg Alloys in an Industrial City Environment[J]. Corrosion Science,2013,69:67-76
    [11]董超芳,肖葵,李久青,等.AM60镁合金与铜合金及铝合金偶接后的大气腐蚀行为[J].中国有色金属学报,2005,15(12):1938-1944
    [12]张继心,张巍,李久青,等.镁合金在大气环境中的电偶腐蚀[J].北京科技大学学报,2006,28(5):454-460
    [1]F Czerwinski. The Oxidation Behavior of an AZ91D Magnesium Alloy at High Temperatures[J]. Acta Materialia,2002,50:2639-2654
    [2]F Czerwinski. The Early Stage Oxidation and Evaporation of Mg-9%Al-1%Zn alloy[J]. Corrosion Science,2004,46:377-386
    [3]Junwei Liu, Ying Li, Fuhui Wang. The High Temperature Oxidation Behavior of Mg-Gd-Y-Zr Alloy [J]. Oxidation of metals,2009,71:319-334
    [4]苏桂花,曹占义.稀土镁合金抗氧化的机理[J].铸造,2010,29(6):553-557
    [5]Ting Li, Zhiwei Du, Kui Zhang, et al. Characterisation of Precipitates in a Mg-7Gd-5Y-lNd-0.5 Zr Alloy Aged to Peak-ageing Plateau[J]. Journal of Alloys and Compounds,2013,574:174-180
    [6]邓运来,杨柳,郭天才,等Mg-Gd-Y-Zr合金在773和823K热处理时的氧化行为[J].中南大学学报(自然科学版),2010,42(2):483-488

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700