用户名: 密码: 验证码:
铝薄膜/铁板轧制连接及界面结构与结合强度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝/铁复合板可以将铝与铁的直接焊接转化为铝合金与铝/铁复合板之间的焊接,避免铝与铁直接焊接时发生反应,生成脆硬金属间化合物,削弱连接界面强度,因此,该材料在工程领域具有广泛的应用前景。本文以轧制连接铝薄膜/铁板为目标,采用真空轧制连接方法,研究了铝薄膜/铁板轧制工艺参数对轧制连接界面结构及结合强度的影响规律,并分析了连接界面的形成机制;研究了铝/铁界面化合物形成规律及对界面结合强度的影响;提出了复合板结合强度定量测试方法及原理,并对测试试样的制备工艺进行了优化。
     本文建立了铝薄膜和铁板双金属轧制连接的受力模型,推导出轧制压力计算公式,计算了不同板宽和压下率时的铝薄膜轧制压力,分析了轧制的影响因素,确定了需要研究的铝薄膜和铁板轧制连接工艺参数有:轧制连接温度、压下率和轧制道次,并给出了这些工艺参数的研究范围。
     本文重点研究了铝薄膜/铁板的轧制连接工艺。研究发现,随轧制件预热温度升高,铝薄膜与铁板连接界面结合强度逐渐增加,最高可达94MPa;通过对比研究不同厚度铝薄膜与相同厚度铁板的轧制试验结果,发现在其它工艺参数相同的条件下,初始铝薄膜的厚度越大,复合板界面连接结合强度越低,产生连接的起始预热温度越高,因此,铝薄膜越厚,越不利于铝薄膜与铁板的界面结合;轧辊间隙越大,复合板总压下率越低,铝薄膜与铁板界面结合强度也越低;选用厚度为0.1mm铝薄膜和2mm铁板进行多道次轧制试验,研究发现,经第二次轧制后,连接界面结合强度有所提高,但是,经第三次轧制后,连接界面结合强度迅速下降,其原因主要是连接界面处产生了脆性的金属间化合物。
     在轧制试验的基础上,探讨了铝薄膜/铁板单道次轧制连接界面形成过程,以及多道次轧制界面金属间化合物的产生过程,并进一步对界面结合强度变化过程进行了讨论。当铝薄膜与铁板进行单道次轧制时,轧制力影响界面的形成,在此过程中,铝薄膜/铁板轧制连接界面结合强度的形成与轧制力密切相关,界面相互作用小,界面变形能低,界面的结合以相互嵌入的机械结合为主,界面结合强度较小;界面相互作用大,变形能高,界面的结合以金属原子键合为主,界面结合强度较大。当铝薄膜/铁板进行多道次轧制时,轧制产生并累积大量应变能,导致轧制连接界面在较低温度下也能应力诱导Fe-Al金属间化合物的生成,使界面结合强度下降。
     为了考察所制备的铝/铁复合板对工程应用的适应性,本文还研究了固态铝与固态铁界面反应物的结构,以及金属间化合物对铝/铁复合板界面结合的影响。实验结果表明,对于铝/铁复合板,在加热温度600°C以下、长时间保温的条件下(2小时),连接界面不会产生金属间化合物;在加热温度610°C、保温时间15min的条件下,连接界面有金属间化合物Fe2Al5和FeAl3生成,这说明固态铝与固态铁反应开始发生,610°C是固态铝与固态铁产生金属间化合物的临界温度。提高加热温度或延长保温时间,金属间化合物层均会增厚,加热650°C、保温120min反应层厚度超过50μm。对存在不同厚度金属间化合物的铝薄膜/铁板的复合板进行剪切强度测试,结果表明,铝薄膜/铁板的界面结合强度较低,剪切强度仅为约20MPa,断裂均发生在金属间化合物层。对存在不同厚度金属间化合物的铝薄膜/铁板复合板进行轧制,研究发现,Fe-Al金属间化合物存在也会对铝薄膜/铁板的再次轧制产生负面影响。界面金属间化合物内部产生大量裂纹,甚至产生明显的界面分离。
     目前,已有关于薄膜与基体界面结合强度的评价方法以定性评价为主。为了有效评价铝薄膜/铁板轧制的质量,基于钎焊标准中剪切强度测试原理,本文提出了定量评价铝薄膜/铁板轧制连接界面结合强度的方法。在复合板铝薄膜侧连接合适尺寸的铝合金板,使之与铁板形成对称结构,构成剪切强度测试试样,然后采用万能拉伸试验机对试样进行剪切强度测试,所选材料和连接工艺应保证剪切强度测试时断裂或撕裂只发生在铝/铁复合板轧制连接界面处。基于上述测试原理,本文系统地研究了测试试样的制备工艺。通过对比研究确定了超声波辅助钎焊方法为试样制备的连接工艺,Zn-Al合金为钎料合金,5A06、7N01铝合金为匹配搭接板可选用的铝合金材料。在此基础上优化了超声波辅助钎焊工艺,其合适参数为:钎焊温度420C、超声波作用时间1s、焊缝预留间隙50μm。采用已有铝/铁复合板对测试原理及方法进行试验验证,证实了其有效性。
The Al/Fe cladding materials can converting the problem of welding Alalloy with Fe into the problem of welding Al alloy with cladding materials toavoid the interaction between Al and Fe because of the intermetallics formeddecreasing the interfacial bonding strength, therefore, the Al/Fe claddingmaterials have broad application prospects in engineering field. The aim of thisdissertation was to fabricate Al/Fe cladding materials by roll-bonding. Themethod of vacuum roll-bonding was used. The influence rules of roll-bondingprocess parameters on the interfacial structure and bonding strength wereanalyzed. The mechanism of interfacail bonding formation was analyzed. Theformation rules and effect of intermentallics on the interfacial bonding werestudied. The principle and method of quantitative measurement for the bondingstrength of cladding materials was proposed. The fabrication process for the testwas optimized.
     The bi-metal force model for roll-bonding of aluminum film and iron platewas established. The calculation formula of rolling pressure was derived, andthen the rolling pressure of aluminum film with different plate width andreduction was calculated. The influence factors of roll-bonding were analyzed.The process parameters for roll-bonding aluminum film and iron plate neededresearch were determined. The objects were including rolling temperature,rolling reduction and rolling pass, and the scrope of the process parameters wasproposed.
     The process of roll-bonding aluminium film and iron plate was studied. Theresearch showed that, the bonding strength of the cladding materials wasgenerally enhanced with increasing preheating temperature, and the maximumstrength reached94MPa. Comparing the research using different initial thicknessof aluminium film with other parameters same, the bonding strength decreasedwhen the initial thickness of aluminium film increasing. And the preheatingtemperature, when the roll-bonding of aluminium film and iron plate produced,increased. Therefore, the increasing of initial thickness of aluminium film wentagainst the production the roll-bonding of cladding materials.With the roll gapincreasing, the reduction decreased, and the bonding strength of the claddingmaterials was also decreased. The muti-pass roll-bonding research was carriedout using0.1mm thick aluminium film and2mm thick iron plate as raw materials.After the second rolling pass, the bonding strength increased, while after thethird rolling pass, the bonding strength decreased, the reason was that the brittleness intermetallic compounds generated at the interface.
     Based on the roll-bonding experiment, the interfacial formation ofaluminum film and iron plate with single-pass roll-bonding and the formation ofintermetallic compounds with multi-pass roll-bonding were discussed, and theformation of interfacial roll-bonding was discussed. When the aluminum filmand iron plate was rolled with single-pass, the roll force impacted on theformation of interface. In the process, the interfacial bonding strength of cladmaterials was closely related to the roll force. When the interfacial interactionwas small, the interfacial deformation energy was small. The interface bondingmainly depended on mechanical bond which was resulted from materialsembedding in each other, and the interfacial bonding strength was lower. Whenthe interfacial interaction became large, the interfacial deformation energy waslarge. The interface bonding mainly depended on metallic bonding, and then thebonding strength increased. When aluminum film and iron plate was rolled withmulti-pass, lots of strain energy was produced and accumulated by rolling. TheFe-Al intermetallic compounds generated at lower temperature due to stressdriven, and then the bonding strength decreased.
     To investigate the applicability of aluminium/iron cladding materialsproduced by rolling, the structure of reactant between solid aluminum and ironand the effect of intermetallics on the interfacial bonding of cladding materialswas studied. The research showed that, when the temperature below600°C andthe holding time was120minutes, the intermetallic compounds did not generateat the interface of aluminium/iron cladding materials. When the temperature was610°C and the holding time was15minutes, the intermetallic compounds ofFe2Al5and FeAl3generated at the interface, and it showed that the solidaluminium and iron began to react. The temperature of600°C was criticaltemperature when the solid aluminium and iron began to react. Increasing thetemperature or holding time, the thickness of intermetallic compounds increased.When the temperature was650°C and the holding time was120minutes, thethickness of intermetallic compounds was more than50μm. The shear strengthtest carried out using cladding materials with different thickness of intermetalliccompounds. It showed that the bonding strength of cladding materials wasslower. The shear strength was only about20MPa. During the tensile strengthtesting, the fractures occurred in the intermetallic compound layers. The rollingexperiment carried out using cladding materials with different thickness ofintermetallic compounds. It showed that the intermetallic compounds hadnegative impact on cladding materials rolling again. Many cracks were observedin the intermetallic compounds and the aluminum film was clearly separatedfrom iron plate.
     At present, the evaluation methods for interface bonding strength of filmand substrate were mainly qualitative. To evaluate the quality of the claddingmaterials effectly, the method of quantitative measurement for the bondingstrength of cladding materials was proposed, which was based on the principleof shear strength test of the brazing and soldering standard. The aluminum filmof cladding materials was soldered with the suitable sizes of aluminum plate toform symmetrical structure with iron plate, and then the samples for shearstrength test were prepared. The shear strength test was carried out by theuniversal tensile testing machine. The sample and process should ensure that thefracture only occur at the interface of aluminum/iron cladding materials. Theultrasonic-associated soldering process, which used in the sample fabricationprocess, was studied. Through the study, the Zn-Al alloy was used as the fillermetal and the5A06and7N01alloys were used as the lapping plate for matching.The optimization process for ultrasonic-associated soldering was temperature of420°C, ultrasonic time of1s and soldering clearance of50μm. The test wascarried out with the cladding materials to verify the principle and method. Theresults verified the effectiveness of them.
引文
[1] L. Agudo, D. Eyidi, C.H. Schmaranzer, E. Arenholz, N. Jank and J.Bruckner. Intermetallic FexAly-phases in a steel/Al-alloy fusion weld[J].Journal of materials science,2007,42(12):4205-4214.
    [2] U.R. Kattner, T.B. Massalski. Binary alloy phase diagrams [M]. OH,USA:ASM International, Materials Park,1990:147.
    [3] Rattana Borrisutthekul, Taisei Yachi, Yukio Miyashita, Yoshiharu Mutoh.Suppression of intermetallic reaction layer formation by controlling heatfow in dissimilar joining of steel and aluminum alloy[J]. MaterialsScience and Engineering A,2007,467(1-2):108–113.
    [4] P. Peyre, G. Sierra, F. Deschaux-Beaume, D. Stuart and G. Fras.Generation of aluminium–steel joints with laser-induced reactivewetting[J]. Materials Science and Engineering: A,2007,444(1-2):327-338.
    [5] Shi Yana, Zhang Hong, Takehiro Watanabe, Tang Jingguo. CW/PW dual-beam YAG laser welding of steel/aluminum alloy sheets[J]. Optics andLasers in Engineering,48(7-8):732-736.
    [6] M.J. Torkamany, S. Tahamtan, J. Sabbaghzadeh. Dissimilar welding ofcarbon steel to5754aluminum alloy by Nd:YAG pulsed laser[J].Materials&Design,31(1):458-465.
    [7] G. Sierra, P. Peyre, F. Deschaux-Beaume, D. Stuart and G. Fras. Steel toaluminium key-hole laser welding[J]. Materials Science and Engineering:A,447(1-2):197-208.
    [8] Hitoshi Ozaki, Muneharu Kutsuna, Shigeyuki Nakagawa, and KenjiMiyamoto. Laser roll welding of dissimilar metal joint of zinc coated steelto aluminum alloy[J]. Journal of Laser Applications,2010(1):1-6.
    [9] Hitoshi Ozaki, Muneharu Kutsuna, Shigeyuki Nakagawa, and KenjiMiyamoto. Laser roll welding of dissimilar metal joint of zinc coated steelto aluminum alloy[J]. Journal of Laser Applications,2010,22(1):1-6.
    [10]石红信,邱然锋,涂益民,于华.激光滚压焊技术在异种金属连接中的应用.电焊机.2010,40(11):37-41.
    [11] S Katayama. Laser welding of aluminium alloys and dissimilar metals.Welding International,2004,18(8):618-625.
    [12] Qin G.L., Lei Z, Lin S.Y. Effects of Nd:YAG laser+pulsed MAG archybrid welding parameters on its weld shape[J]. Science and Technologyof Welding&Joining,2007,12(1):79-86(8).
    [13]曾如川.铝镁合金/钢异种材料电子束焊接性研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2006:51-60.
    [14] G. Sierra, P. Peyre, F. Deschaux Beaume, D. Stuart, G.Fras. Galvanisedsteel to aluminium joining by laser and GTAW processes[J]. MaterialsCharacterization,2008(12):1705-1715.
    [15] M. Mosallaeepour, F.Bodaghi, M. Moshrefifar. Surface modification oflow carbon steel substrate by Al-rich clad layer applied by GTAW[J].Surface and Coatings Technology,2011,206(2-3):217-223.
    [16] J. Bruckner. Cold metal transfer has a future joining steel to aluminum[J].Welding Journal.2005,86(6):38-40.
    [17] L. Agudo, S. Weber, H. Pinto, E. Arenholz, J. Wagner, H. Hackl, J.Bruckner, A. Pyzalla. Study of microstructure and residual stresses indissimilar Al/steels welds produced by cold metal transfer[J]. MaterialsScience Forum,2008,571/572:347-353.
    [18] L. Agudo, N. Jank, J. Wagner, S. Weber, C. Schmaranzer, E. Arenholz, J.Bruckner, H. Hackl, A. Pyzalla. Investigation of microstructure andmechanical properties of steel-aluminium joints produced by metal arcjoining[J]. Steel Research International,2008,79(7):530-535.
    [19]张洪涛.铝/镀锌钢板CMT熔_钎焊机理研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2008:34,76.
    [20] H. T. Zhang, J. C. Feng, P. He. Interfacial microstructure and mechanicalproperties of aluminium-zinc-coated steel Joints. MaterialsCharacterization[J].2007,58(7):588-592.
    [21] P. He, H. T. Zhang, J. C.Feng. The arc characteristics and metal transferbehaviour of CMT and its use in joining aluminium to zinc-coated steel[J].Materials Materials Science and Engineering: A,2009,499(1-2):111-113.
    [22] H. T. Zhang, J. C. Feng, P. He. Interfacial phenomena of CMT welding ofzinc-coated steel and wrought aluminium[J]. Materials Science andTechology. Materials Science and Technology,2008,24(11):1346-1349.
    [23]宋建岭.铝合金/不锈钢预涂层TIG熔-钎焊特性与界面行为研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2010:57-86.
    [24] Lin Sanbao, Song Jianling, Yang Chunli, Ma Guangchao. Experimentalstudy on dissimilar TIG welding-brazing of5A06aluminum alloy toSUS321stainless steel[J]. China Welding,2010,19(1):26-31.
    [25] Song Jianling, Lin Sanbao, Yang Chunli, Ma Guangchao. Analysis oninterfacial layer of aluminum alloy and non-coated stainless steel jointmade by TIG welding-brazing[J]. China Welding,2009,18(2):1-5.
    [26] Lin Sanbao, Song Jianling, Ma Guangchao, Yang Chunli. Dissimilarmetals TIG welding-brazing of aluminum alloy to galvanized steel[J].Frontiers of Materials Science in China,2009,3(1):78-83.
    [27] M. Roulin, J. W. Luster, G. Karadenz, A. Mortensen. Strength andstructure of furnace-brazed joints between aluminum and stainless steel[J].Welding Journal,1999,78(5):151-155.
    [28] Liu Peng, Li Yajiang, Wang Juan, Guo Jishi. Vacuum brazing technologyand microstructure near the interface of Al/18-8stainless steel[J].Materials Research Bulletin,2003,38(9-10):1493-1499.
    [29] Kuroda Shinichi, Saida Kazuyuki Nishimoto Kazutoshi. Microstructureand Properties of Directly Bonded Joint of A6061Aluminum Alloy toSUS316Stainless Steel-Study on Diffusion Bonding of Aluminum Alloyto Stainless Steel (Report1). Quarterly Journal of the Japan WeldingSociety,1999,17(3):484-489.
    [30]何鹏,冯吉才,钱乙余.接触反应法解决铝/不锈钢钎焊的缺陷及脆性[J].材料科学与工程,2005,13(1):82-85.
    [31] M.N. Ahmad Fauzi, M.B. Uday, H. Zuhailawati, A.B. Ismail.Microstructure and mechanical properties of alumina-6061aluminumalloy joined by friction welding[J]. Materials&Design,2010,31(2):670-676.
    [32] Mumin Sahin. Joining of stainless-steel and aluminium materials byfriction welding[J]. The international journal of advanced manufacturingtechnology,2009,41(5-6):487-497.
    [33] Emel Taban, Jerry E. Gould, John C. Lippold. Dissimilar friction weldingof6061-T6aluminum and AISI1018steel: Properties and microstructuralcharacterization[J]. Materials&Design,2010,31,(5):2305-2311.
    [34] Won-Bae Lee, Martin Schmuecker, Ulises Alfaro Mercardo, GerhardBiallas and Seung-Boo Jung. Interfacial reaction in steel/aluminum jointsmade by friction stir welding[J]. Scripta Materialia,2006,55(4):355-358.
    [35] Takehiko Watanabe, Hirofumi Takayama, Atsushi Yanagisawa. Joining ofaluminum alloy to steel by friction stir welding[J]. Journal of MaterialsProcessing Technology,2006,178(1-3):342-349.
    [36] R.S.Coelho, A.Kostka, J.dos.Santos, A.R. Pyzalla. EBSD TechniqueVisualization of Material Flow in Aluminum to Steel Friction-stirDissimilar Welding[J]. Advanced Engineering Materials,2008,10(12):1127–1133.
    [37] Y.C. Chen, T. Komazaki, Y.G. Kim, T. Tsumura, K. Nakata. Interfacemicrostructure study of friction stir lap joint of AC4C cast aluminum alloyand zinc-coated steel[J]. Materials Chemistry and Physics,2008,111(2-3):375-380.
    [38] H. Springer, A.Kostka, J.F. dos Santosand D. Raabe. Influence ofintermetallic phases and Kirkendall-porosity on the mechanical propertiesof joints between steel and aluminium alloys[J]. Materials Science andEngineering: A,2011,528(13-14):4630-4642.
    [39] A.A.M.da Silva, E.Aldanondo, P.Alvarez, E.Arruti, A.Echeverr. Frictionstir spot welding of AA1050Al alloy and hot stamped boron steel(22MnB5)[J]. Science and Technology of Welding and Joining,2010,15(8):682-687.
    [40] Mitsuhiro Watanabe, Keyan Feng, Yoshio Nakamura, Shinji Kumai.Growth Manner of Intermetallic Compound Layer Produced at WeldingInterface of Friction Stir Spot Welded Aluminum/Steel Lap Joint[J].Materials Transactions,2011,52(5):953-959.
    [41] Hidefumi Date, Shin Kobayakawa and Masaaki Naka. Microstructure andbonding strength of impact-welded aluminium–stainless steel joints[J].Journal of Materials Processing Technology,1999,85(1-3):166-170.
    [42] S.D. Kore, P.P. Datea, S.V. Kulkarni. Electromagnetic impact welding ofaluminum to stainless steel sheets[J]. Journal of Materials ProcessingTechnology,2008,208(1-3):486-493.
    [43] M. J. Rathod, M. Kutsuna. Joining of aluminum alloy5052and low-carbon steel by laser roll welding[J]. Welding Journal,2004,83(1):16-26.
    [44] M. Kamal Karfoul, Gordon J. Tatlock and Robert T. Murray. Thebehaviour of iron and aluminium during the diffusion welding of carbonsteel to aluminium[J]. Journal of materials science,2007,42(14):5692-5699.
    [45] Bhanumurthy, K., Fotedar, R. K., Joyson, D., Kale, G. B., Pappachan, A.L., Grover, A. K., Krishnan, J. Development of tubular transition joints ofaluminium/stainless steel by deformation diffusion bonding[J]. MaterialsScience and Technology,2006,22(3):321-330(10).
    [46] Qiu Ranfeng, Satonaka Shinobu, Iwamoto Chihiro.Effect of interfacialreaction layer continuity on the tensile strength of resistance spot weldedjoints between aluminum alloy and steels[J]. Materials&Design,2009(30):3686-3689.
    [47] Qiu, R., Iwamoto, C., Satonaka, S. In situ scanning electron microscopyobservation of fracture crack propagation in the welding interface betweenaluminium alloy and steel[J]. Materials Science and Technology,2009,25(10):1189-1192(4).
    [48] Ranfeng Qiu, Chihiro Iwamoto, Shinobu Satonaka. Interfacialmicrostructure and strength of steel/aluminum alloy joints welded byresistance spot welding with cover plate[J]. Journal of MaterialsProcessing Technology,2009,209(8):4186-4193.
    [49] Ranfeng Qiu, Hongxin Shi, Keke Zhang, Yimin Tu, Chihiro Iwamoto,Shinobu Satonaka. Interfacial characterization of joint between mild steeland aluminum alloy welded by resistance spot welding[J]. MaterialsCharacterization,2010,61(7):684-688.
    [50] Ranfeng Qiu, Chihiro Iwamoto, Shinobu Satonaka. The influence ofreaction layer on the strength of aluminum/steel joint welded by resistancespot welding[J]. Materials Characterization,2009,60(2):156-159.
    [51] Zhang W H, Qiu X M, Sun D Q, Han L J. Effects of resistance spotwelding parameters on microstructures and mechanical properties ofdissimilar material joints of galvanised high strength steel and aluminiumalloy[J]. Science and Technology of Welding&Joining,2011,16(2):153-161(9).
    [52] X. Sun, E.V. Stephens, M.A. Khaleel, H. Shao and M. Kimchi. Resistancespot welding of aluminum alloy to steel with transition material–fromprocess to performance–part1: experimental study[J]. Weld J,2004,83(6):188–195.
    [53] X. Sun and M. A. Khaleel. Resistance spot welding of aluminum alloy tosteel with transition material-part2: fnite element analysis of nuggetgrowth[J]. Welding Journal,2004,83(7):197–202.
    [54] Shin-ichi Matsuoka, Hisashi Imai. Direct welding of different metals usedultrasonic vibration[J]. Journal of Materials Processing Technology,2009,209(2),19:954-960.
    [55] Takehiko Watanabe, Hideo Sakuyama, Atsushi Yanagisawa. Ultrasonicwelding between mild steel sheet and Al–Mg alloy sheet[J]. Journal ofMaterials Processing Technology,2009,209(15-16):5475-5480.
    [56] M.H.El-Sayed, M.H.Hafez, K.M.Naka. Interfacial structure and bondstrength of ultrasonic brazed Al–304stainless steel dissimilar joints[J].Science and Technology of Welding&Joining,2004,9(6):560-564.
    [57] Garbacz H, Wieciński P, Adamczyk-Cie lak B, Mizera J, Kurzyd owskiK.J. Studies of aluminium coatings deposited by vacuum evaporation andmagnetron sputtering[J]. Journal of Microscopy,2010,237(3):475-480.
    [58]王玉魁.A3钢基体磁控溅射离子镀铝薄膜的物相分析[J].大连工学院学报,1986,25(2):87-91.
    [59] K. Bouche, F. Barbier, A. Coulet. Intermetallic compound layer growthbetween solid iron and molten aluminium[J]. Materials Science andEngineering: A,1998,249(1-2):167–175.
    [60] Bouayad, Ch. Gerometta, A. Belkebir, A. Ambari. Kinetic interactionsbetween solid iron and molten aluminium[J]. Materials Science andEngineering: A,2003,363(1-2):53–61.
    [61] Gul Hameed Awan, Faizul Hasan Pakistan. The morphology ofcoating/substrate interface in hot-dip-aluminized steels[J]. MaterialsScience and Engineering: A,2008,472(1-2):157–165.
    [62] T Z布拉齐恩斯基.爆炸焊接、成形与压制[M].北京:机械工业出版社,1988:4-10.
    [63] Fehim Findik. Recent developments in explosive welding[J]. Materials&Design,2011,32(3):1081-1093
    [64] Mustafa Acarer, Bilge Demir. An investigation of mechanical andmetallurgical properties of explosive welded aluminum–dual phasesteel[J]. Materials Letters,62(25):4158-4160.
    [65] Jun Hyun Han, Jae Pyoung Ahn and Myung Chul Shin.Effect of interlayerthickness on shear deformation behavior of AA5083aluminum alloy/SS41steel plates manufactured by explosive welding[J]. Journal of materialsscience,2003,38(1):13-18.
    [66] Li Y, Hashimoto H, Sukedai E, Zhang Y, Zhang Z. Morphology andstructure of various phases at the bonding interface of Al/steel formed byexplosive welding[J]. J Electron Microsc (Tokyo),2000,49(1):5-16.
    [67] A. K. Bhalla, J. D. Williams. Production of stainless steel wire-reinforced aluminium composite sheet by explosive compaction[J].Journal of materials science,1977,12(3):522-530.
    [68]张鹏.钢-铝液固相轧制复合工艺及理论研究[D].沈阳:东北大学博士论文,1998.
    [69]崔建忠,张晓博,路贵民,许光明.液-固相异种金属轧制复合方法及设备[P]. CN1628916,2005.
    [70] G.M. Xu, B.M. Li, J.Z. Cui. Interfacial Microstructure of Al-Sn-Pb alloy-steel during liquid-solid bonding rolling[J]. Journal of iron and steelresearch,2006,13(4):40-43.
    [71]李宏栋.高频振动对钢背铜石墨复合板的影响[D].北京:北京交通大学硕士学位论文,2010:11.
    [72]韩海东.钢背Al-28Pb复合板半固态铸轧复合研究[D].北京:北京交通大学硕士学位论文,2008:40-53.
    [73] H.W. Liu, C. Guo, Y. Cheng, X.F. Liu,G.J. Shao. Interfacial strength andstructure of stainless steel–semi-solid aluminum alloy clad metal[J].Materials Letters,2006,60,(2):180-184.
    [74] X.P. Zhanga, T.H. Yang, S. Castagne, C.F. Gu, J.T. Wang. Proposal ofbond criterion for hot roll bonding and its application[J]. Materials&Design,2011,32(4):2239-2245.
    [75] Kye-Man Lee, Hyung-Gu Kang, Moo-Young Huh and Olaf Engler. Effectof strain paths on development of shear textures during rolling inaluminum sheets[J]. Metals and materials international,2010,16(5):851-856.
    [76] S.H. Kim, H.G. Kang, M.Y. Huh, O. Engler. Interpretation of the strainstate during cross-roll rolling of aluminum by means of texture analysis[J].Materials Science and Engineering: A,2009,508(1-2):121-128.
    [77]启明.铝复合钢板[J].钢铁研究学报.1993,5(3):63.
    [78] M. Soltan Ali Nezhad, A. Haerian Ardakani. A study of joint quality ofaluminum and low carbon steel strips by warm rolling[J]. Materials&Design,2009,30(4):1103-1109.
    [79] Vikas Jindal, V.C. Srivastava. Growth of intermetallic layer at roll bondedIF-steel/aluminum interface[J]. Journal of Materials ProcessingTechnology,2008,195(1-3):88-93.
    [80] Gajanan P. Chaudhari, Viola Acoff. Cold roll bonding of multi-layered bi-metal laminate composites[J]. Composites Science and Technology,2009,69(10):1667-1675.
    [81] H. Danesh Manesh,H. Sh. Shahabi. Effective parameters on bondingstrength of roll bonded Al/St/Al multilayer strips[J]. Journal of Alloys andCompounds,2009,476(1-2):292-299.
    [82] Hisao Kawase, Mamoru makimoto, Kazuhiro takagi, Youji Ishida,Takakazu Tanaka. Development of Aluminum-clad Steel Sheet by Roll-bonding[J]. Nisshin Steel Technical Report,1981,44(96):628-632.
    [83] J. An, Y. Lu, D.W. Hot-Roll Bonding of Al-Pb Bearing Alloy Strips andHot Dip Aluminized Steel Sheets[J]. Journal of Materials Engineering andPerformance,2001,10(2):131-135.
    [84]田冲,陈桂云,杨林,赵九洲,张永昌.喷射轧制钢/Al-Pb复合轴瓦带材的组织与性能[J].材料研究学报,2004,18(1):102-107.
    [85] M. L. Mackay. Innovation in powder metallurgy: An engine bearingmaterial[J]. Metal Powder Report,1977,32,(10):289-392.
    [86]李兴刚.液-固相轧制复合生产AlSn8Si2.5Pb2Cu Cr/钢背复合轴瓦带的研究[D].沈阳:东北大学博士学位论文,2002:11.
    [87]杨晓林.钢背铜石墨复合板半固态复合研究[D].北京:北京交通大学硕士学位论文,2010:7.
    [88] M. J. Rathod, M. Kutsuna. Joining of aluminum alloy5052and low-carbon steel by laser roll welding[J]. Welding Journal,2004,83(1):16-26.
    [89] M.J. Torkamany, S. Tahamtan, J. Sabbaghzadeh. Dissimilar welding ofcarbon steel to5754aluminum alloy by Nd:YAG pulsed laser[J].Materials&Design,2010,31(1):458-465.
    [90]张鹏.钢被铝20锡自润滑复合板材的成形[M].北京:北京交通大学出版社,2007:27-36.
    [91] Shigeaki Kobayashi, Takao Yakou. Control of intermetallic compoundlayers at interface between steel and aluminum by diffusion-treatment[J].Materials Scienceand Engineering: A,2002,338(1-2):44-53.
    [92] Hitoshi Ozaki, Muneharu Kutsuna, Shigeyuki Nakagawa and KenjiMiyamoto. Laser roll welding of dissimilar metal joint of zinc coated steelto aluminum alloy[J]. Journal of Laser Applications,2010(1):1-6.
    [93] M. J. Rathod, M. Kutsuna. Joining of aluminum alloy5052and low-carbon steel by laser roll welding[J]. Welding Journal,2004,83(1):16-26.
    [94] B. P.里亚博夫.铝及铝合金与其它金属的焊接[M].北京:宇航出版社,1990:3-41,144-175.
    [95] T. Heumann, N. A. Dittrich. Structure character of the Fe2Al5intermetallics compound in hot dip aluminizing process[J]. Z. Metallk.1959,50:617-625.
    [96]刘津邦.钢材的热浸镀铝[M].北京:冶金工业出版社,1995:22-45.
    [97]尹衍升,施忠良,刘俊友.铁铝金属间化合物—合金化与成分设计[M].上海:上海交通大学出版社,1996:3.
    [98]张永刚.金属间化合物结构材料[M].北京:国防工业出版社,2001:27-36,191.
    [99] S. Seifeddine, S. Johansson, I. L. Svensson. The influence of cooling rateand manganese content on the β-Al5FeSi phase formation and mechanicalproperties of Al-Si-based alloys[J]. Materials Science and Engineering:A,2008,409(1/2):385-390.
    [100] Y. Du, J. C. Schuster, Z. K. Liu, et al. A thermodynamic description of theAl-Fe-Si system over the whole composition and temperature ranges via ahybrid approach of CALPHAD and key experiments[J]. Intermetallics,2008,16(4):554-570.
    [101] Wei-Jen Cheng, Chaur-Jeng Wang. Study of microstructure and phaseevolution of hot-dipped aluminide mild steel during high-temperaturediffusion using electronback scatter diffraction[J]. Applied SurfaceScience,2011,257(10):4663-4668.
    [102] Wei-Jen Cheng, Chaur-Jeng Wang. Growth of intermetallic layer in thealuminide mild steel during hot-dipping[J]. Surface and CoatingsTechnology,2009,204(6-7):824-828.
    [103] L. Agudo, D. Eyidi, C.H. Schmaranzer, E. Arenholz, N. Jank and J.Bruckner. Intermetallic FexAly-phases in a steel/Al-alloy fusion weld[J].Journal of materials science,2007,42(12):4205-4214.
    [104] Tomohiro Sasaki, Takao Yakou. Features of intermetallic compounds inaluminized steelsformed using aluminum foil[J]. Surface&CoatingsTechnology,2006,201(6):2131–2139.
    [105] D. Naoi, M. Kajihara. Growth behavior of Fe2Al5during reactivediffusion between Fe and Al at solid-state temperatures[J]. MaterialsScience and Engineering: A,2007,459(1-2):375-382.
    [106] H.Springer, A.Kostka, J.F.dos Santos, D.Raabe. Influence of intermetallicphases and Kirkendall-porosity on the mechanicalproperties of jointsbetween steel and aluminium alloys[J]. Materials Science and Engineering:A,2011,528(13-14):4630-4642.
    [107] H. Springer, A. Kostka, E.J. Payton, D. Raabe, A. Kaysser-Pyzalla, G.Eggeler. On the formation and growth of intermetallic phases duringinterdiffusion between low-carbon steel and aluminum alloys[J]. ActaMaterialia,2011,59(4):1586-1600.
    [108] G. Adam. The investigation on the microstructure model of aluminizedsteel. Metallurgical Transactions A,1977,8(4):973-975.
    [109] N.Yoneyama, K.Mizoguchi, S.Kumai, A.Sato, M.Kiritani. Plasticdeformation of Al13Fe4particles in Al-Al13Fe4by high-speed compression.Materials Science and Engineering: A,2003,350(1/2):117-124.
    [110] S.Miyazaki, A.Kawachi, S.Kumai, A.Sato. Plastic deformation ofhardlydeformable Al13Fe4particles embedded in an Al-Al13Fe4dual phasealloy[J]. Materials Science and Engineering: A,2005,400/401(1/2):294-299.
    [111] K. Saito, K. Sugiyama, K. Hiraga. Al13M4-type structures and atomicmodels of their twins. Materials Science and Engineering: A,2000,294/296:279-282.
    [112]马峰,蔡珣.膜基界面结合强度表征和评价[J].表面技术,2001,30(5):15-19.
    [113]李远星.2024Al超声波辅助软钎焊工艺及连接界面结合机制[D].哈尔滨:哈尔滨工业大学博士论文,2012:1-20.
    [114]王占学.塑性加工金属学[M].冶金工业出版社,2010:113-180.
    [115] Sindo Kou.焊接冶金学[M].高等教育出版社,2012:293-328.
    [116] ND. Lukaschkin, A.P. Borissow, A.I. Erlikh. The system analysis of metalforming technique in welding processes[J]. Journal of MaterialsProcessing Technology,1997,66:264-269
    [117] M. Eizadjou, H. Danesh Manesh, K. Janghorban. Mechanism of warm andcold roll bonding of aluminum alloy strips[J]. Materials&Design,2009,30:4156–4161.
    [118]潘金生.材料科学基础[M].清华大学出版社,1998:513-547.
    [119]沈黎.铝-铜-钢-铝层状金属复合材料的界面反应研究[D].昆明:昆明理工大学硕士论文,2002:46-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700