用户名: 密码: 验证码:
<110>织构铱涂层结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
难熔金属因其高温强度高,所以在航空航天领域有重要的应用价值。然而,难熔金属在高温环境下易被氧化形成多孔甚至挥发性氧化物,致使其服役的温度及寿命均受到极大限制。铂族金属具有优良的化学稳定性,尤其是铱(Ir)具有极低氧渗透率和氧化速率,成为难熔材料表面超高温抗氧化涂层的候选材料。本文采用双层辉光等离子表面冶金技术在难熔工件表面制备了Ir涂层,研究了基体和双辉工艺参数对Ir涂层组织结构的影响,分析了Ir涂层与基体界面形成过程,提出了Ir涂层<110>织构形成机制与涂层的生长机理。研究了双辉Ir涂层硬度、弹性模量、结合力和残余应力。研究了Ir涂层高温氧化烧蚀后形成微孔的机理。为了抑制微孔形成或使微孔能自愈合,对Ir涂层进行了掺Zr处理,研究了掺Zr对Ir涂层组织结构和性能的影响。
     采用扫描显微镜、透射电镜和原子力显微镜观察表征了涂层的微观组织结构;采用X射线能谱仪、X射线光电子能谱仪和电子探针X射线显微分析仪检测了涂层成分;采用电子背散射衍射技术测定了涂层的微观织构、晶界取向差和晶粒尺寸;采用X射线衍射仪鉴定了涂层物相、晶粒尺寸、宏观织构和残余应力;采用纳米压痕仪测试涂层表面硬度和弹性模量;采用划痕仪测量涂层与基体间结合力;氩气保护条件下对涂层进行1400℃×1.5h高温热处理,评价涂层高温热稳定性。对涂层进行800℃~1000℃×1h氧化处理,采用耐驰热分析仪对Ir涂层进行差热和热重分析,评价涂层高温抗氧化性能。用氧-乙炔焰对涂层表面进行2000℃±100℃×35s烧蚀,评价涂层高温抗烧蚀性能。本文创新性的成果和结论如下:
     (1)系统开展了双辉等离子体沉积Ir涂层的研究,提出了Ir涂层的<110>织构的形成机制。<110>织构的形成机制是沉积初期原子低迁移速率,(111)晶面晶粒易生长,以及在沉积过程中的沟道效应的溅射机制。由于双辉沉积技术具有反溅射特点,双辉Ir涂层的<110>织构的形成机制是沟道效应的溅射机制,沉积层受到高能量溅射粒子的反溅射。由于晶粒的溅射产额存在各向异性,<110>晶向晶粒的溅射率较小能保存下来并继续长大,而其它晶向晶粒由于其溅射率较大,生长受到抑制。
     (2)提出了双辉<110>织构Ir涂层的生长模式,建立了Ir涂层界面形成过程模型,研究了双辉Ir涂层的生长机理。Ir涂层生长模式是以岛状生长,涂层的生长机理是在沉积初期涂层生长主要受晶粒形核速率控制,随着涂层继续沉积,涂层生长主要受晶粒生长速率控制。
     (3)研究了高温真空热处理、高温氧化和高温烧蚀后Ir涂层产生微孔的形成机理。热处理后Ir涂层产生微孔的原因是涂层再结晶、涂层缺陷聚集和Kirkendall效应;高温氧化后涂层表面出现间隙是由于IrO3挥发所致;高温烧蚀后涂层产生的微孔来自于Ir氧化物的挥发和氧通过涂层晶界快速扩散至界面形成气态氧化物的逸出。
     (4)提出了对Ir涂层掺Zr改性的新方案,通过Zr的氧化膨胀,对微纳米孔进行弥合,改善了其高温结构稳定性。掺低含量Zr的Ir涂层比高含量Zr的Ir涂层的高温稳定性要好。经过800℃氧化后,Ir-25at.%Zr涂层表面保持完整、无微孔;Ir-40at.%Zr涂层表面局部被氧化,出现大颗粒氧化物。经过1000℃氧化后,Ir-25at.%Zr涂层表面出现微裂纹、氧化物大颗粒和微孔,这是由于涂层Zr的分布不均匀导致。
Due to high specific strength at high temperature, it’s of viable significance to utilise refractorymetals in the field of aerospace application. However, the refractory metals are easily oxidized toform micropores, even to form volatile oxides in high-temperature environments, which results intheir service temperature and life being restricted extremely. Platinum group metals have anexcellent chemical compatibility and stability, especially, iridium (Ir) has extremely low oxygenpermeability and oxidation rate, which is one of the most promising candidates as super-hightemperature oxidation-resistant coating for refractory materials. In this dissertation, the Ir coatingand was prepared by double glow plasma surface metallurgy technology on the surface of refractorymetals. The main goal of this dissertation was to investigate the effect of substrates and depositionparameters on structure of the coating and analyze the formation processing of the interface betweenthe coating and the substrate, the formation mechanism of <110> texture of the coating and growthmechanism of the coating. It was to investigate the mechanical properties of the coating, such ashardness, elastic modulus, adhesive force and residual stress. It was to investigate the mechanism ofmicropore formation in the Ir coating after heat treatment, oxidation and ablation. In order to inhibitmicropore formation or micropores self-healing, the effect of doping Zr on structure andperformance of the Ir coating was investigated.
     The microstructure and morphology of the coating were observed and characterized usingscanning electron microscopy, transmission electron microscopy and atomic force microscopy. Thechemical composition of the coating was examined by X-ray energy dispersive spectroscopy, X-rayphotoelectron spectroscopy and electron probe micro analyzer. The micro-texture, grainmisorientation angle and grain size of the Ir coating were determined by electron backscatterdiffraction technique. The phase identification, grian size, macro-texture and residual stress of thecoating were identified by X-ray diffraction. The hardness and the elastic modulus of the coatingwere estimated by nanoindentation instrument. The adhesive force of the coating was performedwith scratch tester. Ir coating were heat-treated at1400℃for90min in Ar atmosphere, to evaluatethe thermal stability of the coating. The Ir and Ir-Zr coatings were oxidized at800℃and1000℃for1h in air, meanwhile, the reaction heat and weight change of the Ir coating were measured using aNETZSCH thermal analyzer, to assess oxidation resistance of the coating. The ablation resistance ofthe coating was tested at2000℃±100℃for35s in an oxyacetylene flame. The main conclusions and innovative results of this dissertation are drawn as follows:
     1. The research work of Ir coating by double glow plasma technology is systematicly carried out,we proposed the formation mechanism of <110> texture for Ir coating. The formation mechanism of<110> texture is that (110) grains easily grow over under the low mobility of adatoms at the begin ofthe deposition, and sputtering mechanism of channeling effect. Due to the anisotropy of sputteringyields for grains, the erosion of <110> crystal direction grains is smaller, which could result in theformation and growth of <110> texture grains. In contrast, the erosion of other crystal direction grainsis relatively large, which lead to the inhibited growth of other crystal direction grains.
     2. We propose growth mode of Ir coating, develop a model of interface formation process of Ircoating and research the growth mechanism of the Ir coating. The growth mode of Ir coating followsisland growth model. The growth mechanism of the Ir coating is that the growth mode of the coatingis mainly controlled by the nucleation rate at the beginning of the deposition. With the depositionprocess, the growth of the coating is governed by the grain growth rate.
     3. We reseach the formation mechanisms of the micropores on/in the Ir coating after hightemperature vacuum heat-treatment, oxidation and ablation. After heat treatment, the formationmechanism of micropores in the coating results from recrystallization of the coating, aggregation inthe development of birth defects in the coating and Kirkendall effect. After oxidation, lots of voidsand gaps are present on the surface of the coating due to the formation of volatile IrO3. After hightemperature ablation, the formation mechanism of the micropores on the surface of the coating is dueto volatile IrO3and O element diffusing quickly through intercrystalline boundaries to be oxidized toform gaseous MoO3.
     4. We propose a new plan that Zr element is doped in the Ir coating. The Zr in the Ir coating isoxidized to make the micropore of the Ir coating self-heal. The volume expansion of Zr changed toZrO2imporves the high-temperature thermal stability of the coating. The thermal stability ofIr-25at.%Zr coating is better than that of Ir-40at.%Zr coating. After oxidation at800℃, the surface ofIr-25at.%Zr coating keeps integrity and no micropores are found. The surface of Ir-40at.%Zr coatingshows some oxidized portion, and presents large particles of oxides. After oxidation at1000℃, thesurface of Ir-25at.%Zr coating appears microcracks, abnormal large particles and less micropores dueto unhomogeneous distribution of Zr element in the coating.
引文
[1] Schmidt S, Beyer S, Knabe H, et al. Advanced ceramic matrix composite materials for current andfuture propulsion technology applications. Acta Astronautica,2004,55(3-9):409~420.
    [2] Huzel D K, Huang D H, Rocketdyne Divisi D. Huzel, et al. Modern engineering for design ofliquid-propellant rocket engines,第147卷, AIAA (American Institute of Aeronautics&Ast;Rev Sub edition,1992.
    [3] Kim E S, Cohn R K, Emdee J L. Liquid propulsion: Historical overview, fundamentals andclassifications of liquid rocket engines, A7983152009.
    [4]徐方涛,张绪虎,贾中华.姿/轨控液体火箭发动机推力室高温抗氧化涂层.宇航材料工艺,2012,1:25~29.
    [5]赵勇,华云锋.炭/炭复合材料表面金属功能涂层研究进展.固体火箭技术,2012,35(2):233~237.
    [6] Liu C G, Chen J, Han H Y, et al. A long duration and high reliability liquid apogee engine forsatellites. Acta Astronautica,2004,55(3-9):401~408.
    [7] Cunzeman K, Schubert P. Survey of ultra-high temperature materials for applications above2000K. AIAA SPACE2009Conference&Exposition, Pasadena, California.2009.
    [8] Opeka M M, Talmy I G, Zaykoski J A. Oxidation-based materi-als selection for2000℃+hypersonic aerosurfaces: theoretical consid-erations and historical experience. Journal ofMaterials Science,2004,39(19):5887~5904.
    [9]陈健.燃烧室新材料在卫星双组元低推力发动机上的应用.航天控制,2001,19(4):8~14.
    [10] Cunzeman K, Schubert P. Survey of ultra-high temperature materials for applications above2000K. AIAA SPACE Conference&Exposition, Pasadena, California,2009.
    [11] Savino R, De Stefano Fumo M, Silvestroni L, et al. Arc-jet testing on HfB2and HfC-basedultra-high temperature ceramic materials. Journal of the European Ceramic Society,2008,28(9):1899~1907.
    [12] Sun W, Xiong X, Huang B Y, et al, ZrC ablation protective coating for carbon/carboncomposites. Carbon,2009,47(14):3365~3380.
    [13]吴全兴.铱在航天航空发动机上的应用开发.稀有金属快报,2001,(12):10.
    [14]杨英惠.铂-铱造的发动机腔可使用无毒燃料.现代材料动态,2005,1:10~11.
    [15] Panfilov P. Deformation tracks distribution in iridium single crystals under tension. Journal ofMaterials Science,2007,42(19):8230~8235.
    [16]朱利安,杨盛良,白书欣,等.铱及其合金的加工及应用.贵金属,2009,30(4):58~62.
    [17]向长淑,葛渊,张晗亮,等.耐超高温铱合金强韧化技术研究进展.材料导报,2009,23(7):7~10.
    [18] Fischer B, Behrends A, Freund D. High temperature mechanical properties of the platinum groupmetals, stress-rupture strength and creep behaviour at extremely high temperature. PlatinumMetals Review,1999,43(1):18~28.
    [19] Arblaster J W. Crystallographic properties of iridium-assessment of properties from absolutezero to the melting point. Platinum Metals Review,2010,54(2):93~102.
    [20] Weiland R, Lupton D F, Ficher B, et al. High-temperature mechanical properties of the platinumgroup metals, properties of pure iridium at high temperature. Platinum Metals Review,2006,50(4):158~170.
    [21] Bao Z B, Murakami H, Yamabe-Mitarai Y. Surface geometry of pure iridium oxidized at1373Kin air. Applied Surface Science,2011,258(4):1514~1518.
    [22] Criscione J M, Volk H F, Smith A W. Protection of graphite from oxidation at2100°C. AIAAJournal,1966,4(10):1791~1797.
    [23] Clift W M, McCarty K F, Boebme D R. Deposition and analysis of Ir-Al coatmgs for oxidationprotection of carbon materials at high temperatures. Surface&Coatings Technology,1990,42(1):29~40.
    [24] Hosono H, Mishima Y, Takezoe H, et al. Nanomaterials: from research to applications. HidekiHosoda. Smart coatings-multilayered and multifunctional in-situ ultrahigh-temperature coatings.Chapter12,2006:419~445.
    [25] Osamura H. Development of long life and high lgnitability iridium spark plug. Seoul2000FISITA World Automotive Congress, Seoul, Korea,2000.
    [26] Wimber R T, Kraus H G. Oxidation of iridium. Metallurgical and Materials Transactions B,1974,5(7):1565~1571.
    [27] Jehn H, Volker R, Ismail M I. Iridium losses during oxidation reactions at high temperatures inlow-pressure oxygen atmospheres. Platinum Metals Review,1978,22(3):92~97.
    [28] Hagen J, Burmeister F, Fromm A, et al. Iridium coatings with titanium sub-layer deposited by RFmagnetron sputtering. Plasma Processes and Polymers,2009,6(S1):678~683.
    [29] El Khakani M A, Chaker M, Le Drogoff B. Iridium thin films deposited by radio-frequencymagnetron sputtering. Journal of Vacuum Science&Technology A,1998,16(2):885~888.
    [30] Mumtaz K, Echigoya J, Enoki H, et al. Thermal cycling of iridium coatings on isotropic graphite.Journal of Materials Science,1995,30(2):465~472.
    [31] Mumtaz K, Echigoya J, Hirai T, et al. R.f. magnetron sputtered iridium coatings on carbonstructural materials. Materials Science and Engineering A,1993,167(1-2):187~195.
    [32] Netter P, Campros Ph. Oxidation resistant coatings produced by chemical vapor deposition:iridium and aluminum oxynitride coatings. Materials Research Society Symposium Proceedings,1990,168:247~252.
    [33] Hosoda H, Miyazaki S C, Hanada S J. Potential of IrAl base alloys as ultrahigh-temperaturesmart coatings. Intermetallics,2000,8(9):1081~1090.
    [34] Harding J T, Kazarof J M, Appel M A. Iridium-coated rhenium thrusters by CVD. NASATM-101309,1988.
    [35]张新,罗远辉,李兴彦.铱电镀工艺的简介与展望.金属功能材料,2012,19(2):59~61.
    [36]唐勇,杜继红,李争显,等.钽合金高温抗氧化铱涂层的制备.稀有金属材料与工程,2008,37(S4):610~612.
    [37]华云峰,李争显,杜继红.炭/炭复合材料抗氧化抗热震铱涂层的研究进展.稀有金属材料与工程,2010,39(11):2059~2063.
    [38]仝永刚,白书欣,张虹,等.碳/碳复合材料超高温抗氧化铱涂层研究现状.贵金属,2010,31(4):64~68.
    [39] Etenko A, McKechnie T, Shchetkovskiy A, et al. Oxidation-protective iridium andiridium-rhodium coatings produced by electrodeposition from molten salts. ECS Transactions,2007,3(14):151~157.
    [40] Toenshoff D A, Lanam R D, Ragaini J, et al. Iridium coated rhenium rocket chambers producedby electroforming. AIAA2000-3166,36thAIAA/ASME/SAE/ASEE Joint Propulsion Conference2000.
    [41] Withers J C, Ritt P E. Iridium plating and its high temperature oxidation resistance. TechnicalProceedings of the American Electroplaters Society, Pennsylvania: University of Pennsylvanis,1957,44:124~129.
    [42] Qian J G, Zhao T. Electrodeposition of Ir on platinum in NaCl KCl molten salt. Transactions ofNonferrous Metals Society of China,2012,22(11):2855~2862.
    [43] Reed B D, Biaglow J A, Schneider S J. Engineering issues of iridium coated rhenium rockets.Materials and Manufacturing Processes,1998, l3(5):757~771.
    [44] Wu Y, Suzuki A, Murakami H, et al. Characterization of electroplated platinum–iridium alloyson the nickel-base single crystal superalloy. Materials Transactions,2005,46(10):2176~2179.
    [45] Fang Y Y, Hsieh Y C, Lin C W. Electroplating of nanostructured Pt, Ir and Pt-Ir at roomtemperature. Journal of The Electrochemical Society,2012,159(9): D518~D520.
    [46] Gelfond N V, Igumenov I K. An XPS study of the composition of iridium films obtained by MOCVD. Surface Science,1992,275(3):323~331.
    [47] Dey S K, Goswami J, Wang C G, et al. Preparation of Ir film by liquid source metalorganicchemical vapor depostion. Journal of the Japan Institute of Metals,1999,38(2B):1052~1054.
    [48]潘水艳. MOCVD制备铱膜层工艺研究,[硕士学位论文].长沙:国防科学技术大学,2004.
    [49] Ultramet-Advanced Materials Solutions, Propulsion system components, liquid rocket engines,http://www.ultramet.com/propulsionsystem components liquid rocket.html.
    [50] Sagiv M C, Eliaz N, Gileadi E. Incorporation of iridium into electrodeposited rhenium–nickelalloys. Electrochimica Acta,2013,88:240~250.
    [51] Maury F, Senocq F. Iridium coatings grown by metal-organic chemical vapor deposition in ahot-wall CVD reactor. Surface&Coatings Technology,2003,163-164:208~213.
    [52] Sang I S, Jong H L, Bum H C, et al. Hydrogen-plasma-assisted hybrid atomic layer deposition ofIr thin film as novel Cu diffusion barrier. Surface&Coatings Technology,2012,211:14~17.
    [53] Chen Y L, Hsu C C, Song Y H, et al. Iridium metal thin films and patterned IrO2nanowiresdeposited using iridium (I) carbonyl precursors. Chemical Vapor Deposition,2006,12(7):442~447.
    [54] Yan L, Woollam J A. Optical constants and roughness study of dc magnetron sputtered iridiumfilms. Journal of Applied Physics,2002,92(8):4386~4392.
    [55] Mumtaz K, Echigoya J, Hirai T, et a1. Iridium coatings on carbon-carbon composites producedby two different sputtering methods: a comparative study. Journal of Materials Science Letters,1993,12(18):1411~l417.
    [56] Mumtaz K, Echigoya J, Taya M. Preliminary study of iridium coating on carbon/carboncomposites. Journal of Materials Science,1993,28(20):5521~5527.
    [57] Mumtaz K. Fundamental study of coatings produced by sputtering methods for high temperatureapplications,[博士学位论文].日本仙台, Tohoku University,1994.
    [58] Ganske G, Slavcheva E, van Ooyen A, et al. Sputtered platinum–iridium layers as electrodematerial for functional electrostimulation. Thin Solid Films,2011,519(11):3965~3970.
    [59] Wu F, Murakami H, Suzuki A. Development of an iridium–tantalum modified aluminide coatingas a diffusion barrier on nickel-base single crystal superalloy TMS-75. Surface&CoatingsTechnology,2003,168(1):62~69.
    [60] Lei M K, Zhang Z L, Ma T C. Plasma-based low-energy ion implantation for low-temperaturesurface engineering. Surface&Coatings Technology,2000,131(1-3):317~325.
    [61] Lee I S, Whang C N, Park J C, et al. Biocompatibility and charge injection property of iridiumfilm formed by ion beam assisted deposition. Biomaterials,2003,24(13):2225~2231.
    [62] Isogaw S, Tojo H, Chayahara A, et al. Plasma based ion implantation technology forhigh-temperature oxidation resistant surface coatings. Surface&Coatings Technology,2002,158-159:186~192.
    [63] Gong Y S, Wang C B, Shen Q, et al. Low-temperature deposition of iridium thin films by pulsedlaser deposition. Vacuum,2008,82(6):594~598.
    [64] Gong Y S, Wang C B, Shen Q, et al. Effect of annealing on thermal stability and morphology ofpulsed laser deposited Ir thin films. Applied Surface Science,2008,254(13):3921~3924.
    [65] Xu Z. Method and apparatus for introducing normally solid material into substrate surfaces. USPatent,4520268,1985.
    [66] Wang L B, Chen Z F, Zhang P Z, et al. Ir coating prepared on Mo substrate by double glowplasma. Journal of Coatings Technology and Research,2009,6(4):517~522.
    [67] Wang L B, Chen Z F, Zhang Y, et al. Ir coating prepared on Nb substrate by double glow plasma.International Journal of Refractory Metals and Hard Materials,2009,27(3):590~594.
    [68] Zhang Y, Chen Z F, Wang L B, et al. Effect of heat treatment at1300oC on W coating preparedby double-glow plasma on carbon/carbon composite. Journal of Coatings Technology andResearch,2009,6(2):237~241.
    [69] Zhang Y, Chen Z F, Wang L B, et al. Phase and microstructure of tungsten coating on C/Ccomposite prepared by double-glow plasma. Fusion Engineering and Design,2009,84(1):15~18.
    [70]陈照峰,王亮兵,张颖,等. C/C复合材料表面双辉等离子渗铱微观结构分析.宇航材料工艺,2008,38(2):30~33.
    [71]陈照峰,吴王平.难熔材料表面双辉沉积铱涂层研究.西安:西北工业大学出版社,2012:38~78.
    [72] Wu W P, Chen Z F, Cheng H, et al. Tungsten and iridium multilayered structure by DGP asablation-resistance coatings for graphite. Applied Surface Science,2011,257(16):7295~7304.
    [73]吴王平,陈照峰,承涵,等. W/Ir功能复合涂层及其抗烧蚀机制研究.宇航材料工艺,2011,41(1):84~88.
    [74] Khoa T D, Horii S, Horita S. High deposition rate of epitaxial (100) Iridium film on(100)YSZ/(100)Si substrate by RF sputtering deposition. Thin Solid Films,2002,419(1):88~94.
    [75]胡昌义. CVD Ir/Re复合材料研究,[博士学位论文].长沙:中南大学,2002.
    [76]胡昌义,邓德国,高逸群. CVD铱涂层/铼基复合喷管研究进展.宇航材料工艺,1998,28(3):7~10.
    [77]陈松,胡昌义,杨家明,等. CVD制备Ir/Re复合材料的显微组织和再结晶研究.稀有金属,2005,29(3):265~270.
    [78]陈松,胡昌义,杨家明,等. Ir/Re互扩散研究.稀有金属材料与工程,2006,35(1):17~20.
    [79] Cai H Z, Li C, Yan W, et al. Deposition effectiveness investigation of Ir film prepared byMOCVD. Rare Metal Materials and Engineering,2010,39(2):209~213.
    [80] Hua Y F, Zhang L T, Cheng L F, et al. Structural and morphological characterization of iridiumcoatings grown by MOCVD. Materials Science and Engineering B,2005,121(1-2):156~159.
    [81]华云峰,陈照峰,张立同,等. MOCVD Ir薄膜的制备与沉积效果分析.稀有金属材料与工程,2005,34(1): l39~142.
    [82] Yang W B, Zhang L T, Hua Y F, et al. Thermal stability of iridium coating prepared by MOCVD.International Journal of Refractory Metals&Hard Materials,2009,27(1):33~36.
    [83] Baklanova N I, Morozova N B, Kriventsov V V, et al. Synthesis and microstructure of iridiumcoatings on carbon fibers. Carbon,2013,56:243~254.
    [84] Ritterhaus Y, Hur’yeva T, Burte M L E P. Iridium thin films deposited by liquid deliveryMOCVD using Ir(EtCp)(1,5-COD) with toluene solvent. Chemical Vapor Deposition,2007,13(12):698~704.
    [85]仝永刚,白书欣,张虹,等. W、Mo、Re基体熔盐电沉积Ir涂层初探.材料科学与工程学报,2011,29(6):816~820.
    [86] Zhu L A, Bai S X, Zhang H. Iridium coating prepared on rhenium substrate by electrodepositionin molten salt in the air atmosphere. Surface&Coatings Technology,2011,206(6):1351~1354.
    [87] Chen Z F, Wu W P, Cheng H, et al. Microstructure and evolution of iridium coating on the C/Ccomposites ablated by oxyacetylene torch. Acta Astronautica,2010,66(5-6):682~687.
    [88]吴王平,陈照峰,丛湘娜,等.难熔金属高温抗氧化铱涂层的研究进展.稀有金属材料与工程,2013,42(2):435~440.
    [89] Chen Z F, Wu W P, Cong X N, et al. Study on iridium coating produced by double glow plasma.Advanced Materials Research,2011,314-316:214~218.
    [90] Wang J M, Zhang Z W, Xu Z H, et al. Oxidation of double glow plasma discharge coatings ofiridium on molybdenum for liquid fueled rocket motor casings. Corrosion Engineering, Scienceand Technology,2011,46(6):732~736.
    [91] Goto T, Vargas J R, Hirai T. Preparation of iridium clusters by MOCVD and theirelectrochemical properties. Materials Science and Engineering A,1996,217-218:223~226.
    [92] Garcia J R V, Goto T. Chemical vapor deposition of iridium, platinum, rhodium and palladium.Materials Transactions,2003,44(9):1717~1728.
    [93] Goto T, Vargas R, Hirai T. Preparation of iridium and platinum films by MOCVD and theirproperties. Journal de Physique IV,1993,3:297~304.
    [94] Snell L, Nelson A, Molian P. A novel laser technique for oxidation-resistant coating ofcarbon-carbon composite. Carbon,2001,39(7):991~999.
    [95] Kuppusami P, Murakami H, Ohmura T. Behaviour of Ir–24at.-%Ta films on Ni based singlecrystal superalloys. Surface Engineering,2005,21(1):53~59.
    [96] Kamiya K, Murakami H. Characterizatrion of an Ir-Hf alloy coating as a bond coat material.Journal of the Japan Institute of Metals,2005,69(1):73~79.(In Japanese)
    [97] Kuppusami P, Murakami H, Ohmura T. Microstructure and mechanical properties of Ir–Tacoatings on nickel-base single-crystal superalloy TMS-75. Journal of Vacuum Science&Technology A,2004,22(4):1208~1217.
    [98] Suzuki A, Wu Y, Yamaguchi A, et al. Oxidation behavior of Pt–Ir modified aluminized coatingson Ni-base single crystal superalloy TMS-82+, Oxidation of Metals,2007,68(1):53~64.
    [99] Haynes J A, Zhang Y, Cooley K M, et al. High-temperature diffusion barriers for protectivecoatings. Surface&Coatings Technology,2004,188-189:153~157.
    [100] Tseng S F, Hsiao W T, Huang K C, et al. Characteristics of Ni-Ir and Pt-Ir hard coatings surfacetreated by pulsed Nd:YAG laser. Surface&Coatings Technology,2010,205(7):1979~1984.
    [101] Mumtaz K, Echigoya J, Enoki H, et al. Annealing of aluminium oxide/iridium coatings inoxidizing atmosphere. Journal of Materials Science Letters,1994,13(24):1775~1777.
    [102] Mumtaz K, Echigoya J, Enoki H, et al. Annealing of aluminium oxide coatings oniridium-coated isotropic graphite at high temperature in argon atmosphere. Journal of Alloys andCompounds,1994,209(1-2):279~283.
    [103] Mumtaz K, Echigoya J, Enoki H, et al. RF magnetron sputtered aluminium oxide coatings oniridium. Journal of Materials Science,1996,31(19):5247~5256.
    [104]黄剑锋,李贺军,熊信柏,等.炭/炭复合材料高温抗氧化涂层的研究进展.新型碳材料,2005,20(4):373~379.
    [105]李贺军,薛晖,付前刚,等. C/C复合材料高温抗氧化涂层的研究现状与展望.无机材料学报,2010,25(4):3373~4325.
    [106] Hiroshi Y, Katsuaki K, Katsuhiro K, et al. Study of anti-oxidation coating system for advancedC/C composites. The8th symposium on high performance materials for severe environments,Tokyo,1997:283~294.
    [107] Sekigawa T, Takeda F, Taguchital M. High temperature oxidation protection coating for C/Ccomposites. The8th symposium on high performance materials for severe environments, Tokyo,1997:307~315.
    [108] Sugahara N, Kamiyama T, Yamamaoto O M, et al. Stabilized HO2/Ir/HfC oxidation resistantcoating system for C/C composites. The8th symposium on high performance materials forsevere environments, Tokyo,1997:397~408.
    [109]张小明,蔡小梅,王晖,等.近空间高速飞行器用超高温材料.稀有金属与工程,2011,40(S2):392~395.
    [110] Gelfond N V, Morozova N B, Igumenov I K, et al. Structure of Ir and Ir-Al2O3coatingsobtained by chemical vapor deposition in the presence of oxygen. Journal of StructuralChemistry,2010,51(1):82~91.
    [111] Chen T L, Li X M, Zhang S, et al. Comparative study of epitaxial growth of Pt and Ir electrodefilms grown on MgO-buffered Si(100) by PLD. Applied Physics A,2005,80(1):73~76.
    [112] Bauer E, van der Merwe J H. Structure and growth of crystalline superlattices:from monolayerto superlattice. Physical Review B,1986,33(6):3657~3671.
    [113] Kaiser N. Review of the fundamentals of thin-film growth. Appl Optics,2002,41(16):3053~3060.
    [114] Thompson C V. Structure evolution during processing of polycrystalle films. Annual Review ofMaterials Science,2000,30(1):159~190.
    [115] Thornton J A. The microstructure of sputter-deposited coatings. Journal of Vacuum Science&Technology A,1986,4(6):3059~3065.
    [116] Thornton J A. Structure and topography of sputtered coatings. Annual Review of MaterialsScience,1977,7:239~260.
    [117] Petrov I, Barna P B, Hultman L, et al. Microstructural evolution during film growth. Journal ofVacuum Science&Technology A,2003,21(5):117~128.
    [118] Ohring M. Material science of thin films, deposition and structure. Elsevier Pte Ltd., NewJersey,2002:300~357.
    [119] Grovenor C R M, Hentzells H T G, Smith D A. The development of grain structure duringgrowth of metallic films. Acta Metallurgica,1984,32(5):773~781.
    [120] Chang C M, Wei C M. Modeling of Ir adatoms on Ir surfaces. Physical Review B,1996,54(23):17083~17096.
    [121] Busse C, Polop C, Muller M, et al. Stacking-fault nucleation on Ir(111). Physical ReviewLetters,2003,91(5):056103-1~056103-4.
    [122] H rmann F, Roll H, Schreck M, et al. Epitaxial Ir layers on SrTiO3as substrates for diamondnucleation: deposition of the films and modification in the CVD environment. Diamond andRelated Materials,2000,9(3-6):256~261.
    [123] Wessling B. Sputter deposition of iridium and iridium oxide for stimulation electrode coatings,[博士学位论文].德国北莱茵-威斯特法伦州, Rheinisch-Westf lischen TechnischenHochschule Aachen,2007.
    [124] Gerfin T, H lg W J, Atamny F, et al. Growth of iridium films by metal organic chemical vapourdeposition. Thin Solid Films,1993,241(1-2):352~355.
    [125] Igumenov I K, Gelfond N V, Morozova N B, et al. Overview of coating growth mechanisms inMOCVD processes as observed in Pt group metals. Chemical Vapor Deposition,2007,13(11):633~637.
    [126] Zhu L A, Bai S X, Zhang H, et al. Effects of cathodic current density and temperature onmorphology and microstructure of iridium coating prepared by electrodeposition in molten saltunder the air atmosphere. Applied Surface Science,2013,265:537~545.
    [127] Chen Z F, Wu W P, Cheng H, et al. Microstructure and evolution of iridium coating on the C/Ccomposites ablated by oxyacetylene torch. Acta Astronautica,2010,66(5-6):682~687.
    [128]陈照峰,丛湘娜. C/C复合材料表面铱涂层的研究.贵金属,2012,33(3):10~14.
    [129]徐重.等离子表面冶金学.北京:科学出版社,2007:22~98.
    [130] Berg G, Friedrich C, Broszeit E, et al. Scratch test measurement of tribological hard coatings inpractice. Fresenius Journal of Analytical Chemistry,1997,358(1):281~285.
    [131] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulususing load and displacement sensing indentation experiments. Journal of Material Research,1992,7(6):1564~1583.
    [132] Wu W P, Chen Z F, Cong X N. Corrosion properties of Pt coatings by double glow plasma.Surface Engineering,2012,28(8):627~631.
    [133] Wu W P, Lin X, Chen Z F, et al. Microstructural characterization and mechanical property ofiridium coating produced by double glow plasma. Plasma Chemistry and Plasma Processing,2011,31(3):465~475.
    [134] Liu M Y, Shi B, Guo J X, et al. Lattice constant dependence of elastic modulus for ultrafinegrained mild steel. Scripta Materialia,2003,49(2):167~171.
    [135] Lia W L, Fei W D, Hanabusa T. Effect of deposition condition on residual stress of iron nitridethin films prepared by magnetron sputtering and ion implantation. Applied Surface Science,2006,252(8):2847~2852.
    [136] Zhang Z W, Wang J M, Xu Z H, et al. Preparation and characterization of Ir coating on WCceramic by double glow plasma. Journal of Materials Engineering and Performance,2012,21(10):2085~2089.
    [137]毛卫民,杨平,陈冷.材料织构分析原理与检测技术.北京:冶金工业出版社,2008:100~158.
    [138]杨平.电子背散射衍射技术及其应用.北京:冶金工业出版社,2007:5~214.
    [139]陈绍楷,李晴宇,苗壮,等.电子背散射衍射(EBSD)及其在材料研究中的应用.稀有金属材料与工程,2006,35(3):500~504.
    [140] Chen S K, Du J H, Gao G R, et al. Microstructure study of CVD W coating on Mo single crystalrods with <111> axial orientation by EBSD. Materials Science and Engineering A,2006,434(1-2):95~98.
    [141] Wu W P, Chen Z F. Growth mechanism of polycrystalline Ir coating by double glow plasmatechnology. Acta Metallurgica Sinica (English Letters),2012,25(6):469~479.
    [142] Sun Y M, Endle J P, Smith K, et al. Iridium film growth with iridium tris-acetylacetonateoxygen and substrate effects. Thin Solid Films,1999,346(1):100~107.
    [143] Wu W P, Chen Z F, Lin X, et al. Effects of bias voltage and gas pressure on orientation andmicrostructure of iridium coating by double glow plasma. Vacuum,2011,86(4):429~437.
    [144] Thompson C V, Carel R. Texture development in polycrystalline thin films. Materials Scienceand Engineering B,1995,32(3):211~219.
    [145] Wu W P, Chen Z F, Liu Y. Iridium coating deposited by using the double glow plasmatechnique-effect of glow plasma on structure of coating at single substrate edge. Plasma Scienceand Technology,2012,14(10):909~914.
    [146] Goswami J, Wang C G, Majhi P, et al. Highly (111)-oriented and conformal iridium films byliquid source MOCVD. Journal of Materials Research,2001,16(8):2192~21955.
    [147] Vargas R, Goto T, Zhang W, et al. Epitaxial growth of iridium and platinum films on sapphireby metalorganic chemical vapor deposition. Applied Physics Letters,1994,65(9):1094~1096.
    [148]陶杰,姚正军,薛烽.材料科学基础.北京:化学工业出版社,2009:331~414.
    [149] Wu W P, Chen Z F, Cheng X W, et al. EBSD study of (110) orientation of Ir coating on Nbsubstrate by double glow plasma. Nuclear Instruments and Methods in Physics Research SectionB, doi:10.1016/j.nimb.2012.12.069,2013.
    [150] Chen Z F, Wu W P, Wang L B, et al. Microstructure and analytic equation of conical aggregatein iridium coating prepared by double glow plasma. Surface Engineering,2011,27(4):242~245.
    [151] Beshenkov V G, Fomin L A, Irzhak D V, et al. Heteroepitaxy of Ir films on silicon with aceria/yttria stabilized zirconia buffer layer. Thin Solid Films,2012,520(23):6888~6892.
    [152]王恩哥.薄膜生长中的表面动力学(II).物理学进展,2003,23(2):145~191.
    [153]江炳尧,冯涛,任琮欣,等.低能Ar离子束辅助沉积Cu、Ag、Pt薄膜.核技术,2008,31(1):11-13.
    [154] Wei H L, Huang H C, Woo C H, et al. Development of <110> texture in copper thin films.Applied Physical Letters,2002,80(13):2290-2292.
    [155] Van Wyk G N, Smith H J. Crystalline reorientation due to ion bombardment. NuclearInstruments and Methods,1980,170(1-3):433~439.
    [156] Dobrev D. Ion-beam-induced texture formation in vacuum-condensed thin metal films. Thinsolid Films,1982,92(1-2):41~53.
    [157] Bradley R M, Harper J M, Smith D A. Theory of thin-film orientation by ion bombardmentduring deposition. Applied Physical Letters,2002,60(12):4160-4164.
    [158] Dong L, Srolovitza D J. Mechanism of texture development in ion-beam-assisted deposition.Applied Physical letters,1999,75(4);584~586.
    [159]江炳尧,蒋军,冯涛,等.低能Ar离子束辅助沉积择优取向Pt(111)薄膜.功能材料,2004,6(35):774-778.
    [160]王光明,周志敏,张彩培.多晶Nb的纳米压痕研究.金属学报,2005,41(7):703~707.
    [161] Weinberger M B, Levine J B, Chung H Y, et al. Incompressibility and hardness of solid solutiontransition metal diborides: Os1xRuxB2. Chemistry of Materials,2009,21(9):1915~1921.
    [162] Tjong S C, Chen H. Nanocrystalline materials and coatings. Materials Science and EngineeringR: Reports,2004,45(1):1~88.
    [163]朱晓东,米彦郁,何家文,等.膜基结合强度评定方法的探讨.中国表面工程,2002,15(4):28~31.
    [164] Hogmark S, Jacobson S, Larsson M. Design and evaluation of tribological coatings. Wear,2000,246(1-2):20~23.
    [165] Chen Z F, Wu W P, Wang L B, et al. Fracture in polycrystalline iridium coating. InternationalJournal of Fracture,2008,153(2):185~190.
    [166] McGinnis A J, Watkins T R, Jagannadham K. Residual stresses in a multilayer system ofcoatings. International Centre for Diffraction Data,1999,41:443~454.
    [167] Golecki I, Eagan M. Influence of the deposition parameters on the electrical and mechanicalproperties of physically vapor-deposition iridium and rhodium thin films. Materials ResearchSociety Symposium Proceedings,2000,594:105~110.
    [168] Richards M R. Process development for iridium aluminide coated silicon carbide-carbonfunctionally graded material for the oxidation protection of graphite,[博士学位论文].美国华盛顿, University of Washington,1996.
    [169] Zhang X C, Xu B S, Wang H D, et al. An analytical model for predicting thermal residualstresses in multilayer coating systems. Thin Solid Films,2005,488(1-2):274~282.
    [170] Liu C T, Inouye H. Study of iridium and iridium-tungsten alloys for space radioisotopic heatsources. ORNL-52401976:8-9.
    [171] Wu W P, Chen Z F, Lin X. Microstructure and phase composition of iridium coating onmolybdenum after heat treatment at1400oC. Advanced Materials Research,2011,189-193:688~691.
    [172]陈松,胡昌义,杨家明,等. Ir/Re复合材料的显微组织研究.稀有金属材料与工程,2005,34(4):618~621.
    [173] Ohriner E K, George E P. Growth of intermetallic layers in the iridium-molybdenum system.Journal of Alloys and Compounds,1991,177(2):219~227.
    [174] Hamilton J C, Yang N Y C, Clift W M, et al. Diffusion mechanisms in chemicalvapor-deposited iridium coated on chemical vapor-deposited rhenium. MetallurgicalTransactions A,1992,23(3):851~855.
    [175]陈松,胡昌义,郭俊梅,等. Ir/Mo互扩散研究.稀有金属材料与工程,2005,34(6):916~919.
    [176] Bao Z B, Murakami H, Yamabe-Mitarai Y. Effects of thermal exposure on Ir-based alloys withand without Pt coating. Corrosion Science,2011,53(4):1224~1229.
    [177] Bell W E, Tagami M. Study of gaseous oxides chloride and oxychloride of iridium. The Journalof Physical Chemistry,1966,70(3):640~646.
    [178] Wimber R T, Hills S W, Wahl N K, et al. Kinetics of evaporation/oxidation of iridium.Metallurgical Transactions A,1977,8(1):193~199.
    [179] Cong X N, Chen Z F, Wu W P, et al. A novel Ir-Zr gradient coating prepared on Mo substrateby double glow plasma. Applied Surface Science,2012,258(12):5135~5140.
    [180] Cong X N, Chen Z F, Wu W P, et al. Co-deposition of Ir-containing Zr coating by double glowplasma. Acta Astronautica,2012,79:88~95.
    [181] Chen Z F, Wu W P, Cong X N. Oxidation resistance coatings of Ir-Zr and Ir by double glowplasma. Journal of Materials Science&Technology, Accepted,2013.
    [182] Liu C T, George E P, Bloom E E. Ir-based alloys for ultra-high temperature applications. USPatent,6982122,2006.
    [183] Tuffias R H, Harding J, Kaplan R. High temperature corrosion resistance composite structure.US Patent,4917968,1990.
    [184] Zhang F Y, Hsu S T. Composite iridium barrier structure with oxidized refractory metalcompanion barrier. US Patent,6399521B1,2002.
    [185] Obata T. Iridium alloy excellent in hardness, workability and anti-contamination properties. USPatent,2010/0239453,2010.
    [186] Okamoto H. The Ir-Zr (Iridium-Zirconium) system. Journal of Phase Equilibria,1992,13(6):653~656.
    [187] Yamabe-Mitarai Y, Harada H. Face centered cubic and L12two-phase structure of Ir–Nb–Zralloys. Journal of Alloys and Compounds,2003,361(1-2):169~179.
    [188] Wu W P, Chen Z F, Li B B, et al. Mechanical and electrochemical properties of platinumcoating by double glow plasma on titanium alloy substrate. Russian Journal of Electrochemistry,2013,49(1):76~80.
    [189] Terada Y. Thermophysical properties of L12intermetallic compounds of iridium thermalconductivity and thermal expansion of Ir3X for ultra high-temperature applications. PlatinumMetals Review,2008,52(4):208~214.
    [190] McKamey C G, Tortorelli P E, De Van J H, e tal. A study of pest oxidation in polycrystallineMoSi2. Journal of Materials Research,1992,7(10):2747~2755.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700