用户名: 密码: 验证码:
形变量轧制金属镍退火过程中再结晶与晶粒长大研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
形变量冷轧金属镍及镍合金在退火过程中可以形成很强的立方织构,是作为二代高温超导基带的理想材料。对大形变量冷轧金属镍的再结晶及立方织构形成进行系统的研究具有重要的理论和实际意义。
     本文主要采用电子背散射衍射(EBSD)、显微硬度、电子通道衬度(ECC)等技术对经两种方式(普通冷轧和累积叠轧(ARB))大形变量轧制金属镍的形变组织及退火过程中组织结构演变进行了系统的研究;并采用Monte Carlo点阵模型对晶粒长大过程中立方织构演化进行了系统的模拟。
     研究结果如下:(1)对再结晶初期的微观组织结构内不同取向晶核的来源分析表明立方取向晶核主要来源于形变组织内的立方取向带,而由立方孪晶取向晶粒通过孪生形成的几率较低;强立方织构的形成需要立方取向的形核率占总形核率的1/6~1/4左右。(2)对再结晶过程中不同取向晶粒的长大过程的定位观察研究表明,在整个再结晶过程中立方取向晶粒相对于非立方取向晶粒均有一定的长大速率优势,其原因是立方取向与形变基体间形成具有<111>转轴的大角晶界的几率较其它取向晶粒高。(3)采用Monte Carlo点阵模型对晶粒长大过程中立方织构演化进行模拟的结果表明,完全再结晶后微观组织结构内的立方织构体积分数越高、立方与非立方平均晶粒尺寸比越大,则立方织构含量随晶粒长大增长速率越快;并根据模拟结果建立了反映结构参数关系的图表,预测立方织构含量变化。(4)对再结晶过程中每个再结晶晶粒与其长大过程中吞并的形变组织之间的取向差的统计分析表明,再结晶过程中发生了移动和未发生移动的再结晶晶界的取向差分布没有本质的区别;并进一步阐明了动-停-再动的晶界移动方式是再结晶晶界移动的特有方式,进而说明晶界移动速率公式v=MF对局部再结晶晶界片段并不适用。(5)对Σ3晶界的结构特征和移动性研究表明Σ3晶界主要可以分成两种类:孪晶型和非孪晶型;二者可以通过单一参数(界面取向差与60°<111>的偏差角Δθ)来区分;非孪晶型Σ3晶界移动性远大于孪晶型Σ3晶界。
Nickel and its alloys are ideally suited as substrate materials for second generation superconductors due to the fact that cold rolling to high strain followed by high temperature annealing results in formation of a very sharp cube texture in these materials. Research into the recrystalllization of highly cold rolled nickel and into the formation of the cube texture, therefore, is important for both theoretic understanding and practical application.
     In the present work the deformed microstructures and microstructural evolution during annealing of pure nickel highly deformed by both conventional rolling and accumulated rolling bonding have been systematically investigated using range of experimental techniques including electron backscattered diffraction (EBSD), micro-hardness measurement and electron channeling contrast . Furthermore a Monte Carlo Potts model was developed and used to systematically simulate the cube texture evolution during grain growth.
     The main conclusions achieved are as follows: (1) Analysis of the origin in samples annealed at a low temperature for a short time indicates that cube-oriented grains are mainly developed from cube-oriented deformation bands, but a few also develop from twinning of near cube-twin oriented grains. The formation of a sharp cube texture requires that the fraction of cube nuclei (number per unit volume) is higher than 1/6~1/4 of the total nuclei. (2) Results of“in-situ”experiments on the recrystallization process indicate that on average cube-oriented grains grow faster than other grains through the whole recrystallization process, mainly due to the fact that cube-oriented grains have a higher chance than other grains to encounter high-angle boundaries with misorientation rotation axes near the <111> corner. (3) Monte Carlo Potts model simulations of grain growth show that a higher of cube volume fraction (Fcube) and a higher ratio (β) of average grains size for cube-oriented grains compared to non-cube oriented grains in the fully recrystallized microstructure results in a faster the increase of the cube volume fraction. The diagram of Fcube-β-X has been established to show the connection between the structure parameters and to predict the cube volume fraction after grain growth. (4) A sequential annealing investigation of the relationship between each recrystallizing grain and the deformed matrix consumed by each grain during annealing indicates that the misorientation distributions for migrating and non-migrating recrystallizing boundaries are similar. Analysis of the data shows that the jerky movement is typical for recrystallizing boundaries and suggests that simple v=MF formulation does not hold for local recrystallizing boundary segments. (5) A detailed analysis of theΣ3 boundaries formed during recrystallization shows that theΣ3 boundaries can be separated into two groups: twin type and non-twin type. These can be differentiated using the total deviation parameter of each near-Σ3 boundary to the ideal 60°<111> relationship. The mobility for non-twin type ofΣ3 boundaries is substantially higher than that for twin typeΣ3 boundaries.
引文
[1]周廉,甘子钊.中国高温超导材料及应用发展战略研究.北京:化学工业出版设. 2007.
    [2] Phillips J M. Substrate selection for high-temperature superconducting thin films. J of Appl Phys, 1996, 79: 1829-1848.
    [3] Dimos D, Chaudhari P, Mannhart J. Superconducting Transport-Properties of Grain-Boundaries in Yba2cu3o7 Bicrystals. Phys Rev B, 1990, 41: 4038-4049.
    [4] Babcock S E, Cai X Y, Kaiser D L, et al. Weak-Link-Free Behavior of High-Angle Yba2cu3o7-Delta Grain-Boundaries in High Magnetic-Fields. Nature, 1990, 347: 167-169.
    [5] Feldmann D M, Reeves J L, Polyanskii A A, et al. Influence of nickel substrate grain structure on YBa2Cu3O7-x supercurrent connectivity in deformation-textured coated conductors. Appl Phys Lett, 2000, 77: 2906-2908.
    [6] Specht E D, Goyal A, Lee D F, et al. Cube-textured nickel substrates for high-temperature superconductors. Supercond Sci Technol, 1998, 11: 945-949.
    [7] Goyal A, Norton D P, Budai J D, et al. High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3Ox thick films on biaxially textured metals. Appl Phys Lett, 1996, 69: 1795-1797.
    [8] Norton D P, Goyal A, Budai J D, et al. Epitaxial YBa2Cu3O7 on biaxially textured nickel (001): An approach to superconducting tapes with high critical current density. Science, 1996, 274: 755-757.
    [9] Goyal A, Ren S X, Specht E D, et al. Texture formation and grain boundary networks in rolling assisted biaxially textured substrates and in epitaxial YBCO films on such substrates. Micron, 1999, 30: 463-478.
    [10] Bhattacharjee P P, Ray R K, Upadhyaya A. Nickel base substrate tapes for coated superconductor applications. J Mater Sci, 2007, 42: 1984-2001.
    [11] Paranthaman M, Goyal A, List F A, et al. Growth of biaxially textured buffer layers on rolled-Ni substrates by electron beam evaporation. Physica C, 1997, 275: 266-272.
    [12] He Q, Christen D K, Budai J D, et al. Deposition of biaxially-oriented metal and oxide buffer-layer films on textured Ni tapes: New substrates for high-current, high-temperature superconductors. Physica C, 1997, 275: 155-161.
    [13] Sarma V S, Eickemeyer J, Singh A, et al. Development of high strength and strongly cube textured Ni-4.5% W/Ni-15% Cr composite substrate for coated conductor application. Acta Mater, 2003, 51: 4919-4927.
    [14] Sarma V S, Eickemeyer J, Schultz L, et al. Recrystallisation texture and magnetisation behaviour of some FCC Ni-W alloys. Scripta Mater, 2004, 50: 953-957.
    [15] Bhattacharjee P P, Ray R K, Upadhyaya A. Development of cube texture in pure Ni, Ni-W and Ni-Mo alloys prepared by the powder metallurgy route. Scripta Mater, 2005, 53: 1477-1481.
    [16] Ijaduola A O, Thompson J R, Goyal A, et al. Magnetism and ferromagnetic loss in Ni-W textured substrates for coated conductors. Physica C, 2004, 403: 163-171.
    [17] Sarma V S, Eickemeyer J, Mickel C, et al. On the cold rolling textures in some fcc Ni-W alloys. Mater Sci Eng A, 2004, 380: 30-33.
    [18] Zhao Y, Suo H, Liu M, et al. Development of cube textured Ni-5 at.%W alloy substrates for coated conductor application using a melting process. Physica C, 2006, 440: 10-16.
    [19] Liu Q, Juul Jensen D, Hansen N. Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium. Acta Mater, 1998, 46: 5819-5838.
    [20] Kuhlmanwilsdorf D, Hansen N. Geometrically Necessary, Incidental and Subgrain Boundaries. Scripta Metall Mater, 1991, 25: 1557-1562.
    [21] Hansen N. Cold Deformation Microstructures. Mater Sci Tech, 1990, 6: 1039-1047.
    [22] Hughes D A, Hansen N, Bammann D J. Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scripta Mater, 2003, 48: 147-153.
    [23] Liu Q, Hansen N. Geometrically Necessary Boundaries and Incidental Dislocation Boundaries Formed During Cold Deformation. Scripta Metall Mater, 1995, 32: 1289-1295.
    [24] Bay B, Hansen N, Kuhlmannwilsdorf D. Deformation Structures in Lightly Rolled Pure Aluminum. Mater Sci Eng A, 1989, 113: 385-397.
    [25] Ananthan V S, Leffers T, Hansen N. Cell and Band Structures in Cold-Rolled Polycrystalline Copper. Mater Sci Tech, 1991, 7: 1069-1075.
    [26] Bay B, Hansen N, Hughes D A, et al. Overview No-96 - Evolution of Fcc Deformation Structures in Polyslip. Acta Metall Mater, 1992, 40: 205-219.
    [27] Bay B, Hansen N, Kuhlmannwilsdorf D. Microstructural Evolution in Rolled Aluminum. Mater Sci Eng A, 1992, 158: 139-146.
    [28] Hansen N. Deformation Microstructures. Scripta Metall Mater, 1992, 27: 1447-1452.
    [29] Hughes D A, Hansen N. Microstructural Evolution in Nickel During Rolling from Intermediate to Large Strains. Metall Trans A, 1993, 24: 2021-2037.
    [30] Rosen G I, Juul Jensen D, Hughes D A, et al. Microstructure and Local Crystallography of Cold-Rolled Aluminum. Acta Metall Mater, 1995, 43: 2563-2579.
    [31] Hansen N. New discoveries in deformed metals. Metall and Mater Trans A, 2001, 32: 2917-2935.
    [32] Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization: a review. Mater Sci Eng A, 1997, 238: 219-274.
    [33] Humphreys F J, Hatherley M. Recrystallization and Related Annealing Phenomena. New York: Elsevier Science, 2004.
    [34]毛卫民,赵新兵.金属的再结晶与晶粒长大.北京:冶金工业出版社, 1994.
    [35] Turnbull D, Fisher J C. Rate of Nucleation in Condensed Systems. J Chem Phys, 1949, 17: 71-73.
    [36] Doherty R D. Recrystallization and texture. Prog in Mater Sci, 1997, 42: 39-58.
    [37] Burke J E, Turnbull D. Recrystallization and Grain Growth. Progs in Metal Phys, 1952, 3: 220-292.
    [38] Bever M B, Holt D L, Titchene A. Stored Energy of Cold Work. Prog in Mater Sci, 1972, 17: 5-177.
    [39] Doherty R D. Deformed state and nucleation of recrystallization. Met Sci J, 1974, 8: 132-142.
    [40] Cahn R W. Recrystallization of Single Crystals after Plastic Bending. J Inst Metal, 1949, 76: 121-128.
    [41] Cahn R W. Internal Strains and Recrystallization. Prog in Metal Phys, 1950, 2: 151-176.
    [42] Cahn R W. A New Theory of Recrystallization Nuclei. Proc of Phys Soc London A, 1950, 63: 323-328.
    [43] Cottrell A H. Theory of Dislocations. Prog in Metal Phys, 1953, 4: 205-264.
    [44] Ferry M, Humphreys F J. Discontinuous subgrain growth in deformed and annealed {110}<001> aluminium single crystals. Acta Mater, 1996, 44: 1293-1308.
    [45] Bellier S P, Doherty R D. Structure of Deformed Aluminum and Its Recrystallization - Investigations with Transmission Kossel Diffraction. Acta Metall, 1977, 25: 521-538.
    [46] Inokuti Y, Doherty R D. Transmission Kossel Study of Structure of Compressed Iron and Its Recrystallization Behavior. Acta Metall, 1978, 26: 61-80.
    [47] Haasen P. How Are New Orientations Generated During Primary Recrystallization. Metall Trans A, 1993, 24: 1001-1015.
    [48] Berger A, Wilbrandt P J, Ernst F, et al. On the Generation of New Orientations During Recrystallization - Recent Results on the Recrystallization of Tensile-Deformed Fcc Single-Crystals. Progr in Mater Sci, 1988, 32: 1-95.
    [49] Duggan B J, Lucke K, Kohlhoff G, et al. On the Origin of Cube Texture in Copper. Acta Metall Mater, 1993, 41: 1921-1927.
    [50] Adams B L, Wright S I, Kunze K. Orientation Imaging - the Emergence of a New Microscopy. Metall Trans A, 1993, 24: 819-831.
    [51] Hjelen J, Orsund R, Nes E. Overview No 93 - on the Origin of Recrystallization Textures in Aluminum. Acta Metall Mater, 1991, 39: 1377-1404.
    [52] Ridha A A, Hutchinson W B. Recrystallization Mechanisms and the Origin of Cube Texture in Copper. Acta Metall, 1982, 30: 1929-1939.
    [53] Jones A R, Ralph B, Hansen N. Subgrain Coalescence and the Nucleation of Recrystallization at Grain-Boundaries in Aluminum. Proc R Soc London Ser A, 1979, 368: 345-350.
    [54] Beck P A, Sperry P R. Strain Induced Grain Boundary Migration in High Purity Aluminum. J Appl Phys, 1950, 21: 150-152.
    [55] Ray R K, Hutchinson W B, Duggan B J. Study of Nucleation of Recrystallization Using Hvem. Acta Metall, 1975, 23: 831-840.
    [56] Doherty R D. Nucleation and Growth-Kinetics of Different Recrystallization Texture Components. Scripta Metall Mater, 1985, 19: 927-930.
    [57] Beck P A, Sperry P R, Hu H. The Orientation Dependence of the Rate of Grain Boundary Migration. J Appl Phys, 1950, 21: 420-425.
    [58] Bunge H J, Kohler U. Modeling primary recrystallization in fcc and bcc metals by oriented nucleation and growth with the statistical compromise model. Textures Microstructure, 1996, 28: 231-259.
    [59] Schmidt U, Lucke K. Recrystallization textures of silver, copper and a-brasses with different zinc-contents as a function of the rolling temperature. Textures of Crystall Solid, 1979, 3: 85-112.
    [60] Li X L, Liu W, Godfrey A, et al. Development of the cube texture at low annealing temperatures in highly rolled pure nickel. Acta Mater, 2007, 55: 3531-3540.
    [61] Juul Jensen D. Growth-Rates and Misorientation Relationships between Growing Nuclei Grains and the Surrounding Deformed Matrix During Recrystallization. Acta Metall Mater, 1995, 43: 4117-4129.
    [62] Lauridsen E M, Poulsen H F, Nielsen S F, et al. Recrystallization kinetics of individual bulk grains in 90% cold-rolled aluminium. Acta Mater, 2003, 51: 4423-4435.
    [63] Engler O. On the influence of orientation pinning on growth selection of recrystallisation. Acta Mater, 1998, 46: 1555-1568.
    [64] Gertsman V Y, Tangri K, Valiev R Z. On the Grain-Boundary Statistics in Metals and Alloys Susceptible to Annealing Twinning. Acta Metall Mater, 1994, 42: 1785-1804.
    [65] Leslie W C, Plecity F J, Michalak J T. Recrystallization of Iron and Iron-Manganese Alloys. T Metall Soc Aime, 1961, 221: 691-700.
    [66] Juul Jensen D, Hansen N, Humphreys F J. Texture Development During Recrystallization of Aluminum Containing Large Particles. Acta Metall, 1985, 33: 2155-2162.
    [67] Bunge H J. Mathematische Methodes der Texturanalyse. Berlin: Akademie-Verlag, 1969.
    [68] Juul Jensen D. Automatic EBSP Analysis for Recrystallization Studies. Textures Microstructure, 1993, 20: 55-65.
    [69] Juul Jensen D. Growth of Nuclei with Different Crystallographic Orientations During Recrystallization. Scripta Metall Mater, 1992, 27: 533-538.
    [70] Cahn J W, Hagel W. Decomposition of Austenite by Diffusional Processes. New York: Zackey and Aaronson, 1960.
    [71] Doherty R D, Kashyap K, Panchanadeeswaran S. Direct Observation of the Development of Recrystallization Texture in Commercial Purity Aluminum. Acta Metall Mater, 1993, 41: 3029-3053.
    [72] Necker C T, Doherty R D, Rollett A D. Quantitative Measurement of the Development of Recrystallization Texture in Ofe Copper. Avignon France: Icotom 9, 1990. 635-640.
    [73] Saltykov S A. Stereometric Metallurgy. Moscow: Metallurgizdat, 1958.
    [74] Vandermeer R A, Juul Jensen D. On the Estimation of Cahn-Hagel Interface Migration Rates. Scripta Metall Mater, 1994, 30: 1575-1580.
    [75] Avrami M. Kinetics of phase change I - General theory. J Chem Phys, 1939, 7: 1103-1112.
    [76] Avrami M. Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. J Chem Phys, 1940, 8: 212-224.
    [77] Avrami M. Granulation, Phase Change, and Microstructure - Kinetics of Phase Change. III. J Chem Phys, 1941, 9: 177-184.
    [78] Hutchinson B, Ryde L. Mechanisms, Kinetics and crystallography of recrystallization in cold rolled steels. // Hansen N, et al. editor. Proc 16th Risoe Int Symp: Microstructural and Crystallographic Aspects of Recrystallization. Roskilde, Risoe Materials Subdivision, 1995, 16: 215-228.
    [79] Doherty R D, Rollett A D, Srolovitz D J. Structural evolution during recrystallization. // Hansen N, et al. editor. Proc 7th Risoe Int Symp: Annealing Processes Recovery, Recrystallization and Grain Growth. Roskilde, Risoe Materials Subdivision, 1986, 7: 53-68.
    [80] Kruger P, Woldt E. The Use of an Activation-Energy Distribution for the Analysis of the Recrystallization Kinetics of Copper. Acta Metall Mater, 1992, 40: 2933-2942.
    [81] Hurley P J, Humphreys F J. A study of recrystallization in single-phase aluminium using in-situ annealing in the scanning electron microscope. J Microscopy, 2004, 213: 225-234.
    [82] Hansen N, Bay B. Initial-Stages of Recrystallization in Aluminum Containing Both Large and Small Particles. Acta Metall, 1981, 29: 65-77.
    [83] Lauridsen E M, Schmidt S, Nielsen S F, et al. Non-destructive characterization of recrystallization kinetics using three-dimensional X-ray diffraction microscopy. Scripta Mater, 2006, 55: 51-56.
    [84] Schmidt S, Nielsen S F, Gundlach C, et al. Watching the growth of bulk grains during recrystallization of deformed metals. Science, 2004, 305: 229-232.
    [85] Poulsen H F. Three-dimensional X-ray diffraction microscopy. Roskilde: Springer, 2004.
    [86] Beck P A, Kremer J C, Demer L J, et al. Grain Growth in High-Purity Aluminum and in an Aluminummagnesium Alloy. Trans TMS-AIME, 1948, 175: 372-400.
    [87] Hillert M. On Theory of Normal and Abnormal Grain Growth. Acta Metall, 1965, 13: 227-231.
    [88] Thompson C V, Frost H J, Spaepen F. The Relative Rates of Secondary and Normal Grain-Growth. Acta Metall, 1987, 35: 887-890.
    [89] Eichelkraut H, Abbruzzese G, Lucke K. A Theory of Texture Controlled Grain-Growth .2. Numerical and Analytical Treatment of Grain-Growth in the Presence of 2 Texture Components. Acta Metall, 1988, 36: 55-68.
    [90] Abbruzzese G, Lucke K. A Theory of Texture Controlled Grain-Growth .1. Derivation and General Discussion of the Model. Acta Metall, 1986, 34: 905-914.
    [91] Rollett A D. Overview of modeling and simulation of recrystallization. Festschrift on Prog in Mater Sci, 1995, 42: 79-99.
    [92] Godiksen R B, Trautt Z T, Upmanyu M, et al. Simulations of boundary migration during recrystallization using molecular dynamics. Acta Mater, 2007, 55: 6383-6391.
    [93]徐锺济.蒙特卡罗方法.上海:上海科学技术出版社, 1991.
    [94] Holm E A, Glazier J A, Srolovitz D J, et al. Effects of Lattice Anisotropy and Temperature on Domain Growth in the 2-Dimensional Potts-Model. Phys Rev A, 1991, 43: 2662-2668.
    [95] Holm E A, Hassold G N, Miodownik M A. On misorientation distribution evolution during anisotropic grain growth. Acta Mater, 2001, 49: 2981-2991.
    [96] Holm E A, Miodownik M A, Rollett A D. On abnormal subgrain growth and the origin of recrystallization nuclei. Acta Mater, 2003, 51: 2701-2716.
    [97] Godfrey A, Zhang Y B, Lin F, et al. Monte Carlo simulation of cube-texture evolution during grain growth of high-purity nickel. Mater Sci Forum, 2004, 475-479: 3149-3152.
    [98] Mahajan S, Pande C S, Imam M A, Rath B B. Formation of annealing twins in fcc crystals. Acta Mater, 1997, 45: 2633-2638.
    [99] Fullman R L, Fisher J C. Formation of annealing twins during grain growth. J Appl Phys, 1951, 22: 1350-1355.
    [100] Dash S, Brown N. An investigation of the origin and growth of annealing twins. Acta Metall, 1963, 11:1067-1075.
    [101] Aust K T, Rutter J W. Grain Boundary Migration in High-Purity Lead and Dilute Lead-Tin Alloys. Trans TMS-AIME, 1959, 215: 119-127.
    [102] Erb U, Gleiter H, Schwitzgebel G. The Effect of Boundary Structure (Energy) on Interfacial Corrosion. Acta Metall, 1982, 30: 1377-1380.
    [103] Gleiter H, Chalmers B. High-Angle Grain-Boundaries. Prog in Mater Sci, 1972, 16: 1-12.
    [104] Watanabe T. An Approach to Grain-Boundary Design for Strong and Ductile Polycrystals. Res Mech, 1984, 11: 47-84.
    [105] Palumbo G, Aust K T, Erb U, et al. On Annealing Twins and Csl Distributions in Fcc Polycrystals. Phys Status Solidi A, 1992, 131: 425-428.
    [106] Palumbo G, King P J, Aust K T, et al. Grain-Boundary Design and Control for Intergranular Stress-Corrosion Resistance. Scripta Metall Materi, 1991, 25: 1775-1780.
    [107] Lin P, Palumbo G, Aust K T. Experimental assessment of the contribution of annealing twins to CSL distributions in FCC materials. Scripta Mater, 1997, 36: 1145-1149.
    [108] Lin P, Palumbo G, Erb U, et al. Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600. Scripta Metall Mater, 1995, 33: 1387-1392.
    [109] Thaveeprungsriporn V, Was G S. The role of coincidence-site-lattice boundaries in creep of Ni-16Cr-9Fe at 360 degrees C. Metall and Mater Trans A, 1997, 28: 2101-2112.
    [110] Lehockey E M, Palumbo G. On the creep behaviour of grain boundary engineered nickel. Mater Sci Eng A, 1997, 237: 168-172.
    [111] Schuh C A, Kumar M, King W E. Analysis of grain boundary networks and their evolution during grain boundary engineering. Acta Mater, 2003, 51: 687–700.
    [112] Kumar M, King W E, Schwartz A J. Modifications to the microstructural topology in f.c.c. materials through thermomechanical processing. Acta Mater, 2000, 48: 2081-2091.
    [113] Lehockey E M, Palumbo G, Aust K T, et al. On the role of intercrystalline defects in polycrystal plasticity. Scripta Mater, 1998, 39: 341-346.
    [114] Krupp U, Kane W M, Liu X, et al. The effect of grain-boundary-engineering-type processing on oxygeninduced cracking of IN718. Mater Sci Eng A, 2003, 349: 213-217.
    [115] Thaveeprungsriporn V, Was G S. Grain boundary properties of Ni-16Cr-9Fe at 360 degrees C. Scripta Mater, 1996, 35: 1-8.
    [116] Alexandreanu B, Capell B, Was G S. Combined effect of special grain boundaries and grain boundary carbides on IGSCC of Ni-16Cr-9Fe-xC alloys. Mater Sci Eng A, 2001, 300: 94-104.
    [117] Thaveeprungsriporn V, Sinsrok P, Thong-Aram D. Effect of iterative strain annealing on grain boundary network of 304 stainless steel. Scripta Mater, 2001, 44: 67-71.
    [118] King W E, Schwartz A J. Toward Optimization of the Grain Boundary Character Distribution in OFE Copper. Scripta Mater, 1998, 38: 449-455.
    [119] Shimada M, Kokawa H, Wang Z J, et al. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twininduced grain boundary engineering. Acta Mater, 2002, 50: 2331–2341.
    [120] Qian M, Lippold J C. The effect of annealing twin-generated special grain boundaries on HAZ liquation cracking of nickel-base superalloys. Acta Mater, 2003, 51: 3351–3361.
    [121] Randle V. Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials. Acta Mater, 1999, 47: 4187-4196.
    [122] Randle V. Twinning-related grain boundary engineering. Acta Mater, 2004, 52: 4067-4081.
    [123] Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials - Development of the accumulative roll-bonding (ARB) process. Acta Mater, 1999, 47: 579-583.
    [124] Schwab A, Bretschneider J, Buque C, et al. Application of electron channelling contrast to the investigation of strain localization effects in cyclically deformed fcc crystals. Philos Mag Lett, 1996, 74: 449-454.
    [125]胡运明.直接观察位错结构的扫描电镜电子通道衬度技术.材料研究学报, 1997, 3: 240-244.
    [126] Lassen N C K, Juul Jensen D, Conradsen K. Image-Processing Procedures for Analysis of Electron Back Scattering Patterns. Scanning Microsc, 1992, 6: 115-121.
    [127] Wright S I, Adams B L. Automatic-Analysis of Electron Backscatter Diffraction Patterns. Metall Trans A, 1992, 23: 759-767.
    [128] Humphreys F J. Quantitative metallography by electron backscattered diffraction. J Microscopy, 1998, 195: 170-185.
    [129] Humphreys F J. Review - Grain and subgrain characterisation by electron backscatter diffraction. J Mater Sci, 2001, 36: 3833-3854.
    [130]李晓玲.冷轧高纯镍回复、再结晶及立方织构形成机理的研究[博士学位论文].北京:清华大学材料系, 2006.
    [131] Brandon D G. Structure of High-Angle Grain Boundaries. Acta Metall, 1966, 14: 1479-1484.
    [132] Kamikawa N, Sakai T, Tsuji N. Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel. Acta Mater, 2007, 55: 5873-5888.
    [133] Kamikawa N, Tsuji N, Minamino Y. Microstructure and texture through thickness of ultralow carbon IF steel sheet severely deformed by accumulative roll-bonding. Sci Tech Adv Mater, 2004, 5: 163-172.
    [134] Li B L, Tsuji N, Kamikawa N. Microstructure homogeneity in various metallic materials heavily deformed by accumulative roll-bonding. Mater Sci Eng A, 2006, 423: 331-342.
    [135] Godfrey A, Cao W Q, Hansen N, et al. Stored energy, microstructure, and flow stress of deformed metals. Metall and Mater Trans A, 2005, 36: 2371-2378.
    [136] Gottstein G, Shvindlerman L S. On the True Dependence of Grain-Boundary Migration Rate on Driving Force. Scripta Metall Mater, 1992, 27: 1521-1526.
    [137] Vandermeer R A, Juul Jensen D, Woldt E. Grain boundary mobility during recrystallization of copper. Metall and Mater Trans A, 1997, 28: 749-754.
    [138] Vandermeer R A. Dependence of Grain Boundary Migration Rates on Driving Force. T Metall Soc Aime 1965, 233: 265-274.
    [139] Vandermeer R A, Juul Jensen D. The migration of high angle grain boundaries during recrystallization. Interface Science, 1998, 6: 95-104.
    [140] Babcock S E, Balluffi R W. Grain-Boundary Kinetics .2. Insitu Observations of the Role of Grain-Boundary Dislocations in High-Angle Boundary Migration. Acta Metall, 1989, 37: 2367-2376.
    [141] Turnbull D. Theory of Grain Boundary Migration Rates. Trans TMS-AIME, 1951, 191: 661-665.
    [142] Merkle K L, Thompson L J, Phillipp F. Collective effects in grain boundary migration. Phys Rev Lett, 2002, 88: 102-105
    [143] Sutton A P, Balluffi R W. Interfaces in crystalline materials. Oxford: Oxford University Press, 1995.
    [144] Jones A R, Howell P R, Ralph B. Changes in Grain-Boundary Structure During Initial-Stages of Recrystallization. Philos Mag, 1977, 35: 603-611.
    [145] Godiksen R B N, Schmidt S, Juul Jensen D. Molecular dynamics simulations of grain boundary migration during recrystallization employing tilt and twist dislocation boundaries to provide the driving pressure. Model Simul Mater Sci Eng, 2008, 16: 100-105
    [146] Wu G L, Juul Jensen D. Orientations of recrystallization nuclei developed in columnar-grained Ni at triple junctions and a high-angle grain boundary. Acta Mater, 2007, 55: 4955-4964.
    [147] Mullins W W. Theory of Thermal Grooving. J Appl Phys, 1957, 28: 333-339.
    [148] Murr L E, Horylev R J, Wong G I. Measurement of Absolute Interfacial Free Energies in a Nicr Alloy. Surf Sci, 1971, 26: 184-188.
    [149] Mullins W W, Shewmon P G. The Kinetics of Grain Boundary Grooving in Copper. Acta Metall, 1959, 7: 163-170.
    [150] Mullins W W. The Effect of Thermal Grooving on Grain Boundary Motion. Acta Metall, 1958, 6: 414-427.
    [151] Knudsen T, Cao W Q, Godfrey A, et al. Stored energy in nickel cold rolled to large strains, measured by calorimetry and evaluated from the microstructure. Metall and Mater Trans A, 2008, 39: 430-440.
    [152] Morawiec A. Orientations and Rotations: Computations in Crystallographic Textures. Berlin: Springer-Verlag, 2004.
    [153] Godfrey A, Mishin O V, Liu Q. Processing and interpretation of EBSD data gathered from plastically deformed metals. Mater Sci Tech, 2006, 22: 1263-1270.
    [154] Mishin O V. Distributions of grain boundaries and triple junctions in variously textured copper. Scripta Mater, 1998, 38: 423-428.
    [155] Mishin O V. Statistical characteristics of grain boundary ensembles in variously textured copper. J Mater Sci, 1998, 33: 5137-5143.
    [156] Randle V, Davies P, Hulm B. Grain-boundary plane reorientation in copper. Philos Mag A, 1999, 79: 305-316.
    [157] Gindraux G, Form W. New Concepts of Annealing-Twin Formation in Face-Centered Cubic Metals. J Inst Metal, 1973, 101: 85-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700