用户名: 密码: 验证码:
板坯连铸凝固过程微观组织的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连铸坯质量一直是冶金工作者关注和研究的重点问题之一。深入理解凝固过程枝晶形貌的发展变化及枝晶间的微观偏析对于揭示凝固机理及控制铸坯质量是十分必要的。目前数值模拟已逐渐成为研究微观机理现象必不可少的技术而日趋成熟,对铸坯内部微观机理的模拟研究与深入探讨对于连铸技术的发展具有重要的指导作用。枝晶是连铸坯凝固过程最常见的组织形态,研究枝晶形貌演变过程有助于控制凝固组织形貌。因此本课题针对连铸坯凝固过程,结合宏观传热模型,对钢液凝固过程的枝晶生长形态变化及成分偏析进行研究,并发现了连铸过程和铸造过程在凝固组织形貌分析上的重要区别。本文主要研究内容和获得的结果如下:
     (1)分析并总结了国内外连铸及铸造过程微观组织及微观偏析模型,针对连铸钢液的凝固过程提出了研究枝晶生长的微观结构参数及其变化规律的数学模型,并结合实际浇注条件对碳钢和不锈钢两种钢种进行数值模拟计算,得出一些重要的微观组织参数,如枝晶生长速率、枝晶尖端半径、二次枝晶臂间距、固液界面处的溶质浓度、温度梯度、冷却速率、过冷度和枝晶尖端温度,随凝固进程及坯壳生长的变化关系。
     (2)连铸坯凝固微观组织模型的验证与检验。以浇注碳钢连铸坯为研究对象,根据对现场实际浇注冷却后的钢坯试样的二次枝晶臂间距的测量值与模型计算值进行比较分析。确定了模型在连铸范畴内运用是合理的,且预测的微观组织参数能够反映凝固过程的组织变化情况;同时确定出连铸过程的稳定性常数值在0.05-0.085的适用范围,推导并验证了吉布斯-汤姆森系数1.2×10~(-8)运用在连铸坯凝固过程的合理性。
     (3)分析了连铸坯凝固末期固液界面前沿碳钢的主要元素C、Si、Mn、P、S和不锈钢的主要元素C、Cr、Ni、P、S的微观偏析程度随凝固进程的变化关系。当固相分率超过0.9时,P和S的偏析显著增加,其中S的偏析最大,而C,Si和Mn(Cr和Ni)的偏析变化不如P和S显著。随着凝固坯壳的不断生长,液相越来越少,残余在液相中的溶质元素也会随着液相的减少而减少;各元素的偏析程度随枝晶生长速率的增加而略趋严重。
     (4)研究了稳定性常数σ~*等微观参数和拉速等浇注参数对连铸凝固过程各微观结构参数的影响规律。稳定性常数越大,枝晶尖端半径越小,二次枝晶臂间距也越小。稳定性常数从0.025增大到0.05时,碳钢铸坯和不锈钢铸坯的枝晶尖端半径均减小约5~6μm,碳钢铸坯的二次枝晶臂间距减小幅度在100μm范围内,不锈钢铸坯的二次枝晶臂间距减小幅度在10μm范围内。在过热度为20℃下,拉速V_c从0.6m/min变化至1.0m/min时,在坯壳生长方向上,枝晶生长速率、枝晶前沿溶质浓度、温度梯度、冷却速率和过冷度均随着拉速的增加而减小,而枝晶尖端半径、二次枝晶臂间距、枝晶尖端温度则随之增大。
     (5)研究比较了碳钢和不锈钢两种钢种的微观组织特性。碳钢连铸坯的枝晶生长速率在0.1-0.7mm/s内变化,枝晶尖端半径在12μm内变化,不锈钢连铸坯的枝晶尖端半径要比碳钢小3-4μm;对于二次枝晶臂间距来说,不锈钢则比碳钢要小得多。由于不锈钢其特有的组成和凝固模式,使得不锈钢的各微观参数值均比碳钢小,其凝固组织更为细密。
     本研究对连铸凝固过程的微观机理进行了探索性的分析,取得了一些初步性的进展,但仍需进行后续的深入研究,为实现预测连铸过程中的微观组织形貌、提高材料组织性能提供理论指导。
The quality of the final steel products is the most concerned issue in the industrial practice of steel continuous casting process. It is very important to investigate the dendrite evolution and microsegregation among the dendrites for steel solidification during continuous casting process. The mathematical simulation has become a necessary technology in the micro field. Nowadays researches on the microstructure evolution and the micro-segregation in steel continuous casting process have received more and more interests. Dendrite is one of the most common configurations during solidification. For continuous casting process, the analysis of the dendrite growth and the microstructure shape is quite different from that of ingot casting process. In the present study, the microstructure and microsegregation of steel solidification combined with the macro- heat transfer have been studied for continuous casting process. The main contents and the developments are carried out below:
     (1) The microstructure and microsegregation models which are summarized both for the continuous casting process and the ingot casting process are presented for the application of steel solidification during continuous casting process. A numerical method is developed to analyze and calculate the microstructure parameters, such as the dendrite tip radius, the dendrite growth velocity, the liquid concentration, the temperature gradient, the cooling rate, the secondary dendrite arm spacing, and the dendrite tip temperature in front of S/L interface, with the variations of solidification progress and solid shell growth for both carbon steel and stainless steel during continuous casting.
     (2) The current model is well validated by the published models and the measurement data. The results show that the present model is reasonable. Taking carbon steel for actual continuous casting, the analysis of secondary dendrite arm spacing of the samples is compared with the calculation results. The reasonable stability coefficient in the range of 0.05-0.085 and Gibbs-Thomson coefficient 1.2×10~(-8) are determined for continuous casting process.
     (3) The microsegregation of C、Si、Mn、P、S for carbon steel and C、Cr、Ni、P、S for stainless steel with the variations of both solidification progress and solid shell growth are discussed. When the solid fraction is over 0.9, the microsegregation of P and S increases observably, especially the S segregation, while the variation of C, Si and Mn (Cr and Ni) microsegregation is not so obvious. With the solidification progress, the microsegregation degree of each element increases with the increasing of the dendrite growth velocity.
     (4) The effects of the stability coefficientσ~* and casting speed on the microstructure parameters are studied. For different systems, a* takes different values. The determination of the stability coefficient value has great importance on the dendrite growth shapes forming. The larger the stability coefficient is, the smaller the dendrite tip radius and secondary dendrite arm spacing are. When the stability coefficient changes from 0.025 to 0.05, the dendrite tip radius decreases by 5-6μm for both carbon steel and stainless steel. But the reduced rate for the secondary dendrite arm spacing for carbon steel is within 100μm, which for the stainless steel is only within 10μm. Effects of different casting speed V_c 0.6m/min, 0.8m/min and 1.0m/min on these parameters are also investigated. When casting speed increases from 0.6 m/min to 1.0 m/min, the dendrite growth velocity, the solute concentration, the temperature gradient, the cooling rate and the undercooling decrease, while the dendrite tip radius, the secondary dendrite arm spacing and the dendrite tip temperature increase.
     (5) Comparisons between the carbon steel and the stainless steel for the above results are carried out, and the same trend for both two steel grades is obtained. When the dendrite growth rate changes from 0.1 mm/s to 0.7 mm/s, the dendrite tip radius for carbon steel changes within 12μm, while dendrite tip radius for stainless steel is 3-4μm smaller than that of carbon steel. For the secondary dendrite arm spacing, the values of stainless steel are much smaller than those of carbon steels. The comparisons show that the micro- structural parameter values of stainless steel are smaller than those of the carbon steel due to its special compositions and solidification mode characteristics.
     Above all, the current study is just an exploration and has obtained some elementary developments. More research should be done to realize the prediction of the microstructure shape and improve the capabilities of microstructure for the solidification process during continuous casting.
引文
1. Zhu M F, Cao W, Chen S L, et al. Modeling of microstructure and microsegregation in solidification of multi-component alloys[J], Journal of Phase Equilibria and Diffusion, 2007,28: 130-138.
    
    2. Kraft T, Chang Y A. Predicting microstructure and microsegregation in multicomponent alloys[J], JOM, 1997, 12: 20-28.
    
    3. Kraft T, Rettenmayr M, Exner H E. An extended numerical procedure for predicting microstructure and microsegregation of multicomponent alloys[J], Modelling Simulation Material Science Engineering, 1996, 4: 161-177.
    
    4. Trivedi R, Kurz W. Dendritic growth[J], International Material Review, 1994, 39: 49-74.
    
    5. Stefanescu D M. Methodologies for modeling of solidification microstructure and their capabilities[J], ISIJ International, 1995, 35(6): 637-650.
    
    6. Yamazaki M, Natsume Y, Harada H, et al. Numerical simulation of solidification structure formation during continuous casting in Fe-0.7mass%C alloy using cellular automation method[J], ISIJ International, 2006, 46(6): 903-908.
    
    7. Cicutti C, Boeri R. Development of an analytical model to predict the microstructure of continuously cast steel slabs[J], Steel Research, 2000, 71(8): 288-294.
    
    8. Yoshioka H, Tada Y, Hayashi Y. Crystal growth and its morphology in the mushy zone[J], Acta Materialia, 2004, 52(6): 1515-1523.
    
    9. Stefanescu D M. Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys[J], Acta Materialia, 1999, 47(17): 4253-4262.
    
    10. Mat M D, Ilegbusi O J. Application of a hybrid model of mushy zone to macrosegregation in alloy solidification[J], International Journal of Heat Mass Transfer, 2002,45:279-289.
    
    11. Ludwig A. Thermophysical properties necessary for advanced casting simulation[J], International Journal of Thermophysics, 2002, 23 (5): 1131-1146.
    
    12. Spittle J A, Brown S G R. Computer simulation of the effects of alloy variables on the grain structure of casting[J], Acta Metallurgy, 1989, 37(7): 1803-1810.
    13. Zhu P, Smith R W. Dynamic simulation of crystal growth by monte carlo method-1: model description and kinetics[J], Acta Materialia, 1992, 40: 689-692.
    
    14. Zhu P, Smith R W. Dynamic simulation of crystal growth by monte carlo method-2: ingot microstructure[J], Acta Materialia, 1992,40: 3369-3379.
    
    15. Beltran-Sanchez L, Stefanescu D M. Growth of solutal dendrites: a cellular automaton model and its quantitative capabilities[J], Metallurgical and Materials Transactions A, 2003, 34(2): 367-382.
    
    16. Gandin Ch-A, Rappaz M. Probabilistic modeling of microstructure formation in solidification processes[J], Acta Metallurgica Materialia, 1993, 41(2): 345-360.
    
    17. Gandin Ch-A, Rappaz M. A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes[J], Acta Metallurgica Materialia, 1994, 42(7): 2233-2246.
    
    18. Gandin Ch-A, Rappaz M. A 3-D cellular automaton algorithm for the prediction of dendritic grain growth[J], Acta Materialia, 1997, 45(5): 2187-2195.
    
    19. Dilthey U, Pavlik V, Reichel T. Numerical simulation dendritic solidification with modified cellular automata[C], Mathematical Modelind of Welding Phenomena Conference, UK, 1998, 85-105.
    
    20. Goettsch D D, Dantzig J A. Modeling microstructure development in gray cast irons[J], Metallurgical and Materials Transactions A, 1994, 25(5): 1062-1078.
    
    21. Nastac L. Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys[J], Acta Materialia, 1999, 47(17): 4253-4262.
    
    22. Zhu M F, Kim J M, Hong C P. Modeling of globular and dendritic structure evolution in solidification of an Al-7mass%Si alloy[J], ISIJ International, 2001, 41(9): 992-998.
    
    23. Sasikumar R, Sreenivisan R. Two dimensional simulation for dendrite morphology[J], Acta Materialia, 1994, 42(7): 2381-2386.
    
    24. Wang W, Lee P D, Mclean M. A model of solidification microstructures in nickel-based supper alloys: predicting primary dendrites pacing selection[J], Acta Materialia, 2003, 51: 2971-2987.
    
    25. Zhu M F, Hong C P. A modified cellular automaton model for the simulation of dendritic growth in solidification of alloys[J], ISIJ International, 2001, 41(5): 436-445.
    
    26. Zhu M F, Hong C P. A three dimensional modified cellular automaton model for the prediction of solidification microstuctures[J],ISIJ International,2002,42(5):520-526.
    27.王同敏.金属凝固过程微观模拟研究[D],大连:大连理工大学,2000.
    28.Anderson M P,Srolovitz D J,Grest G S.Computer simulation of grain growth-Ⅰ:kinetics[J],Acta Metallurgica,1984,32(5):783-791.
    29.Zhu P,Smith R W.A modified cellular automaton model for the simulation of dendritic growth in solidification of alloys[J],ISIJ international,2001,41(5):436-445.
    30.Rappaz M.Modeling of microstructure formation in solidification processes[J],International Materials Review,1989,34(3):93-123.
    31.Gandin Ch-A.From constrained to unconstrained growth during directional solidification[J],Acta Materialia,2000,48(10):2483-2501.
    32.Gandin Ch-A.Experimental study of the transition from constrained to unconstrained growth during directional solidification[J],ISIJ international,2000,40(10):971-979.
    33.Rappaz M,Gandin Ch-A,Desbiolles J L,et al.Prediction of grain in various solidification processes[J],Metallurgical and Materials Transactions A,1996,27(3):695-705.
    34.Takatani H,Gandin Ch-A,Rappaz M.EBSD characterisation and modelling of columnar dendritic grains growing in the presence of fluid flow[J],Acta Materialia,2000,48(3):675-688.
    35.Gandin Ch-A,Rappaz M,Tintillier R.3-Dimensional simulation of the grain formation in investment castings[J],Metallurgical and Materials Transactions A,1994,25(3):629-635.
    36.Sasikumar R,Jacob E,George B.Simulation of dendrite growth in binary alloys[J],Scripta Materialia,1998,38(4):693-701.
    37.Dilthey U,Pavlik V,Reichel T.Numerical simulation dendritic solidification with modified CA method[J],Mathematical Modelind of Welding Phenomena,1998,90-95.
    38.Nastac L.A new stochastic approach for simulation of solidification morphologies and segregation patterns in cast dendritic alloys[J],Proceedings of Modeling of Casting and Solidification Processes,1999,4:31-42.
    39.Beltran-Sanchez L,Stefanescu D M.A quantitative dendrite growth model and analysis of stability concepts[J],Metallurgical and Materials Transactions A,2003,35(8):2471-2485.
    40.许庆彦,柳百成.采用CA法模拟铝合金的微观组织[J],中国机械工程,2001,12(3):328-330.
    41.许庆彦,冯伟明,柳百成.铝合金枝晶生长的数值模拟[J],金属学报,2002,38(8):799-803.
    42.李殿中,苏仕方,徐雪华.镍基合金叶片凝固过程微观组织模拟及工艺优化研究[J],铸造,1997,8:1-7.
    43.李殿中,杜强.金属成形过程组织演变的CA模拟技术[J],金属学报,1999,35(11):1201-1205.
    44.李殿中.K417合金精铸叶片组织形成过程数值模拟与质量控制[D],哈尔滨:哈尔滨工业大学,1998.
    45.康秀红,杜强.用元胞自动机与宏观传输模型耦合方法模拟凝固组织[J],金属学报,2004,40(5):452-456.
    46.李强,李殿中,钱百年.应用连续性方法模拟枝晶生长[J],金属学报,2004,40(6):634-638.
    47.李强,李殿中,钱百年.元胞自动机方法模拟枝晶生长[J],物理学报,2004,53(10):3477-3481.
    48.李强,李殿中,钱百年.Al-7%Si凝固过程组织演变的元胞自动机方法模拟[J],材料工程,2004,7:35-39.
    49.李强,李殿中,钱百年.枝晶凝固过程溶质浓度分布模拟[J],金属学报,2004,40(11):1215-1220.
    50.金俊泽,王宗延.金属凝固组织形成的仿真研究[J],金属学报,1998,34(9):928-939.
    51.王同敏,金俊泽.铸件凝固过程微观数值模拟研究进展[J],铸造,1999,5:41-47.
    52.王同敏,金俊泽,郑贤淑.金属凝固过程微观模拟的两个辅助算法[J],铸造,2000,49(8):484-488.
    53.王同敏,姚山,张兴国.等轴球晶凝固多相体系内热溶质对流、补缩流及晶粒运动的数值模拟Ⅰ三相流模型[J],金属学报,2006,42(6):584-590.
    54.Steinbach I,Schmitz G J.Direct numerical simulation of solidification structure using the phase-field method[J],Modeling of Casting,Welding and Advanced Solidification ProcessⅧ,1998:521-523.
    55.Tong X,Beckermann C,Karma A.Phase-field simulation of dendrite growth with convection[J],Modeling of Casting,Welding and Advanced Solidification ProcessⅧ,1998:613-615.
    56.Niko,Provatas A,Goldenfeld N,et al.Adaptive grid methodisn solidification microstructure modeling[J],Modeling of Casting,Welding and Advanced Solidification ProcessⅧ,1998:533-536.
    57.Seebelberg M,Tianden J.Simulation of binary eutectic microstructures using the multi-field method[J],Modeling of Casting,Welding and Advanced Solidification ProcessⅧ,1998:557-560.
    58.Dipers H J,Beckermann C,Steinbach I.Modeling of Casting,Welding and Advanced Solidification ProcessⅧ,1998:565-568.
    59.Steinbachc I,Kauerauf B,Beckermann C,et al.Three-dimensional of equiaxed dendritic growth on a mesoscopic scale[J],Modeling of Casting,Welding and Advanced Solidification ProcessⅧ,1998:573-576.
    60.Kim S G,Kim W T,Lee J S,et al.Large scale simulation of dendritic growth in pure undercooled melt by phase-field model[J],ISIJ International,1999,39(4):335-338.
    61.Ode M,Lee J S,Suzyki T,et al.Numerical simulation of interface shape around insoluble particle for Fe-C alloy using a phase-field model[J],ISIJ International,1999,39(2):149-152.
    62.Lee J S,Suzyki T.Numerical simulation of isothermal dendritic growth by phase-field model[J],ISIJ International,1999,39(3):246-249.
    63.Mccarthy J F.Phase diagram effects phase-field models of dendritic growth in binary alloys[J],Acta Metallurgica Materialia,1997,45(10):4077-4087.
    64.Warren J A,Boettinger W J.Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method[J],Acta Metallurgica Materialia,1995,43(4):689-695.
    65.Langer J S.Directions in condensed matter physics[M],Singapore:World Science,1986,164-168.
    66.张玉妥,李殿中,李依依等.用相场方法模拟纯物质等轴枝晶生长[J],金属学报,2000,36(6):589-591.
    67.赵代平,荆涛.用捕获液态改进的相场方法模拟三维枝晶生长[J],金属学报,2002,38(12):1238-1240.
    68.Zhao D p,Jing T,Liu B C.Computer simulation of 3-dimensional dendrite growth using modified phase field method[J],ISIJ International,2003,43(7):1095-1099.
    69.赵代平,荆涛,柳百成.相场方法模拟铝合金三维枝晶生长[J],物理学报,2003,52(7):1737-1742.
    70.于艳梅,杨根仓,赵达文等.过冷熔体中枝晶生长的相场法数值模拟[J],物理学报,2001,50(12):2423-2428.
    71.Juric D,Tryggvason G.A front-tracking method for dendritic solidification[J],Journal of Computational Physics,1996,123:127-148.
    72.Zhao P,Heinrich J C.Front-tracking finite element method for dendritic solidification[J],Journal of Computational Physics,2001,175:765-796.
    73.Zhao P,Venere M,Heinrich J C,et al.Modeling dendritic growth of a binary alloy[J],Journal of Computational Physics,2003,188:434-461.
    74.Das S K.Evaluation of solid-liquid interface profile during continuous casting by a spline based formalism[J],Bull Mater ial Science,2001,24(4):373-378.
    75.Jacot A,Rappaz M.A pseudo-front tracking technique for the modeling of solidification microstructures in multi-component alloys[J],Acta Materialia,2002,50(8):1909-1926.
    76.Kim Y-T,Goldenfeld N,Dantzig J.Computation of dendritic microstructures using a level set method[J],Physical Review E,2000,62:2471-2474.
    77.Gibou F,Fedkiw R,Caflisch R,et al.A level set approach for the numerical simulation of dendritic growth[J],Journal of Scientific Computing,2003,19:183-199.
    78.Ratsch C,Gyure M F,Caflisch R E,et al.Level-set method for island dynamics in epitaxial growth[J],Physical Review B,2002,65:1-13.
    79.Bloomfield M O,Richards D F,Cale T S.A computational framework for modeling grain-structure evolution in three dimensions[J],Philosophical Magazine,2003,83:3549-3568.
    80.Udaykumar H S,Mao L.Sharp-interface simulation of dendritic solidification of solutions[J],Internation Journal of Heat Mass Transfer,2002,45:4793-4808.
    81.Udaykumar H S,Mittal R,Shyy W.Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids[J],Journal of Computational Physics,1999,153:535-574.
    82.陈晋.基于胞元自动机方法的凝固过程微观组织数值模拟[D],南京:东南大学,2005.
    83.Kurz W,Fisher D J.Fundmentals of solidification[M],Switzerland:Trans Tech Publications,1989:23-29,57-59,83-89,207-210.
    84.Invanstov G P.Temperature field around spherical,cylindrical,and needle-shaped crystals which grow in supercooled melts[J],Dokl Akad Nauk SSSR,1947,58:567-570.
    85.Oldfield W.A quantitative approach to casting solidification:freezing of cast iron[J],ASMTrans,1966,59:945-947.
    86.Maxwell I,Hellawell A.A simple model for grain refinement during solidification[J],Acta Metallugical,1975,23:229-237.
    87.Thevoa Ph,Desbiolies J L,Rappaz M.Modeling of equiaxed microstructure formation in casting[J],Metallurgical and Materials Transactions A,1989,20(2):311-322.
    88.Kobayashi R.Modeling and numerical simulations of dendritic crystal growth[J],Physica D,1993,63:410-411.
    89.Hunt J D.Steady state columnar and equiaxed growth of dendrites and eutectic[J],Material Science Engineering,1984,65:75-79.
    90.Stefanescu D M,Upadhyaand G,Bandyopadhyay D.Heat transfer-solidification kinetics modeling of solidification of castings[J],Metallurgical and Materials Transactions A,1990,21(3):997-1005.
    91.Jacsoin K A,Hunt J D.Lamellar and rod eutectic growth[J],Transaction of the Metallurgical Society of AIME,1996,236:1129-1142.
    92.Fisher D J,Kurz W.A theory of branching limited growth of irregular eutectics[J],Acta Metallurgy,1980,28:777-794.
    93.Rappaz M,Thevoz Ph.Solute diffusion model for equiaxed dendritic growth[J],Acta Metallurgy,1987,35(7):1487-1497.
    94.Rappaz M,Thevoz Ph.Solute diffusion model for equiaxed dendritic growth:analytical solution[J],Acta Metallurgy,1987,35(12):2929-2933.
    95.Lipton J,Glicksman M E,Kurz W.Equiaxed dendrite growth in alloys at small supercooling[J],Metallurgical and Materials Transactions A,1989,18(2):341.
    96.Lipton J,Glicksman M E,Mater W K.Dendritic growth into undercooled melts[J],Science Engineering,1984,65:57-63.
    97.Wang C Y,Beckermann C.Prediction of columnar to equiaxed transition during diffusion-controlled dendritic alloy solidification[J],Metallurgical and Materials Transactions A,1994,25(5):1081-1087.
    98.Wang C Y,Beckermann C.Equiaxed dendritic solidification with convection:part Ⅰ.multiscale/multiphase modeling[J],Metallurgical and Materials Transactions A,1996,27(9):2754-2764.
    99.Wang C Y,Beckermann C.Equiaxed dendritic solidification with convection:part Ⅱ.numerical simulations for an Al-4 Wt pct Cu alloy[J],Metallurgical and Materials Transactions A,1996,27(9):2765-2772.
    100.Dustin I,Kurz W.Modeling of cooling curves and microstructures during equiaxed dendritic solidification[J],Metallkd,1986,77:265-272.
    101.Nastac L,Stefanescu D M.An analytical model for solute redistribution during solidification of planar,columnar,or equiaxed morphology[C],Modeling of Casting,Welding and Advanced Solidification Process-Ⅵ,TMS,Warrendale,PA,1993:209-216.
    102.Weinberg F,Chalmers B.Dendritic growth in Lead[J],Canadian Journal of Physiology and Pharmacology,1951,29:382-383.
    103.Weinberg F,Chalmers B.Further observations on dendritic growth in metals[J],Canadian Journal of Physiology and Pharmacology,1952,30:488-489.
    104.Rutter J W,Chalmers B.A prismatic substructure formed during solidification of metals[J],Canadian Journal of Physiology and Pharmacology,1953,31:15-39.
    105.Tiller W A,Jacsoin K A,Rutter J W,et al.The redistribution of solute atoms during the solidification of metals[J],Acta Metallurgy,1953,1:428-437.
    106.Guolu D,Jiaming Y,Weidong H,et al.New develpment of dendrite growth stability theory[J],Material Science and Engineering,1997,15(2):10-19.
    107.李强.凝固过程枝晶演变的数值模拟研究[D],沈阳:中国科学院金属研究所,2004.
    108.Mullins W W,Sekerka R F.Stability of planar.interface during solidification of a dilute binary alloy[J],Journal of Applied Physics,1964,35(2):444-451.
    109.Mullins W W,Sekerka R E Morphological stability of a partical growing by diffusing of heat flow[J],Journal of Applied Physics,1963,34(2):323-329.
    110.Laxmarlan V.The gibbs-thomson effect during cellular and dendritic solidification[J], Scripta Material, 1997, 37(7): 955-962.
    
    111. Altgilbers A, Hofmeister W, Bayuzick R. The dendrite growth kinetics of nickel-based alloys[J], Materials Science and Engineering A, 2003, 360: 26-34.
    
    112. Qin R S, Wallach E R. A method to compute the migration rate of planar solid-liquid interfaces in binary alloys[J], Journal of Crystal Growth, 2003, 253: 549-556.
    
    113. Rocha O V L, Siqueira C U A, Garcia A. Cellular/dendritic transition during unsteady-state unidirectional solidification of Sn-Pb alloys[J], Materials Science and Engineering A, 2003, 347: 59-69.
    
    114. Lan C W, Shih C J, Hsu W T. Long-time scale morphological dynamics near the onset of instability during directional solidification of an alloy[J], Journal of Crystal Growth, 2004, 264: 379-384.
    
    115. Byungsoo K. Development of macrosegregation during solidification of binary metal alloys[D], The Department of Mechanical Engineering of Pennsylvania State University. Pennsylvania State, USA, 2002.
    
    116. Nastac L, Stefanescu D M. An analytical model for solute redistribution during solidification of planar, columnar, or equiaxed morphology[J], Metallurgical and Materials Transactions A, 1993, 24(9): 2107-2118.
    
    117. Stefanescu D M, Kanetkar C S. State of the art of compyter simulation of casting and solidification processes[M], France: Les Edition de Physique, 1986, 225-229.
    
    118. Tian H, Stefanescu D M. Experimental evaluation of some solidification kinetics-related material parameters required in modeling of solidification of Fe-C-Si alloys[C], Modeling of Casting, Welding and Advanced Solidification Process-VI, TMS, Warrendale, PA, 1993, 639-647.
    
    119. Degand C. Influence of the eutectic grain size on shrinkage in Al-Si castings, report: Solidification Laboratory, The University of Alabama, 1994.
    
    120. Wetterfall S E, Fredriksson H, Hillert M J. Solidification process of nodular cast iron[J], Journal of the West of Scotland Iron and Steel Institute, 1972, 323-324.
    
    121. Su K C, Ohnaka I, Yaunauchi I, et al. The physical metallurgy of cast iron[M], New York: Fredriksson H and Hillert M, 1984, 181-182.
    
    122. Esaka H, Kurz W. Modeling of columnar dendritic growth[J], Journal of Crystal Growth, 1984, 69: 362-365.
    
    123. Alkemper J, Voorhees P W. Three-dimensional characterization of dendritic microstructures[J], Acta Materialia, 2001, 49(5): 897-902.
    
    124. Pryds N H, Huang X. The effect of cooling rate on the microstructures formed during solidification of ferritic steel[J], Metallurgical and Materials Transactions A, 2000, 31(12): 3155-3166.
    
    125. Cicutti C, Bilmes P, Boeri R. Estimation of primary dendrite arm spacings in continuous casting products[J], Scripta Material, 1997, 37(5): 599-604.
    
    126. Howe A A. Modeling the flow and solidification of metals[M], Dordrecth: Martinus Nijhoff Publishers, 1987, 51-52.
    
    127. Ogilvy A J, Kirwood D H. Modeling the flow and solidification of metals[M], Dordrecth: Martinus Nijhoff Publishers, 1987, 43-44.
    
    128. Kurz W, Fisher D J. Dendrite growth at the limit of stability: tip radius and spacing[J], Acta Metallurgy, 1981,29(1): 11-20.
    
    129. Hunt J D. Solidification and Casting of Metals[C], London, UK: The Metals Society, 1979.
    
    130. Jacobi H, Schwerdtfeger K. Dendrite morphology of steady state unidirectionally solidified steel[J], Metallurgical and Materials Transactions A, 1976, 7(5): 811-820.
    
    131. Suzuki A, Nagaoka Y. Dendrite morphology and arm spacing in steels[J], Journal Japan institute of Metals, 1969, 33: 658-659.
    
    132. Taha M, Jacobi H, Imagumbai M, et al. Dendrite morphology of several steady state unidirectionally solidified iron base alloys[J], Metallurgical and Materials Transactions A, 1982,13(12): 2131-2135.
    
    133. Imagumbai M. Behaviors of manganese-sulfide in aluminum-killed steel solidified uni-directionally in steady state—dendrite structure and inclusions[J], ISIJ International, 1994, 34(11): 896-905.
    
    134. Taha M. Influence of solidification parameters on dendrite arm spacings in low carbon steels[J], Journal of Material Science Letters, 1986, 5: 307-308.
    
    135. Taha M A, Jacobi H, Imagumbai M, et al. Dendrite morphology of several steady state unidirectionally solidified iron base alloys[J], Metallurgical and Materials Transactions A, 1982, 13(12): 2136-2141.
    
    136. Cabrera-Marrero J M, Carreno-Galindo V, Morales R D, et al. Macro-micro modeling of the dendritic microstructure of steel billets processed by continuous casting[J], ISIJ International, 1998, 38(8): 812-821.
    137. El-Bealy M, Thomas B G. Prediction of dendrite arm spacing for low alloy steel casting processes[J], Metallurgical and Materials Transactions B, 1996, 27(4): 689-692.
    
    138. Cicutti C, Bilmes P, Boeri R. Estimation of primary dendritic arm spacings in continuous casting products[J], Scripta Material, 1997, 37(5): 599-604.
    
    139. Nun Y, Ohashi T, Hiromoto T, et al. Solidification microstructure of ingots and continuously cast slabs treated with rare earth metal [J], Transactions of Iron Steel Institute Japan, 1982, 22(6): 399-400.
    
    140. Wolf M, Clyne T W, Kurz W. Microstructure and cooling conditions of steel solidified in the continuous casting mould[J], Arch Eisenhuttenwes, 1982, 53(3): 91-92.
    
    141. Wunnenberg K, Jacobi H. Amethod of continuous casting[J], Archiv Eisenhuttenwes, 1983, 54(6): 217.
    
    142. Hetu J F, Gao D M, Kabanemi K K, et al. Numerical modeling of casting process[J], Advanced Performance Materials, 1998, 5: 65-68.
    
    143. Won Y M, Kim K H, Yeo T J, et al. Effect of cooling rate on ZAT,LIT and ZDT of carbon steel near melting point[J], ISIJ International, 1998, 38(10): 1093-1099.
    
    144. Young-Mok W, Thomas B G. Simple model of microsegregation during solidification of steels[J], Metallurgical and Materials Transactions A, 2001, 32(7): 1755-1767.
    
    145. Volkova O, Heller H P, Janke D. Microstructure and cleanliness of rapidly solidified steels[J], ISIJ International, 2003, 43(11): 1724-1732.
    
    146. Schwerdtfeger K. Influence of solidification rate on the microsegregation and interdendritic precipitation of manganese sulfide inclusions in a steel containing manganese and carbon[J], Arch Eisenhuttenwes, 1970, 41: 923-924.
    
    147. Janke D. Microstructure and cleanliness of rapidly solidified steels[J], ISIJ International, 2003,43(11): 1724-1732.
    
    148. Schwerdtfeger K. Einfluss der erstarrungsgeschwindigkeit und des schwefelgehaltes auf die durchschnittliche gr(o|¨)βe von mangansulfideinschliissen in einem mangan und kohlenstoffenthaltenden stahl[J], Arch. Eisenhuttenwes., 1972, 43(3): 201-205.
    
    149. Ohashi T, Fujii H, Nomura E, et al. A study on solidification, segregation and fluid flow of molten steel in continuously cast slabs[J], Transactions of Iron Steel Institute Japan, 1975, 15:571-573.
    
    150. Cicutti C, Bilmes P, Boeri R. Estimation of primary dendrite arm spacings in continuous casting products[J], Scripta Materialia,1997, 37(5): 599-604.
    
    151. Nuri Y, Ohashi T, Hiromoto T. Solidification microstructure of ingots and continuously cast clabs treated with rare earth metal[J], Transactions of Iron Steel Institute Japan, 1982, 22:399-407.
    
    152. Steinmetz E, Steffen R, Thielmann R. Present state and development potential of the processes for the direct reduction and smelting reduction of iron ores[J], Stahl Eisen, 1986, 106(9): 421-429.
    
    153. Fischmeister H F, Riedl R, Karagoz S. Solidification of high-speed tool steels[J], Metallurgical and Materials Transactions A, 1989, 20(10): 2133-2148.
    
    154. Shiau L F, Lo W G, Cramb A W. Secondary dendrite arm spacing in stainless steel castings[J], Iron Steelmaker, 1991, 18(6): 57-59.
    
    155. Thiem S, L(o|¨)ser W. Reanalysis of solidification behaviour from the microstructure in near-net-shape casting of steels[J], Steel Research, 1992, 63: 291-292.
    
    156. Imagumbai M, Takeda T. Influence of calcium-treatment on sulfide- and oxide-inclusions in continuous cast clab of clean steel — dendrite structure and inclusions[J], ISIJ International, 1994, 34(7): 574-583.
    
    157. Weisberger B, Hecht M, Harste K. Investigations of the solidification structure of continuously cast slabs[J], Steel Research, 1999, 70(10): 403-411.
    
    158. Senk D, Engl B, Siemon O, et al. Investigation of solidification and microsegregation of near-net-shape cast carbon steel[C], Preprints of 10th Japan-Germary Seminar, ISIJ Tokyo, 1999, 160-161.
    
    159. Jacobi H, Wünnenberg K. Solidification structure and micro-segregation of unidirectionally solidified steels[J], Steel Research, 1999, 70(8-9): 362-367.
    
    160. Kobayashi S. Factors equiaxed zone generation in electromagnetic stirring[J], Transactions of Iron Steel Institute Japan, 1988, 28: 535-536.
    
    161. Beckermann C. Modelling of macrosegregation: applications and future needs[J], International Material Review, 2002, 47(5): 243-261.
    
    162. Battle T P, Pehike R D. Mathematical modeling of microsegregation in binary metallic alloys[J], Metallurgical and Materials Transactions B, 1990, 21(2): 357-375.
    
    163. Brody H D, Flemings M C. Solute redistribution in dendritic solidification[J], Transaction TMS-AIME, 1966, 236: 615-624.
    164. Clyne T W, Kurz W. Solute redistribution during solidification with rapid solid state diffusion[J], Metallurgical and Materials Transactions A, 1981, 12(6): 965-971.
    
    165. I.Ohnaka. Mathematical analysis of solute redistribution during solidification with diffusion in solid phase[J], Transactions of Iron Steel Institute Japan, 1986, 26: 1045-1051.
    
    166. Kobayashi S. Solute redistribution during solidification with diffusion in solid phase: a theoretical analysis[J], Journal of Crystal Growth, 1988, 88: 87-96.
    
    167. Matsumiya T, Kajioka H, Mizoguchi S, et al. Mathematical analysis of segregations in continuously-cast slabs[J], Transactions of Iron Steel Institute Japan, 1984, 24: 873-882.
    
    168. Miettinen J. Simple semiempirical model for prediction of austenite decomposition and related heat release during cooling of low alloyed steels[J], Ironmaking and Steelmaking, 1996, 23(4): 346-356.
    
    169. Miettinen J. Calculation of solidification-related thermophysical properties for steels[J], Metallurgical and Materials Transactions B, 1997, 28(2): 281-297.
    
    170. Scheil E. Uber die eutektische kristallisation on eutectic crystallization[J], Z. Metallkd, 1942, 34: 70-72.
    
    171. Ueshima Y, Miaoguchi S, Matsumiya T, et al. Analysis of solute distribution in dendrites of carbon steel with δ/γ transformation during solidification[J], Metallurgical and Materials Transactions B, 1986, 17(4): 845-859.
    
    172. Voller V R, Beckermann C. A unified model of microsegregation and coarsening[.T], Metallurgical and Materials Transactions A, 1999, 30(8): 2183-2189.
    
    173. Wang C Y, Beckermann C. A unified solute diffusion model for columnar and equiaxed dendritic alloy solidification[J], Material Science Engineering, 1993, 171: 199-211.
    
    174. Kim K, Yeo T, Oh K H, et al. Effect of carbon and sulfur in continuously cast strand on longitudinal surface cracks[J], ISIJ International, 1996, 36(3): 284-289.
    
    175. Miettinen J. Mathematical simulation of interdendritic solidification of low-alloyed and stainless steels[J], Metallurgical and Materials Transactions A, 1992, 23(4): 1155-1170.
    
    176. Won Y M, Kim K H, Yeo T J, et al. A new criterion for internal crack formation in continuously cast steels[J], Metallurgical and Materials Transactions B, 2000, 31(4):779-794.
    177.Scheil E.(U|¨)ber die eutektische kristallisation on eutectic crystallization[J],Z.Metallkd,1942,34:70-80.
    178.Sarreal J A,Abbaschian G J.The effect of solidification rate on microsegregation[J],Metallurgical and Materials Transactions A,1986,17(11):2063-2073.
    179.Kobayashi S.Factors equiaxed zone generation in electromagnetic stirring[J],Transactions Iron Steel Institute Japan,1988,28:728.
    180.Nastac L,Stefanescu D M.An analytical model for solute redistribution during solidification of planar,columnar,or equiaxed morphology[J],Metallurgical and Materials Transactions A,1993,24(9):2107-2118.
    181.Brody H D,Flemings M C.High-Speed imaging and analysis of the solidification of undercooled nickel melts[C],Trans.TMS-AIME,1996,236(8):615-624.
    182.Clyne T W,Kurz W.Solute redistribution during solidification with rapid solid state diffusion[J],Metallurgical and Materials Transactions A,1981,12(6):965-971.
    183.Presslinger H,Mayr M,Tragl E,et al.Assessment of the primary structure of slabs and the influence on hot-and cold-rolled strip structure[J],Steel Research,2006,77(2):107-115.
    184.Cicutti C,Boeri R.Analysis of solute distribution during the solidification of low alloyed steels[J],Steel Research,2006,77(3):194-201.
    185.Meng Y,Thomas B G.Heat-transfer and solidification model of continuous slab casting[J],Metallurgical and Materials Trandactions B,2003,34(10):685-702.
    186.Langer J S,Muller-Krumbnaar H.Stability effects in dendritic crystal growth[J],Journal of Crystal Growth,1977,42:11-14.
    187.Abramowttz M,Stegun I A.Handbook of mathematical functions[M].Washington DC:National Bureau of Standards,1964.
    188.Bosze W P,Trivedi R.On the kinetic expression for the growth of precipitate plates[J],Metallurgical and Materials Transactions,1974,5:511-512.
    189.郭薇,祭程,赵琦等.板坯连铸动态轻压下系统中在线实时温度场计算模型的研究[J],材料与冶金学报,2006,5(3):186-189.
    190.Kozeschnik E.A sheil-gulliver model with back-diffusion applied to the microsegregation of chromium in Fe-Cr-C alloys[J],Metallurgical and Materials Transactions A,2000,31(6):1682-1684.
    191. Yoo H, Kim C J. A refined solute diffusion model for columnar dendritic alloy solidification[J], International Journal of Heat Mass Transfer, 1998, 41: 4379-4383.
    
    192. Sundarraj S, Voller V R. The binary alloy problem in an expanding domain: the microsegregation problem[J], International Journal of Heat Mass Transfer, 1990, 36: 713-723.
    
    193.Kraft T, Chang Y A. Discussion of effect of dendrite arm coarsening on microsegregation[J], Metallurgical and Materials Transactions A, 1998, 29(5): 2447-2450.
    
    194. Imagumbai M. Relationship between primary- and secondary-dendrite arm spacing of C-Mn steel uni-directionally solidified in steady state[J], ISIJ International, 1994, 34(12): 986-991.
    
    195. Choudhary S K, Ganguly S. Morphology and segregation in continuous cast high carbon steel billets[J], ISIJ International, 2007, 47(12): 1759-1766.
    
    196. Miettinen J. Thermodynamic-kinetic simulation of constrained dendrite growth in steelsfj], Metallurgical and Materials Transactions B, 2000, 31(2): 365-379.
    
    197. M'hamdi M, Combeau H, Lesoult G. Modeling of heat trandfer coupled with columnar dendritic growth in continuous casting of steel[J], International Journal of Numerical methods for Heat & Fluid Flow, 1999, 9: 296-317.
    
    198. Reger M, Louhenkilpi S. Characterizing the inner structure of continuously cast sections by using a heat transfer model[J], Materials Science Forum, 2003, 414-415: 461-470.
    
    199. Vanaparthy N M, Srinivasan M N. Modelling of solidification structure of continuous cast steel[J], Modelling Simulation Material Science Engineering, 1998, 6: 237-249.
    
    200. Langer J S, Muller-Krumbhaar H. Theory of dendritic growth-I: elements of a stability analysis[J], Acta Metallurgy, 1978,26: 1681-1697.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700