用户名: 密码: 验证码:
冻融环境下桥梁下部结构混凝土抗侵蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着中国基础建设的快速发展,我国在中长期铁路网规划中提出,到2020年全国铁路营业里程达到12万公里,其中桥梁下部主要是以钢筋混凝土作为承重结构。在特殊侵蚀环境中,混凝土耐久性作为保障工程长期质量和运营安全的重要问题受到极大的重视。抗冻性是衡量混凝土耐久性的一项重要指标,在贯穿南北跨越四大水系的京沪高速铁路沿线,大部分地区存在冻融侵蚀环境,线路某些区间地下水还存在严重的盐侵蚀,极有可能造成混凝土结构的损伤,影响到结构安全性,因此开展混凝土抗冻性、抗盐侵蚀性及其附加防护措施的研究具有重要的现实意义。论文在总结了国内外已有的混凝土抗冻性研究及防护措施的基础上,调研了京沪高速铁路沿线城市的气温情况及我国主要城市年冻融循环次数,并调研了京沪铁路沿线桥梁下部结构所处环境中侵蚀离子的浓度。针对京沪高速铁路北线部分桥梁桩基及墩身处于水位线上下部位,既存在冻融循环(D3及D4),又有海水盐浸渍(H3及H4)双重环境进行的抗侵蚀性研究。通过试验实测、数值模拟及微观分析等途径,综合考虑不同强度混凝土试件在冻融环境中,不同侵蚀环境下,混凝土的抗冻性。并开展了两种不同材料的防护试验,包括钢护筒的刚性防护及喷涂聚脲材料的柔性防护。论文工作及得到的结论如下:
     1、针对京沪铁路实际工程处于冻融侵蚀与盐侵蚀共同作用的环境,本文试验环节设计了C25、C35及C50三种强度等级的高性能混凝土在冻融循环单独作用和与硫酸钠溶液、硫酸钠与氯化钠溶液等因素综合作用下的耐久性试验;并开展了两种类型的防护试验:刚性防护及柔性防护。以质量损失率、强度、动弹性模量、冻胀应力-应变及形貌变化为测试技术指标。通过试验得出无防护试件随着冻融循环次数的增加,混凝土的质量损失越来越大,而经过防护的试件在试验过程中质量逐渐增大,后期趋于平稳;盐溶液冻融循环作用对无防护混凝土的损伤比较严重,以硫酸钠与氯化钠混合溶液最为严重。
     2、冻融循环作用引起混凝土内部产生周期性变化的应力。混凝土在单次冻融循环过程中随着温度的降低应变逐渐增大,相应的拉应力也越来越大,当温度开始上升时,内部应变逐渐减小,相应的拉应力也越来越小。但在冻融循环过程中混凝土内部的变形并没有完全恢复,而是有残余变形存在,这表明在每次冻融循环作用之后,在混凝土内部均会有损伤产生,损伤不能愈合且逐渐累积。试验比较了高性能混凝土与普通混凝土在冻融循环过程中,表现出不同的损伤现象,并分析了各自冻融破坏的损伤机理。
     3、钢护筒在温度变化过程中产生环箍压应力,削减了混凝土由于冻融循环作用产生的冻胀应力,使混凝土材料表面由无防护时的受拉状态转变为受压状态,从而起到对混凝土材料的防护作用。刚性材料及柔性材料对混凝土的防护机理不同,但二者均可以阻断或延缓有害盐溶液或水溶液进入到混凝土内部,从而避免混凝土材料的损伤,延长混凝土结构的使用寿命。
     4、针对混凝土冻融循环作用提出了用变形分量、温差和冻胀引起的变形量表示的应力分量的物理方程。得出在一定的位移边界条件下,弹性体中由于温差和冻胀引起的位移,就等于温度不变而承受由于温差和冻胀引起的外来作用体力时的位移。并根据第一强度理论即最大拉应力理论提出了混凝土在冻融循环过程中损伤开始的判据。
     5、通过大型通用软件对冻融环境下无防护混凝土及钢护筒防护混凝土温度场及温度应力进行了数值计算分析,得出混凝土不同部位温度场及温度应力的变化规律。通过改变相关参数:结构尺寸、边界防护条件、冻融速率及混凝土强度等级等参数,分别计算了混凝土不同深度处的温度及应力在参数变化时相应的变化规律。
     6、通过微观结构分析研究了在冻融循环过程中,盐溶液对混凝土损伤的加速作用,并分析了掺合料对改善混凝土性能的作用。
     本文的研究为提高高性能混凝土的抗冻性、掌握冻融损伤机理及对混凝土结构采用恰当的防护措施作了创新性的工作,为进一步深化研究和全面建立科学的混凝土耐久性评估体系作了大量基础性工作,为高性能混凝土在实际工程中的应用提供了科学依据。
With the rapid development of civil construction in China, length of railroad lines in service of nation will reach to120,000km before2020in the layout of medium-term and long-term railway network. The bridge substructure will use reinforce concrete structure as load-carrying members. In the special erosion environment, the durability of concrete which can ensure engineering long-term quality and operation safety gets great attention. Frost resisting property is an important index weighting the durability of concrete. There exists environment of freeze-thaw cycle in most regions along the line of Beijing-Shanghai high speed railway, which runs north and south, acrosses four large water systems. The groundwater of some intervals alone the line contains salt corrosion, which will cause concrete structures damage easily and threat the safety of structures. So, study on frost-resistance and salt erosion properties of concrete and additional protective measures for bridge substructure in freeze-thaw environment have important realistic meaning.The dissertation summarizes research about concrete frost resisting property and protection measures from domestic and overseas. Atmospheric temperature in the line of Beijing-Shanghai high speed railway and times of freeze-thaw cycle of most cities are investigated. The concentration of corrosion ionics around bridge substructure is also investigated. Anti-erosion properties of concrete are studied based on some bridge pile foundations and piers of northern Beijing-Shanghai high speed railway. These bridge substructure are in the waterline, where exist freeze-thaw cycle(D3or D4) and sea water salt erosin.Frost resisting properties of concrete are studied under freeze-thaw cycle and different corrosion surroundings by means of experiments, numerical simulation and micro-analysis. Two different kinds of materials are used to protect concrete, which are steel pipes and spray polyurea elastomer. Main research and mainly conclusions follows:
     1. Three grades of high performance concrete C25, C35and C50are designed based on freeze-thaw cycle and salt erosion environments where Beijing-Shanghai high speed railway is. The durability experiments are carried out under freeze-thaw cycle and in different solutions containing distilled water, sodium sulfate or sodium sulfate and sodium chloride. Two kinds of protection measures are adopted. They are rigid and flexible protection, respectively. Indexes of samples testing contain mass loss rate, strength, dynamic modulus of elasticity, stress-strain and surface topography. Variation tendency has been acquired after diffetent times of freeze-thaw cycle. Mass loss of non-protectied HPC becomes bigger with the increase of times of freeze-thaw cycle. But the mass of protected samples is gradually increasing primevally and becomes steady in later period. Freeze-thaw cycle in saline solution produces more serious damage to non-protected samples. The erosion of mix solution of sodium sulfate and sodium chloride is most serious.
     2. Concrete stresses change cyclically with freeze-thaw cycle. Strain and stress increase gradully with lowering of temperature in one freeze-thaw cycle. When temperature increases, the interior strain and stress reduce gradually. But the interior deformation doesn't recover and there is residual deformation, which shows that damage occurs in the interior concrete after every freeze-thaw cycle. The different defeatures and damage mechanisms are compared between HPC and normal concrete after freeze-thaw cycle.
     3. Steel pipes produce hoop stress during the change of temperature, which reduces frost heaving stress and make surface layer concrete in tensile condition change to compressive stress state. The mechanisms of rigidity and flexibility protection are different. They can both stop or postpone harmful saline solution or liquor entering into the concrete. These measures can avoid concrete damage and increase service life.
     4. Deformation component, range of temperature and frost heave distortion are used to represent physical equation of stress component for concrete under freeze-thaw cycle. The displacement of elastic body caused by range of temperature and frost heave distortion under certain displacement boundary conditions equals to the displacement caused by range of temperature and frost heave distortion as additional forces when the temperature is invariant.
     5. The physical models of concrete subjected to freeze-thaw cycle are set up and the corresponding behaviors are analyzed by ANSYS. The models contain none protected concrete samples and samples protected by steel pipes. Temperature field and temperature stress of different places in the interior concrete are obtained. The changing regulity of temperature and stress in different depth of concrete are calculated by changing parameters which contain structure size, protection conditions, freeze-thaw rate and concrete grade.
     6. Microscopic tests are carried out to affirm the accelerating effect of saline solution to concrete damage. The effects of admixture are analysed for improving concrete property.
     A lot of research work has been done to improve HPC frost resisting property, master freeze-thaw damage mechanism and use appropriate protection measures, which is in favour of intensive study and setting up scientific and comprehensive evaluating system of concrete durability. The dissertation provides scientific basis to practical engineering of HPC.
引文
[1]冯乃谦,邢锋.混凝土与混凝土结构的耐久性[M].北京:机械工业出版社,2009(1).
    [2]郑健.中国高速铁路桥梁[M].北京:高等教育出版社,2008(4)
    [3]陈肇元.混凝土结构的耐久性设计方法[J].建筑技术,2003(5)328-333.
    [4]李晔,姚祖康,孙旭毅,流春晨.铺面水泥混凝土冻融环境量化研究[J].同济大学学报.2004(10):1408-1412.
    [5]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003(10)
    [6]D. Cusson, Z. Lounis, L. Daigle. Benefits of internal curing on service life and life-cycle coat of high-performance concrete bridge decks-A case stude[J]. Cement & Concrete Composites,2010(32)339-350.
    [7]屈文俊,张誉.混凝土桥梁结构的耐久性优化设计[J].中国公路学报,1999(1):62-70.
    [8]屈文俊,车惠民.混凝土桥梁的优化等耐久性设计[J].土木工程学报,1998(8):23-30.
    [9]唐光谱,刘西拉,施士升.冻融条件下混凝土破坏面演化模型研究[J].岩石力学与工程学报.2006.25(12):2572-2578.
    [10]王增贤,林柏章,张建中等.海水对桥梁桩基础质量影响评价与防护技术[J].公路交通科技-应用技术版,2010(11):157-160.
    [11]Josef P. Kaufmann, Experimental identification of ice formation in small concrete pores[J]. Cement and Concrete Research,2004(34):1421-1427.
    [12]Bjorn Johannesson, Dimensional and ice concrete changes of hardened concrete at different freezing and thawing temperatures[J]. Cement & Concrete Composites,2010(32):73-83.
    [13]Paul J. Tikasky, James Pospisil, William MacDonald.A method for assessment of the freeze-thaw resistance of preformed form cellular concrete [J].Cement and Concrete Research,2004(34):889-893.
    [14]T. C. Powers, T. L. Brownyard, Studies of the physical properties of hardened Portland cement paste, J. Am. Concr. Inst.18 (1947)549-602.
    [15]T. C. Powers, T. L. Brownyard, Studies of the physical properties of hardened Portland cement paste, J. Am. Concr. Inst.18 (1947)933-969.
    [16]T. C. Powers, R. A. Helmuth, Theory of volume changes in hardened Portland-cement paste during freezing, Proc. Highway Res. Board 32(1953) 285-297.
    [17]T. C. Powers. A working hypothesis for further studies of forst resistance of concrete[J]. Journal of the American Concrete Institute.1945,16 (4) 245-272.
    [18]T.C.Powers. The air requirement of frost-resistance concrete [J]. Proceedings of Highway Research Board.1949 (29):184-202.
    [19]T. C. Powers. Void spacing as a basis for producing air-entrained concrete[J]. Journal of the American Concrete Institute.1975:1-11.
    [20]李金玉,曹建国,徐文雨.混凝土冻融破坏机理的研究,混凝土与水泥制品1997年学术年会论文集,北京:混凝土与水泥制品编辑部,1997:58-69.
    [21]张誉.混凝土结构耐久性概论[M].上海:上海科学出版社,2003.
    [22]黄士元,蒋家奋,杨南如,周兆桐等.近代混凝土技术,西安:陕西科学技术出版社,1998.
    [23]G.G. Litvan. T.C.Powers. Dissuction:Ref[21], Journal of the American Concrete Institute. Proceedings.1976:234-237.
    [24]G. W. Scherer. Crystallization in pores [J]. Cement and Concrete Research.1999.29(8):1347-1358.
    [25]F. Bresme, L.G.Camara. Computer simulation studies of Crystallization under confinement condition[J]. Chemical Geology,2006,230:197-206.
    [26]G.G.Litvan. Phase transitions of adsorbates:Ⅲ. Heat effects and dimensional changes in nonequilibrium temperature cycles, J. Colloid Interface Sci.38(1)1972:75-83.
    [27]E.W. Sidebottom, G. G. Litvan. Phase transitions of adsorbates:Vapour pressure and extension isotherms of the porous-glass+water system below 0 ℃, Trans. Faraday SOC. NO.585 67(9)1971:2726-2736.
    [28]G. G. Litvan. Phase transitions of adsorbates:IV, Mechanism of frost action in hardened cement paste. Jour of the Amer Ceram Soc, Jan,1972, 55(1):38-42.
    [29]G.G. Litvan. Frost action in cement paste. Mat et Constr 1973,6 (34):293-298.
    [30]G.G. Litvan. Frost action in cement in the pressure of de-icers. Cem and Con Res,1976, V.6:351-356.
    [31]G. G. Litvan. Phase transitions of adsorbates:V. Aqueous sodium chloride solutions adsorbed on porous silica glass, J. Colloid Interface Sci.45(1973):154-169.
    [32]G. G. Litvan. Phase transitions of adsorbates:VI, Effect of deicing agents on the freezing of cement paste. Jour of the Amer Ceram Soc,58(1~2):26-30.
    [33]M. J. Setzer. A new approach to describe frost action in hardened cement paste and concrete. in Proc of a conf held in Univ of Sheffield, U.K.,1977:312-325.
    [34]Fagerlund G. The significance of critical degrees of saturation at freezing of porous and brittle materials. In:Scholer C F, eds. Durability of concrete. Detroit:American concrete institute,1975:13-65.
    [35]B. V. Enustun, K. S. Soo, K. L. Bergeson. Frost susceptibility of concrete in near-saturated states. Jour of Mat in Civ Engrg,1994,6(2):290-306.
    [36]Susanta Chatterji. Aspects of freezing process in a porous material-water system. Part1. Freezing and the properties of water and ice[J]. Cement and Concrete Rresearch,1999(29):627-630.
    [37]Susanta Chatterji. Aspects of freezing process in a porous material-water system. Part2. Freezing and properties of frozen porous materials, 1999 (29):781-784.
    [38]Vesa Penttala, Fahim Al-Neshawy. Stress and strain state of concrete during freezing and thawing cycles[J].Cement and Concrete Rresearch, 2002(32):1407-1420.
    [39]Vesa Penttala. Surface and internal deterioration of concrete due to saline and non-saline freeze-thaw loads[J]. Cement and Concrete Research, 2006(36):921-928.
    [40]Shashank Bishnoi, Taketo Umoto. Strain-temperature hysteresis in concrete under cyclic freeze-thaw conditions[J]. Cement & Concrete Composites,2008(30):374-380.
    [41]Stefan Jacobsen. Calculating liquid transport into high-performance concrete[J]. Cement and Concrete Research,2005(35)213-219.
    [42]Chul-Woo Chung, Chang-Seon Shon, Young-Su Kim. Chloride ion diffusivity of fly ash and silica fume concretes exposed to freeze-thaw cycles [J].Construction and Building materials,2010(2).
    [43]P.C. Aiticin. The durability characteristics of high performance concrete:a review[J]. Cement & Concrete Composites,2008(30):374-380.
    [44]倪祥根.早期受冻对混凝土性能的影响[J].土木工程学报,1959(1):50-62.
    [45]刘汉宏.寒冷地区桥梁冻害的整治[J].铁道建筑,1980(11):21-22.
    [46]郑敬亭.混凝土结构的抗冻融性[J].混凝土,1983(2):19-22.
    [47]李天瑗.试论混凝土冻害机理-静水压与渗透压的作用[J].混凝土与水泥制品,1989(5):8-11.
    [48]张士萍,邓敏,唐明述.混凝土冻融循环破坏研究进展[J].材料科学与工程学报,2008(10)990-994.
    [49]杨全兵.NaCl溶液结冰压的影响因素研究[J].建筑材料学报2005,8(5):495-498.
    [50]郭成举.混凝土冻害的机制[J].混凝土与水泥制品,1982(3):9-19.
    [51]冯乃谦,刑峰.高性能混凝土技术[M].北京:原子能出版社,2000.
    [52]张子明,王嘉航,姜冬菊等.气温骤降时大体积混凝土的温度应力计算[J].河海大学学报(自然科学版),2003(1):11-15;
    [53]张子明,V. K. Garga寒潮时大体积混凝土的温度应力[J].河海大学学报(自然科学版),1999(11):94-97;
    [54]慕儒.冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D].东南大学博士学位论文.2000(5)
    [55]李金玉.我国混凝土坝工程和水工混凝土耐久性研究的新进展.商品混凝土[J].2005(2)54-60
    [56]赵炜璇.冻融环境下混凝土结构温度场及温度应力分析研究[D].哈尔滨工业大学.2006(6)
    [57]冀晓东.冻融后混凝土力学性能及钢筋混凝土粘结性能的研究[D].大连理工大学博士学位论文.2007(5)
    [58]邹超英,赵娟,梁锋.冻融作用后混凝土力学性能的衰减规律[J].建筑结构学报.2008(2):117-123
    [59]段安.受冻融混凝土本构关系研究和冻融过程数值模拟[D].清华大学博士学位论文.2009(4)
    [60]宁作军.冻融作用下混凝土的损伤与断裂研究[D].哈尔滨工业大学博士学位论文.2009(3)
    [61]牛荻涛,肖前慧.混凝土冻融损伤特性分析及寿命预测[J].西安建筑科技大学学报,2010(7):319-322.
    [62]李金玉,曹建国,徐文雨等.混凝土冻融破坏机理的研究[J].水利学报,1999(1):41-49.
    [63]ASTM, Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing, ASTM C666/C666M-03.
    [64]中华人民共和国住房和城乡建设部.GB/T 50082-2009.普通混凝土长期性能和耐久性能试验方法标准[S].北京:中国建筑工业出版社,2009.
    [65]南京水利科学研究院,中国水利水电科学研究院.DL/T5150-2001.水工混凝土试验规程[S].北京:中国电力出版社,2002.
    [66]中华人民共和国住房和城乡建设部.GB/T 50476-2008.混凝土结构耐久性设计 规范[S].北京:中国建筑工业出版社,2009.
    [67]中华人民共和国建设部.GB 50010-2002.混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [68]铁道第三勘察设计院集团有限公司,中铁第四勘察设计院集团有限公司,中国铁道科学研究院.TB10020-2009.高速铁路设计规范(试行)[S].北京:中国铁道出版社,2010.
    [69]铁道第三勘察设计院.TB10002.1-2005.铁路桥涵设计基本规范[S].北京:中国铁道出版社,2006.
    [70]TB10005-2010.铁路混凝土结构耐久性设计规范[S].北京:中国铁道出版社,2011.
    [71]铁道第三勘察设计院.TB 10002.4-2005.铁路桥涵混凝土和砌体结构设计规范[S].北京:中国铁道出版社,2005.
    [72]铁道第三勘察设计院.TB 10002.5-2005.铁路桥涵地基和基础设计规范[S].北京:中国铁道出版社,2005.
    [73]长江勘测规划设计研究院.SL191-2008.水工混凝土结构设计规范[S].北京:中国水利水电出版社,2009.
    [74]赵尚传,张劲泉,左志武,梁奎基.沿海地区混凝土桥梁耐久性评价与防护[M].北京:人民交通出版社,2010(6)
    [75]Kejin Wang, Daniel E. Nelsen,Wilfrid A. Nixon, Damageing effects of deicing chemicals on concrete materials[J]. Cement & Concrete Composites,2006(28):173-188.
    [76]王晓黎.桥梁混凝土抗冻性能分析和防护措施[J].铁道标准设计,2010(6):82-84.
    [77]L. Basheer, D. J. Cleland, Freeze-Thaw resistance of concretes treated with pore liners[J]. Construction and Building Materials,2006(20):990-998.
    [78]吕钊,李伟华,宗成中.海洋环境下混凝土桥梁涂层防护技术的研究与进展[J].公路交通科技2010(9):130-134.
    [79]Li Fuhai, Zhao Renda, Ye Yuezhaong. Approach and Application of High Performance Concrete in Bridge Engineering of China[J]. ASCE.2009 (7) 3046-3051.
    [80]杨志方,过震文.东海大桥大直径钢管桩的选择和应用[J].世界桥梁,2004:21-24.
    [81]陆卫中,李京,张立新,高英.跨海大桥钢管桩高性能复合涂料[J].管道技术与设备,2008(2):43-46.
    [82]张荣利.东洲大桥钢管桩腐蚀分析及处治探讨[J].公路交通技术.2004(4): 54-57.
    [83]田有为,倪雅,刘国彬,王延东,李萍.混凝土桥梁防护用硅烷浸渍材料[J].中国建筑防水,2011(1):4-7.
    [84]宋晓妤,安云岐.混凝土桥梁的腐蚀与防护[J].公路,2004(9):38-40.
    [85]Han-Young Moon, Kook-Jae Shin, Frost attack resistance and steel bar corrosion of antiwashout underwater concrete containing mineral admixtures [J].Construction and Building Materials,2007(21):98-108.
    [86]冯乃谦.高性能混凝土的耐久性与超高耐久性混凝土的开发应用[J].混凝土1998(2):6-10.
    [87]廉慧珍,吴中伟.混凝土可持续发展与高性能胶凝材料[J].混凝土,1998(6):8-12.
    [88]张胜利,付红.桥梁混凝土结构表面防护涂层的应用研究[J].混凝土,2006(5):91-93.
    [89]黄微波.喷涂聚脲弹性体技术[M].北京:化学工业出版社,2005(7);
    [90]蒋平江.矿物掺合料对低强度高性能混凝土耐久性能的影响[J].水运工程,2011(5):50-53.
    [91]Fu Hai Li, Yue Zhong Ye, Yan Ke Yang. Study on Frost-resistant Experiments of Concrete for High Speed Railway Pile Foundation Protection. Advanced Materials Research. Vols.150-151(2011):603-607.
    [92]李福海,赵人达,叶跃忠.冻融环境下混凝土抗侵蚀性能研究[J].工业建筑.2010(6)1-4.
    [93]西德尼.明德斯等.混凝土[M].北京:化学工业出版社,2005.
    [94]库马.梅塔,保罗J.M.蒙特罗等.混凝土-微观结构、性能和材料[M].北京:中国电力出版社,2008.80-93.
    [95]陈肖柏,刘建坤,刘鸿绪,王雅卿.土的冻结作用与地基[M].北京:科学出版社.2006(1)
    [96]姚燕,王玲,田培.高性能混凝土[M].北京:化学工业出版社.2006(9):30-35.
    [97]乔红霞,周茗如,何忠茂,刘翠兰.混凝土相对动弹性模量及微观机理研究.[J]粉煤灰综合利用.2009(5):6-10.
    [98]龚洛书.混凝土实用手册[M].北京:中国建筑工业出版社.1995(5):436-444.
    [99]张建斌.桥梁桩基抗冻-防腐措施研究[D].西南交通大学硕士学位论文,2009(11)
    [100]赵建生.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2003(2)
    [101]杨兰州.外包钢管混凝土抗冻耐久性试验研究与理论分析[D].西南交通大学硕士学位论文,2008(10)
    [102]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999(3):440-446.
    [103]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,2000(1)538-546.
    [104]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2006(2)177-184.
    [105]吴中伟、廉慧珍,高性能混凝土[M].北京:中国铁道出版社,2005(5)38-39.
    [106]徐定华,徐敏,混凝土材料学概论[M].北京:中国标准出版社,2002(7)
    [107]龚洛书,柳春圃.混凝土的耐久性及其防护修补[M].北京:中国建筑工业出版社,1990(5)
    [108]C. Basyigit, I. Akkurt, R. Altindag, et al. The effect of freezing-thawing (F-T) cycles on the radiation shielding properties of concretes [J]. Buliding and Environment,2006(41):1070-1073.
    [109]余钟波,黄勇,Franklin W. Schwartz.地下水水文学原理[M].北京:科学出版社,2008(6)
    [110]冯乃谦,邢锋.混凝土与混凝土结构的耐久性[M].北京:机械工业出版社.2009(1)
    [111]杨彦克,李固华,潘绍伟.建筑材料[M].成都:西南交通大学出版社,2010(8):44-46.
    [112]姚允斌,解涛,高英敏.物理化学手册[M].上海:上海科学技术出版社,1985(12):685-688.
    [113]Bazant Z. P. Mathematical model for freeze-thaw durability of concrete. J. Am. Ceram. Soc.1998,71 (9):776-783.
    [114]Penttala V.Freezing-induced strains and pressures in wet porous materials and especially in concrete mortar. Advanced Cement Based Material, 1998(7):8-19.
    [115]Setzer M. J. Micro ice lens formation and forst damage. Proceedings of the international rilem workshop, Minneapolis:S. A. R. L. [J].1999:1-15.
    [116]Fagerlund G. Determination of pore-size distribution form freezing-point depression. Material and Structure[J],1973(6)::215-225.
    [117]吴觉宇.海砂屋试件之省思[J].工业材料,1983(6):21-26.
    [118]陈惠欣.水下工程[M].北京:中国电力出版社,2006(1)
    [119]李晔.铺面水泥混凝土抗冻设计指标研究[D].同济大学博士论文.2003(5)
    [120]Andrzej Cwirzen, Vesa penttala, Aggregate-cement paste transition zone properties affecting the salt-frost damage of high-performance concrete [J]. Cement and Concrete research,2005(35):671-679.
    [121]Halit Yazici. The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze-thaw resistance of self-compacting concrete[J]. Construction and Building Materials, 2008(22):456-462.
    [122]刘斌云,张胜,李凯,程博.桥墩抗裂抗腐高性能混凝土试验研究[J].建筑技术.2011(1):74-75.
    [123]M.F. M. Zain, Md. Safiuddin, H. Mahmud. Development of high performance concrete using silica fume at relatively high water-binder ratios [J]. Cement and Concrete Research,2000(30)1501-1505.
    [124]赵畅,王清湘.海洋环境下高性能混凝土耐久性试验研究[J].混凝土,2011(3):46-48.
    [125]王斐峰,邓学钧,秦鸿根.巧用高性能混凝土长期耐久性能试验研究[J].公路交通科技,2005(3):82-85.
    [126]谢友均,刘宝举,刘伟.矿物掺合料对高性能混凝土抗氯离子渗透性能的影响[J].铁道科学与工程学报,2004(9):46-51.
    [127]王补宣.工程传热传质学[M].北京:科学出版社,1998(5):4-7.
    [128]吴宏阳.受冻条件下混凝土冻胀应力与温度应力的研究[D].哈尔滨工业大学,2006(6)
    [129]侯志伟.温变条件下混凝土温度应力的研究[D].哈尔滨工业大学,2007(7)
    [130]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999(3)
    [131]张松涛,李民.ANSYS在分析混凝土结构温度场及温度应力中的应用[J].中国水运,2006(5)54-56.
    [132]T.Tanabe. Measurement of Thermal Stress in Situ.Avoidance of Thermal Cracking in Concrete at Early Ages[J].1998(3):232-254.
    [133]Cevera. Thermal-Chemo-Mechanical model for Concrete. Journal of Engineering Mechanics[J]. Vol.125,1999(9):1018-1027.
    [134]Mats Emborg, Stig Bernander, Assessment of risk thermal Cracking in Harding Concrete. Journal of Structure Engineering[J].1994,120(10): 2893-2911.
    [135]N.J. Carino, H. S. Lew, The Maturity Method:From Theory to Application, Nist, Gaithersburg, MD,2001.
    [136]Freiesleben Hansen, P. and Pedersen J., Maturity Computer for Controlled Curing and hardening of Concrete, Nordisk Betong,1977.
    [137]张朝阳.ANSYS热分析教程与实例解析[M].北京:中国铁道出版社2007(5):11-16.
    [138]王泽鹏,张秀辉,胡仁喜.ANSYS12.0热力学有限元分析从入门到精通[M].北京:机械工业出版社.2010(6):82-93.
    [139]孙训方,方孝淑,关来泰.材料力学[M].北京:高等教育出版社,2004(4)
    [140]王光钦,丁桂保.弹性力学[M].北京:中国铁道出版社,2004(4)
    [141]P. K. MehTa混凝土的结构性能与材料[M].上海:同济大学出版社,1991.
    [142]P. K. MehTa混凝土微观结构、性能和材料[M].北京:中国电力出版社.2008(9).
    [143]廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996.
    [144]李固华.纳米材料对混凝土耐久性的影响[D].西南交通大学博士学位论文.2006.
    [145]姚燕,王玲,吴浩.中国高性能混凝土及混凝土耐久性的研究和应用[M].混凝土工程耐久性研究和应用.成都:西南交通大学出版社,2006(10):3-8.
    [146]李晓生,李成海,林蔚,刘剑虹.无机非金属材料物相分析与研究方法[M].北京:中国建材工业出版社,2008(8)
    [147]杨南如,岳文海.无机非金属材料图谱手册[M].武汉:武汉工业大学出版社,2000(11)
    [148]石泉,周富强,吴艳等.严寒地区大体积混凝土温度场变化规律研究与实践[M].北京:中国水利水电出版社,2010(7)
    [149]姚燕,王玲,吴浩.中国高性能混凝土及混凝土耐久性的研究和应用[M].混凝土工程耐久性研究和应用。成都:西南交通大学出版社,2006(10):3-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700