用户名: 密码: 验证码:
钛酸铋钠钾压电厚膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厚度为10-100μm的压电厚膜兼具陶瓷与薄膜的优点,随着电子元器件向小型、高灵敏、集成、多功能方向发展,压电厚膜及器件成为国内外研究热点。本文采用丝网印刷法制备出高致密钛酸铋钠钾无铅压电厚膜,并研究了厚膜微结构和性能。
     采用双层印刷法在Al_2O_3衬底上制备了厚度约为8μm的Pt底电极,研究表明第一层和第二层分别在600℃和1200℃下烧结,Pt电极具有最大表面覆盖率和最小表面电阻,其方阻为0.044Ω/ ,平均粗糙度为0.6μm;采用传统固相法制备(Na_(0.82)K_(0.18))_(0.5)Bi_(0.5)TiO_3(NKBT)陶瓷粉体,以5wt.%的乙基纤维素溶入到松油醇中配制粘合剂溶液,加入2wt.%的二乙二醇丁醚醋酸酯作分散剂,1wt.%的邻苯二甲酸二丁酯和聚乙二醇作增塑剂,将NKBT粉体与粘合剂溶液按3:1的质量比混合碾磨,得到30℃时18-1s剪切速率下粘度为20-80Pa.s的厚膜浆料。
     通过在NKBT中掺入La_2O_3和MnO_2进行材料的A位和B位掺杂改性,在厚膜浆料中加入低熔点氧化物0.6Bi_2O_3-0.4Li_2O后实现NKBT厚膜的低温烧结。结果表明适量的MnO_2掺杂NKBT厚膜晶粒明显长大、尺寸更均匀,致密度提高,四方相含量增加,掺MnO_2量为1.0 mol%厚度约为40μm的NKBT厚膜介电常数为735,损耗为2.2%(10kHz),纵向压电系数d33为88pC/N,剩余极化强度为28.5μC/cm2,矫顽场强为54kV/cm,室温热释电系数为3.8×10~(-4) C/m2℃;La_2O_3的掺入使NKBT厚膜晶粒细化,四方相含量增加,反铁电相含量增加,最佳烧结温度升高。掺La_2O_3后NKBT厚膜的室温介电常数增大,最大介电常数εmax随掺杂量的增加而降低,介电峰呈现更加宽化的趋势。掺La_2O_3量为1.0mol%时,NKBT厚膜具有最小漏电流密度为1.56×10~(-9)A/cm(2外加电场为100kV/cm),压电系数d_(33)达到最大值87pC/N,掺La_2O_3量为0.5mol%的NKBT厚膜具有最大剩余极化强度为19.3μC/cm~2;掺入3wt.%的0.6Bi_2O_3-0.4Li_2O的NKBT厚膜在1000℃下烧结后相对密度可达到95.54%,剩余极化强度为19.6μC/cm~2。
     研究了NKBT厚膜的烧结特性、微结构和性能,包括溶胶渗透填充对NKBT厚膜的微结构与性能的影响,NKBT厚膜中的残余应力及其对电性能的影响,结果表明内偏场以及低介电层的出现使NKBT厚膜的性能与陶瓷有很大不同。采用复合溶胶渗透填充,在纯溶胶中添加了相同成份的NKBT功能纳米粉体,增加了填充到气孔中的有效成分。当溶胶中粉体含量为1.5g/ml时,填充6次后的NKBT厚膜具有较好的介电性能和铁电性能,其介电常数为768,损耗为2.3%,剩余极化强度为21.3μC/cm~2,矫顽场强为59kV/cm。添加3wt.%的烧结助剂后的NKBT厚膜,再采用复合溶胶填充12次后,其纵向压电系数d33达到102pC/N。在1100℃下烧结的厚度约80μm的NKBT厚膜具有最大残余张应力约136MPa,随膜厚增加,厚膜残余张应力逐渐较小,当残余应力减少到84MPa时,剩余极化强度增大到25.3μC/cm~2、矫顽场强减小至48kV/cm。
     研究了NKBT厚膜的疲劳、老化特性,结果表明NKBT厚膜疲劳、老化的主要原因是缺陷浓度增加,畴壁运动被遏制,以及用来稳定90°畴结构的缺陷偶极子的缓慢转向。温度升高使氧空位浓度增加,钉扎作用增强,导致疲劳加剧,适当的Bi过量减少了NKBT厚膜中因Bi挥发而产生的A空位,使其疲劳、老化特性变好。
Piezoelectric thick films (with thickness in the range of 10 to 100μm) which have the merits of both the bulk material and thin film are of great interest due to the drive for miniaturisation, high power/sensitivity, multi-function, and system integration with the electric circuits. The purpose of the present work is to fabricate and evaluate sodium-potassium bismuth titanate (NKBT) lead free piezoelectric thick film on electroded alumina substrate by the screen printing.
     Double layers Pt bottom electrodes for NKBT thick films have been screen printed on alumina substrates. As the first layer sintered at 600℃, the double Pt layers with sequential heat treatments at 1200℃exhibt improved densification and surface coverage. The double Pt layers with the minimum average roughness of 0.6μm and the smallest sheet resistivity of 0.044Ω/(?) have been produced. NKBT lead free piezoelectric ceramic powders were prepared by using solid phase synthesis, The organic vehicles consisted 5wt.% ethyl cellulose as binder, 2wt.% 2-(2-n-Butoxyethoxy) ethyl as dispersing agent, 1wt.% dibutyl phthalate and DBP as a plasticizer, and 92wt.%α-terpineol as solvent (α-terpineol). The screen printing pastes were produced by mixing the ceramic powders and the organic vehicles together with the mol ratio of 3:1. The viscosity of the prepared paste was adjusted by viscosimeter in the range 20-80 Pa.s for shear rate 18~(-1) s.
     NKBT thick films with A and B site substitution have been produced by La_2O_3 and MnO_2 doping, respectively. In order to reduce the annealing temperature, the NKBT thick films doped with 0.6Bi_2O_3-0.4Li_2O as sintering aids were manufactured, and their microstructural, dielectric and piezoelectric properties were investigated. The results show that MnO2 doping increases the grain size, grain uniformity, density, and content of tetragonal phase of the NKBT thick film. The resulting 40μm thick films have maximum relative permittivity of 735, (at 10 kHz), longitudinal piezoelectric coefficient d_(33) of 88 pC/N, remanent polarization of 28.5μC/cm~2, and pyroelectric coefficient of 3.8×10~(-4) C/m~2℃(25℃), minimum dissipation of 2.2%, and coercive field of 54 kV/cm. The La_2O_3 doped NKBT thick films have smaller grain, higher conten of tetragonal phase and antiferroelectric phase, and higher optimal annealing temperature than undoped NKBT thick films. The dielectric constant of the NKBT thick film increases with increasing La_2O_3 content, and the maximum dielectric,εmax of the NKBT thick film decreases with increasing La_2O_3 content. The NKBT thick films have the minimum leakage current density of 1.56×10~(-9)A/cm~2 (100kV/cm applied bias ) and maximum longitudinal piezoelectric coefficient d_(33) of 87 pC/N when doped 1.0 mol% La_2O_3. The NKBT thick films doped 0.5 mol% La_2O_3 have the higher remanent polarization of 19.3μC/cm~2. When 3 wt.% 0.6Bi_2O_3-0.4Li_2O were added, the NKBT thick film can be sintered at 1000℃, the apparent density of 95.54% and remanent polarization of 19.6μC/cm~2.
     NKBT thick films have been produced using a combination of screen printing and subsequent infiltration of corresponding composite sol. The densification mechanism and the effects of residual stress on electric characteristics of NKBT thick films have been investigated. The results show that the differences in dielectric and piezoelectric properties between the thick film and corresponding ceramic result from internal bias and low dielectric layer in thick film.Their structure, dielectric, ferroelectric and piezoelectric properties were investigated with variation in the number of composite sol infiltrations and the nanopowder loading in composite sol. The NKBT thick films which were infiltrated by the composite precursor solution with higher solids loading (1.5 g/ml) exhibited superior dielectric properties compared with the NKBT thick film infiltrated with pure sol. The best performance of the NKBT thick films with six infiltrations were dielectric constant of 768, dielectric loss of 2.3% at 10 kHz, remnant polarization of 21.3μC/cm~2, and coercive field of 59 kV/cm respectively. When 3wt.% sintering aids added, the NKBT thick films with twelve infiltrations have the maximum longitudinal piezoelectric coefficient d33 of 102 pC/N. The effects of the residual stress on the electrical properties of NKBT thick films were investigated. The resulting 80μm thick films sintered at 1100℃have the higher tensile stress of 136MPa, and the residual stress decreases with increasing thickness of the thick films.
     The dielectric and piezoelectric aging were attributed to the decrease of the domain wall contribution to the permittivity which corresponds to a gradual change of the 90? domain wall with time, and the ferroelectric fatigue was resulted from pinning of domain wall due to increase of defect concentrations. Moreover, the increase of the test temperature enhanced the pinning effect which related to oxygen vacancy concentration and resulted in quicher aging and fatigue. The aging and fatigue characteristics of NKBT thick films were improved by adding excessive Bi2O3 due to decreases of A site vacancies.
引文
[1] Crawley, E. F., de Luis, J. Use of piezoelectric actuators as elements of intelligent structures. AIAA Journal. 1987, 25(10): 1373-1385.
    [2] Saito, Y., Takao, H., Tani, T., et al. Lead-free piezoceramics. Nature. 2004, 432(7013): 84-87.
    [3] Takao, H., Saito, Y., Aoki, Y., et al. Microstructural evolution of crystalline-oriented (K0.5Na 0.5)NbO3 piezoelectric ceramics with a sintering aid of CuO. Journal of the American Ceramic Society. 2006, 89(6): 1951-1956.
    [4] Heywang, W., Thomann, H. Tailoring of piezoelectric ceramics. in. Annual review of materials science. Vol.14, Annual Reviews; 1984.
    [5] Dorey, R. A., Whatmore, R. W. Electroceramic thick film fabrication for MEMS. Journal of Electroceramics. 2004, 12(1-2): 19-32.
    [6] Ryu, J., Choi, J.-J., Hahn, B.-D., et al. Ferroelectric and piezoelectric properties of 0.948 (K0.5Na0.5)NbO3-0.052LiSbO3 lead-free piezoelectric thick film by aerosol deposition. Applied Physics Letters. 2008, 92(1): 012905.
    [7] Xu, B., White, D., Zesch, J., et al. Characteristics of lead zirconate titanate ferroelectric thick films from a screen-printing laser transfer method. Applied Physics Letters. 2005, 87(19): 192902.
    [8] Chen, H. D., Udayakumar, K. R., Cross, L. E., et al. Dielectric, ferroelectric, and piezoelectric properties of lead zirconate titanate thick films on silicon substrates. Journal of Applied Physics. 1995, 77(7): 3349.
    [9] Thiele, E. S., Damjanovic, D., Setter, N. Processing and properties of screen-printed lead zirconate titanate Piezoelectric thick films on electroded silicon. Journal Of The American Ceramic Society. 2001, 84(12): 2863-2868.
    [10] Beeby, S. P., Ross, N., White, N. M. Thick film PZT/micromachined silicon accelerometer. Electronics Letters. 1999, 35(23): 2060-2062.
    [11] Whatmore, R. W. Ferroelectrics, microsystems and nanotechnology. Ferroelectrics. 1999, 225(1-4): 179-192.
    [12] Jones, B. E., Yan, T. MEMS force and torque sensors/a review. Measurement and Control. 2004, 37(8): 236-241.
    [13] Marechal, P., Levassort, F., Holc, J., et al. High-frequency transducers based on integrated piezoelectric thick films for medical imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2006, 53(8): 1524-1533.
    [14] Simon, L., Le Dren, S., Gonnard, P. PZT and PT screen-printed thick films. Journal of the European Ceramic Society. 2001, 21(10-11): 1441-1444.
    [15] Kim, S., Kang, Y., Baik, S. Sputter deposition of ferroelectric PbTiO3 thin films. Ferroelectrics. 1994, 152(1-4 pt 2): 1-6.
    [16] Scarisoreanu, N., Craciun, F., Dinescu, G., et al. Lead-based ferroelectric compounds deposited by PLD. in. Strasbourg, France: Elsevier, vol. 453-454, 2004. 399-405.
    [17] Meidong, L., Chunru, L., Peiying, W., et al. Preparation of PZT ferroelectric thin films by sol-gel processing and their properties. Sensors and Actuators, A: Physical.1995, 49(3): 191-194.
    [18] Kurchania, R., Milne, S. J. Characterization of sol-gel Pb(Zr0.53Ti0.47)O3 films in the thickness range 0.25-10μm. Journal of Materials Research. 1999, 14(5): 1852-1859.
    [19] Tossell, D. A., Shorrocks, N. M., Whatmore, R. W. Ferroelectric ceramics and thin films for pyroelectric applications. Integrated Ferroelectrics. 1993, 3(4 pt 3): 301-308.
    [20] Van Buskirk, P. C., Roeder, J. F., Baum, T. H., et al. Common and unique aspects of perovskite thin film CVD processes. Integrated Ferroelectrics. 1998, 21(1-4 pt 1): 273-289.
    [21] Remondiere, F., Wu, A., Vilarinho, P. M., et al. Piezoforce microscopy study of lead-free perovskite Na0.5Bi0.5TiO3 thin films. Applied Physics Letters. 2007, 90(15): 152905.
    [22] Jaffe, B., Cook, W. R., Jaffe, H. Piezoelectric ceramics. London: Academic Press, 1971.
    [23] Yamashita, Y. Large electromechanical coupling factors in perovskite binary material system. Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers. 1994, 33(9B): 5328-5331.
    [24] Shukla, A. K., Agrawal, V. K., Soni, N. C., et al. Radial mode piezoelectric response of la modified Lead Zirconate Titanate in morphotropic phase boundary region. Ferroelectrics. 2004, 308: 67-84.
    [25] Fu, H. X., Cohen, R. E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature. 2000, 403(6767): 281-283.
    [26] George, A. M., Iniguez, J., Bellaiche, L. Anomalous properties in ferroelectrics induced by atomic ordering. Nature. 2001, 413(6851): 54-57.
    [27] Cross, L. E. Relaxor ferroelectrics: An overview. Ferroelectrics. 1994, 151(1-4 pt 1): 305-320.
    [28] Thomas, N. W. A new framework for understanding relaxor ferroelectrics. Journal of Physics and Chemistry of Solids. 1990, 51(12): 1419-1431
    [29] Smolenskii, G. A. Physical phenomena in ferroelectrics with diffuse phase transition Journal of The Physical Society of Japan. 1970, 28(Suppl): 26-37.
    [30] Setter, N., Cross, L. E. Role of b-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics. Journal of Applied Physics. 1980, 51(8): 4356-4360.
    [31] Setter, N., Cross, L. E. Contribution of structural disorder to diffuse phase transitions in ferroelectrics. Journal of Materials Science. 1980, 15(10): 2478-2482.
    [32] Burns, G., Dacol, F. H. Observation of glassy polarization behavior in crystalline ferroelectric materials. Ferroelectrics. 1983, 52(1-3): 103-113.
    [33] Burns, G., Dacol, F. H. Polarization in the cubic phase of BaTiO3. Solid State Communications. 1982, 42(1): 9-12.
    [34] Yao, X., Chen, Z., Cross, L. E. Polarization and depolarization behavior of hot pressed lead lanthanum zirconate titanate ceramics. Journal of Applied Physics. 1983, 54(6): 3399-3403.
    [35] Stenger, C. G. F., Scholten, F. L., Burggraaf, A. J. Ordering and diffuse phase transitions in Pb(sc0. 5Ta0. 5)O3 ceramics. Solid State Communications. 1979, 32(11): 989-992.
    [36] Cross, L. E. Relaxor ferroelectrics. Ferroelectrics. 1987, 76: 241 - 267.
    [37] Dwight, V., Jang, S. J., Cross, L. E., et al. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. Journal of Applied Physics. 1990, 68(6): 2916-2921.
    [38] Baudry, H. Screen printing piezoelectric devices. in: Proceedings of the sixth European Microelectronics Conference: 1987. 456-463.
    [39] White, N. M., Beeby, S. P., Grabham, N. J. Electroceramic-Based MEMS: Fabrication-Technology and Applications (1 edition ). Springer, 2005.50-60
    [40] Koch, M., Harris, N., Maas, R., et al. Novel micropump design with thick-film piezoelectric actuation. Measurement Science & Technology. 1997, 8(1): 49-57.
    [41] Koch, M., Harris, N., Evans, A. G. R., et al. A novel micromachined pump based on thick-film piezoelectric actuation. Sensors and Actuators, A: Physical. 1998, 70(1-2): 98-103.
    [42] Koch, M., Harris, N., Evans, A. G. R., et al. Novel micromachined pump based on thick-film piezoelectric actuation. in. Chicago, IL, USA: IEEE, Piscataway, NJ, USA, vol. 1, 1997. 353-356.
    [43] Kim, Y.-B., Kim, H.-J., Cheon, C. I., et al. Preparation of diffuser type micropump using screen-printed PZT-PCW thick films. Integrated Ferroelectrics. 2002, 50: 61-70.
    [44] Morita, T., Kurosawa, M., Higuchi, T. Design of a cylindrical ultrasonic micromotor to obtain mechanical output. Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers. 1996, 35(5B): 3251-3254.
    [45] Morita, T., Kurosawa, M. K., Higuchi, T. Micro ultrasonic motor fabricated by hydrothermal method (1.4 mm in diameter and 5 mm in length stator transducer). Proceedings of the IEEE Ultrasonics Symposium. 1998, 1: 671-674.
    [46] Morita, T., Kurosawa, M. K., Higuchi, T. Cylindrical micro ultrasonic motor using PZT thin film deposited by single process hydrothermal method (φ 2.4 mm, L = 10 mm stator transducer). IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1998, 45(5): 1178-1187.
    [47] Morita, T., Kurosawa, M. K., Higuchi, T. Cylindrical shaped micro ultrasonic motor utilizing PZT thin film (1.4 mm in diameter and 5.0 mm long stator transducer). Sensors and Actuators, A: Physical. 2000, 83(1): 225-230.
    [48] Aoyagi, M., Beeby, S. P., White, N. M. A novel multi-degree-of-freedom think-film ultrasonic motor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2002, 49(2): 151-158.
    [49] Yan, T., Jones, B. E., Rakowski, R. T., et al. Thick-film PZT-metallic triple beam resonator. Electronics Letters. 2003, 39(13): 982-983.
    [50] Yan, T., Jones, B. E., Rakowski, R. T., et al. Design and fabrication of thick-film PZT-metallic triple beam resonators. Sensors and Actuators, A: Physical. 2004, 115(2-3 SPEC ISS): 401-407.
    [51] Beeby, S. P., White, N. M. Thick-film PZT-silicon micromechanical resonator. Electronics Letters. 2000, 36(19): 1661-1662.
    [52] Ferrari, V., Marioli, D., Taroni, A., et al. Development and application of mass sensors based on flexural resonances in alumina beams. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1996, 43(4): 601-608.
    [53] Ferrari, V., Marioli, D., Taroni, A. Self-resonant piezoelectric thick films for sensing applications. Electronics Letters. 1996, 32(9): 855-857.
    [54] Ferrari, V., Marioli, D., Taroni, A., et al. Multisensor array of mass microbalances for chemical detection based on resonant piezo-layers of screen-printed PZT. Sensors and Actuators, B: Chemical. 2000, 68(1): 81-87.
    [55] Kim, H. J., Kim, Y.-B., Kang, J.-Y., et al. Fabrication and resonant behavior of PZT thick film cantilever for BioChip. Integrated Ferroelectrics. 2002, 50: 11-20.
    [56] Capineri, L., Ferrari, V., Naldoni, F., et al. 3×3 matrix of thick-film pyroelectric transducers. Electronics Letters. 1998, 34(15): 1486-1487.
    [57] Ferrari, V., Ghisla, A., Marioli, D., et al. Array of PZT pyroelectric thick-film sensors for contactless measurement of XY position. IEEE Sensors Journal. 2003, 3(2): 212-217.
    [58] Ferrari, V., Marioli, D., Taroni, A. Theory, modeling and characterization of PZT-on-alumina resonant piezo-layers as acoustic-wave mass sensors. Sensors and Actuators, A: Physical. 2001, 92(1-3): 182-190.
    [59] Cranny, A., Cotton, D. P. J., Chappell, P. H., et al. Thick-film force and slip sensors for a prosthetic hand. Sensors and Actuators, A: Physical. 2005, 123-124: 162-171.
    [60] Cotton, D. P. J., Chappell, P. H., Cranny, A., et al. A novel thick-film piezoelectric slip sensor for a prosthetic hand. IEEE Sensors Journal. 2007, 7(5): 752-761.
    [61] White, N. M., Ko, V. T. K. Thick-film acoustic wave sensor structure. Electronics Letters. 1993, 29(20): 1807-1808.
    [62] Jeon, Y. B., Sood, R., Jeong, J. H., et al. MEMS power generator with transverse mode thin film PZT. Sensors and Actuators, A: Physical. 2005, 122(1 SPEC ISS): 16-22.
    [63] Futakuchi, T., Yamano, H., Adachi, M. Preparation of ferroelectric thick film actuator on silicon substrate by screen-printing. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers. 2001, 40(9 B): 5687-5689.
    [64] Hoffman, L. C. overview of thick film hybrid materials. American Ceramic Society Bulletin. 1984, 63(4): 572-576.
    [65] Ahn, J.-P., Kim, J.-H., Park, J.-K., et al. Microstructure and gas-sensing properties of thick film sensor using nanophase SnO2 powder. Sensors and Actuators, B: Chemical. 2004, 99(1): 18-24.
    [66] Qu, W., Meyer, J.-U. Novel thick-film ceramic humidity sensor. Sensors and Actuators, B: Chemical. 1997, B40(2-3): 175-182.
    [67] Dziedzic, A., Golonka, L. J., Kozlowski, J., et al. Thick-film resistive temperature sensors. Measurement Science & Technology. 1997, 8(1): 78-85.
    [68]周东祥,龚树萍. PTC材料及应用. (第一版).武汉:华中理工大学出版社, 1989.156-165
    [69] Yamagata, K., Hayashi, N., Maeji, Y., et al. Characteristics of a thick high-critical temperature superconductor film used as a highly sensitive magnetic sensor. IEEE Transactions on Applied Superconductivity. 2004, 14(2): 1689-1692.
    [70] Shipton, R. D., Robertson, C. J., Gray, D. R., et al. Ultra-fine thick film printing with foil based μ-screens. Advancing Microelectronics. 2002, 29(4): 9.
    [71] Robertson, C., Shipton, R. D., Gray, D. R. Miniature sensors using high density screen printing. Sensor Review. 1999, 19(1): 33-36.
    [72] Thiele, E. S., Setter, N. Lead zirconate titanate particle dispersion in thick-film ink formulations. Journal of the American Ceramic Society. 2000, 83(6): 1407-1412.
    [73] Stojanovic, B. D., Foschini, C. R., Pejovic, V. Z., et al. Electrical properties of screen printed BaTiO3 thick films. Journal of the European Ceramic Society. 2004, 24(6): 1467-1471.
    [74] Yao, K., He, X., Xu, Y., et al. Screen-printed piezoelectric ceramic thick films with sintering additives introduced through a liquid-phase approach. Sensors and Actuators, A: Physical. 2005, 118(2): 342-348.
    [75] Walter, V., Delobelle, P., Le Moal, P., et al. A piezo-mechanical characterization of PZT thick films screen-printed on alumina substrate. Sensors and Actuators, A: Physical. 2002, 96(2-3): 157-166.
    [76] Collier, J., Cornejo, I. A., Haun, M. J. Ferroelectric thick-films for piezoelectric applications. Ferroelectrics. 1994, 154(1-4 pt 4): 47-52.
    [77] De Cicco, G., Morten, B., Dalmonego, D., et al. Pyroelectricity of PZT-based thick-films. Sensors and Actuators, A: Physical. 1999, 76(1-3): 409-415.
    [78] Simon Seveyrat, L., Gonnard, P. Processing and characterization of piezoelectric thick films screen-printed on silicon and glass-ceramic substrates. Integrated Ferroelectrics. 2003, 51: 1-18.
    [79] Chung, K., Lee, D., Yoo, J., et al. Piezoelectric properties of low-temperature sintering Pb(Co1/2W1/2)O3-Pb(Mn1/3Nb2/3)O3-Pb(Zr0.48Ti0.52)O3 ceramics with the sintering temperature and the amount of CuO addition. Sensors and Actuators, A: Physical. 2005, 121(1): 142-147.
    [80] Dorey, R. A., Stringfellow, S. B., Whatmore, R. W. Effect of sintering aid and repeated sol infiltrations on the dielectric and piezoelectric properties of a PZT composite thick film. Journal of the European Ceramic Society. 2002, 22(16): 2921-2926.
    [81] Matsubara, M., Yamaguchi, T., Kikuta, K., et al. Sinterability and piezoelectric properties of (K,Na)NbO3 ceramics with novel sintering aid. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers. 2004, 43(10): 7159-7163.
    [82] Cheng, S. Y., Fu, S. L., Wei, C. C., et al. properties of low-temperature fired piezoelectric ceramics. Journal of Materials Science. 1986, 21(2): 571-576.
    [83] Wittmer, D. E., Buchanan, R. C. low-temperature densification of lead zirconate-titanate with vanadium pentoxide additive. Journal of the American Ceramic Society. 1981, 64(8): 485-490.
    [84] Dong, D., Murakami, K., Okada, N., et al. Behavior of morphotropic phase boundary in low-temperature sintered lead zirconate-titanate ceramics with BiFeO3and Ba(Cu0.5W0.5)O3. Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers. 1994, 33(9B): 5529-5532.
    [85] Houng, B., Haun, M. J. Lead titanate and lead zirconate titanate piezoelectric glass-ceramics. Ferroelectrics. 1994, 154(1-4 pt 4): 107-112.
    [86] Yao, K., Zhu, W. Improved preparation procedure and properties for a multilayer piezoelectric thick-film actuator. Sensors and Actuators, A: Physical. 1998, 71(1-2): 139-143.
    [87] Dorey, R. A., Whatmore, R. W. Pyroelectric PZT/PMNZTU composite thick films. Journal of the European Ceramic Society. 2005, 25(12): 2379-2382.
    [88] Lee, S.-G. Effects of sol infiltration on the screen-printed lead zirconate titanate thick films. Materials Letters. 2007, 61(10): 1982-1985.
    [89] Corker, D. L., Zhang, Q., Whatmore, R. W., et al. PZT'composite'ferroelectric thick films. Journal of the European Ceramic Society. 2002, 22(3): 383-390.
    [90] Barrow, D. A., Petroff, T. E., Sayer, M. Thick ceramic coatings using a sol gel based ceramic-ceramic 0-3 composite. Surface & Coatings Technology. 1995, 76-77(1-3 pt 1): 113-118.
    [91] Barrow, D. A., Petroff, T. E., Tandon, R. P., et al. Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process. Journal of Applied Physics. 1997, 81(2): 876.
    [92] Olding, T., Sayer, M., Barrow, D. Ceramic sol-gel composite coatings for electrical insulation. Thin Solid Films. 2001, 398-399: 581-586.
    [93] Kobayashi, M., Ono, Y., Jen, C.-K., et al. High-temperature piezoelectric film ultrasonic transducers by a sol-gel spray technique and their application to process monitoring of polymer injection molding. IEEE Sensors Journal. 2006, 6(1): 55-62.
    [94] Dorey, R. A., Whatmore, R. W., Beeby, S. P., et al. Screen printed PZT thick films using composite film technology. Integrated Ferroelectrics. 2003, 54: 651-658.
    [95] Dorey, R. A., Whatmore, R. W., Beeby, S. P., et al. Screen printed PZT composite thick films. Integrated Ferroelectrics. 2004, 63: 89-92.
    [96] Kholkin, A. L., Yarmarkin, V. K., Wu, A., et al. Thick piezoelectric coatings via modified sol-gel technique. Integrated Ferroelectrics. 2000, 30: 245-252.
    [97] Duval, F. F. C., Dorey, R. A., Zhang, Q., et al. Lead germanium oxide sinter-assisted PZT composite thick films. Journal of the European Ceramic Society. 2003, 23(11): 1935-1941.
    [98] Dorey, R. A., Duval, F. F. C., Haigh, R. D., et al. The effect of repeated sol infiltrations on the microstructure and electrical properties of PZT composite sol-gel films. Ferroelectrics. 2002, 267: 373-378.
    [99] Kholkin, A. L., Yarmarkin, V. K., Wu, A., et al. PZT-based piezoelectric composites via a modified sol-gel route. Journal of the European Ceramic Society. 2001, 21(10-11): 1535-1538.
    [100] Wagner, M., Roosen, A., Oostra, H., et al. Novel low voltage piezoactuators for high displacements. Journal of Electroceramics. 2005, 14(3): 231-238.
    [101] De, D., Nicholson, P. S. Role of ionic depletion in deposition during electrophoretic deposition. Journal of the American Ceramic Society. 1999, 82(11): 3031-3036.
    [102] Sarkar, P., Nicholson, P. S. Electrophoretic deposition (EPD): Mechanisms, kinetics, and application to ceramics. Journal of the American Ceramic Society. 1996, 79(8): 1987-2002.
    [103] Ma, J., Zhang, R., Liang, C. H., et al. Colloidal characterization andelectrophoretic deposition of PZT. Materials Letters. 2003, 57(30): 4648-4654.
    [104] Chen, Y. H., Li, T., Boey, F. Y. C., et al. Electrophoretic deposition and characterization of helical piezoelectric actuator. Ceramics International. 2008, 34(1): 1-6.
    [105] Tassel, J. V., Randall, C. A. Electrophoretic deposition and sintering of thin/thick PZT films. Journal of the European Ceramic Society. 1999, 19(6-7): 955-958.
    [106] Boccaccini, A. R., Zhitomirsky, I. Application of electrophoretic and electrolytic deposition techniques in ceramics processing* - Part 1. InterCeram: International Ceramic Review. 2005, 54(3): 162-167.
    [107] Boccaccini, A. R., Zhitomirsky, I. Application of electrophoretic and electrolytic deposition techniques in ceramics processing - Part 2. InterCeram: International Ceramic Review. 2005, 54(4): 242-246.
    [108] Tseng, W. J., Lin, S. Y., Wang, S. R. Particulate dispersion and freeform fabrication of BaTiO3 thick films via direct inkjet printing. Journal of Electroceramics. 2006, 16(4): 537-540.
    [109] Akedo, J., Lebedev, M. Piezoelectric properties and poling effect of Pb(Zr, Ti)O3 thick films prepared for microactuators by aerosol deposition. Applied Physics Letters. 2000, 77(11): 1710-1712.
    [110] Tsurumi, T., Ozawa, S., Wada, S. Preparation of PZT thick films by an interfacial polymerization method. Journal of Sol-Gel Science and Technology. 2003, 26(1-3): 1037-1040.
    [111] Choi, J.-J., Park, G.-T., Lee, S.-M., et al. Sol-gel preparation of thick PZN-PZT film using a diol-based solution containing polyvinylpyrrolidone for piezoelectric applications. Journal of the American Ceramic Society. 2005, 88(11): 3049-3054.
    [112] Ndiaye, P. A., Loiseau, B., Minaud, S., et al. PbZrxTi1-xO3 hydrothermal synthesis on titanium substrate for actuators. Microsystem Technologies. 1999, 6(1): 15-18.
    [113] Simon, L., Le Dren, S., Gonnard, P., et al. Processing and characterization of PbTiO3 thick films on alumina substrates. Journal of Electroceramics. 2002, 8(3): 215-219.
    [114] Le Dren, S., Megriche, A., Gonnard, P., et al. Thick films on alumina substrates for piezoelectric devices applications. Ferroelectrics. 2000, 238(1-4 pt 3): 791-227.
    [115] Whatmore, R. W., Zhang, Q., Huang, Z., et al. Ferroelectric thin and thick films for microsystems. Materials Science in Semiconductor Processing. 2002, 5(2-3): 65-76.
    [116] Wang, Z., Zhu, W., Zhu, H., et al. Fabrication and characterization of piezoelectric micromachined ultrasonic transducers with thick composite PZT films. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2005, 52(12): 2289-2297.
    [117] Akedo, J., Lebedev, M. Effects of annealing and poling conditions on piezoelectric properties of Pb(Zr0.52Ti0.48)O3 thick films formed by aerosol deposition method. Journal of Crystal Growth. 2002, 235(1-4): 415-420.
    [118] Tsurumi, T., Ozawa, S., Wada, S. Preparation of PZT thick films by an interfacial polymerization method. Journal of Sol-Gel Science and Technology. 2003, 26(1-3): 1037-1040.
    [119] Hasegawa, T., Kawashima, N., Takeuchi, S., et al. Basic study on lead free BNTpiezoelectric film deposited by hydrothermal method. in. Rotterdam, Netherlands: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States, vol. 3, 2005. 1633-1636.
    [120] Maiwa, H., Lizawa, N., Togawa, D., et al. Electromechanical properties of Nd-doped Bi4Ti3O12 films: A candidate for lead-free thin-film piezoelectrics. Applied Physics Letters. 2003, 82(11): 1760-1762.
    [121] Yu, T., Kwok, K. W., Chan, H. L. W. The synthesis of lead-free ferroelectric Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 thin films by sol-gel method. Materials Letters. 2007, 61(10): 2117-2120.
    [122] Kobavashi, M., Jen, C. K., Ono, Y., et al. Lead-free thick piezoelectric films as miniature high temperature ultrasonic transducers. in. Montreal, Que., Canada: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States, vol. 2, 2004. 910-913.
    [123] Ryu, J., Choi, J.-J., Hahn, B.-D., et al. Fabrication and ferroelectric properties of highly dense lead-free piezoelectric (K0.5Na0.5)NbO3 thick films by aerosol deposition. Applied Physics Letters. 2007, 90(15): 152901.
    [124]李秀峰.基于数字示波器的铁电材料参数测试系统: [硕士学位论文].武汉:华中科技大学图书馆, 2006.
    [125]肖腊连.热释电系数计算机测试系统的研究: [硕士学位论文].武汉:华中科技大学图书馆, 2006.
    [126] Beeby, S. P., Blackburn, A., White, N. M. Silicon micromachining processes combined with thick-film printed lead zirconate titanate actuators for microelectromechanical systems. Materials Letters. 1999, 40(4): 187-191.
    [127] Corker, D. L., Zhang, Q., Whatmore, R. W., et al. PZT 'composite' ferroelectric thick films. Journal of the European Ceramic Society. 2002, 22(3): 383-390.
    [128] Vechembre, J. B., Fox, G. R. Sintering of screen-printed platinum thick films for electrode applications. Journal of Materials Research. 2001, 16(4): 922-931.
    [129] Jeon, Y., Kim, D. G., No, K., et al. Residual stress analysis of Pt bottom electrodes on ZrO2/SiO2/Si and SiO2/Si substrates for Pb(ZrTi)O3 thick films. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers. 2000, 39(5 A): 2705-2709.
    [130] Miller, K. T., Lange, F. F., Marshall, D. B. The instability of polycrystalline thin films: Experiment and theory. Journal of Materials Research. 1990, 5(1): 151-157.
    [131] Lücke, K., Detert, K. A quantative theory of grain-boundary motion and recristallization in. metals in the presence of impurities. Acta Metallurgica 1957, 5(11): 628- 637.
    [132] Hoffman, R. E., Turnbull, D. Lattice and Grain Boundary Self-Diffusion in Silver. Journal of Applied Physics. 1951, 22(5): 634-639.
    [133] Kingery, W. D., Bowen, H. K., Uhlmann, D. R. Introduction to Ceramics. (2nd Edition ). New York: John Wiley & Sons, 1976. 227-240.1056
    [134] McLean, M., Hondros, E. D. A study of grain-boundary grooving at the platinum/alumina interface Journal of Materials Science. 1971, 6(1): 19-23.
    [135] Huang, F. H., Che-Yu, L. Ripening of platinum particles on aluminium oxide. Scripta Metallurgica. 1973, 7(12): 1239-1243.
    [136] Yoon, Y. S., Kim, S. H., Lee, S.-J., et al. Fabrication and frequency response ofdual-element ultrasonic transducer using PZT-5A thick film. Sensors and Actuators, A: Physical. 2006, 125(2): 463-470.
    [137] Takenaka, T., Maruyama, K.-i., Sakata, K. (Bi?Na?)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes. 1991, 30(9B): 2236-2239.
    [138] Kamalasanan, M. N., Kumar, N. D., Subhas, C. Structural and microstructural evolution of barium titanate thin films deposited by the sol-gel process. Journal of Applied Physics. 1994, 76(8): 4603-4609.
    [139] Joshi, P. C., Abhai, M., Kamalasanan, M. N., et al. Structural and optical properties of ferroelectric Bi4Ti3O12 thin films by sol-gel technique. Applied Physics Letters. 1991, 59(19): 2389-2390.
    [140] Hector, A. L., Wiggin, S. B. Synthesis and structural study of stoichiometric Bi2Ti2O7 pyrochlore. Journal Of Solid State Chemistry. 2004, 177(1): 139-145.
    [141] Zhang, Q., Huang, Z., Whatmore, R. W. Studies of lead zirconate titanate sol ageing Part I: Factors affecting particle growth. Journal of Sol-Gel Science and Technology. 2002, 23(2): 135-144.
    [142] Huang, Z., Zhang, Q., Whatmore, R. W. Studies of lead zirconate titanate sol aging Part II: Particle growth mechanisms and kinetics. Journal of Sol-Gel Science and Technology. 2002, 24(1): 49-55.
    [143] Riemer, D. E. Function and performance of the stainless steel screen during the screen-print ink transfer process. International Journal for Hybrid Microelectronics. 1987, 10(2): 1-8.
    [144] Riemer, D. E., Hamilton, R. E. Analytical Engineering Model of the Screen Printing Process: Part I. Solid State Technology. 1988, 31(8): 107-111.
    [145] Riemer, D. E. Analytical engineering model of the screen printing process. II. Solid State Technology 1988, 31(9): 85-90.
    [146] Huner, B. Stokes flow analysis of the screen-printing process. International Journal of Microcircuits and Electronic Packaging. 1994, 17(1): 21-27.
    [147] Huner, B. Simplified analysis of blade coating with applications to the theory of screen printing. International Journal for Hybrid Microelectronics. 1989, 12(2): 88-94.
    [148] Trease, R. E., Dietz, R. L. Rheology of pastes in thick- film printing. 1972, 15(1): 39-43.
    [149] Baudry, H., Franconville, F. Encres sérigraphiables pour haute Définition. Rhéologie et Impression. Acta Electronica. 1978, 21(4): 283-295.
    [150] Newnham, R. E., Trolier-McKinstry, S. Size effects in ferroics. Integrated Ferroelectrics. 1998, 20(1-4): 1-13.
    [151] Jin, D. Z., Chen, X. M., Xu, Z. C. IInfluence of dispersed coarse grains on mechanical and piezoelectric properties in (Bi1/2Na1/2)TiO3 ceramics. Materials Letters. 2004, 58(11): 1701-1705.
    [152] Mortara, L., Navarro, A., Whatmore, R. W., et al. Correlation of sintered microstructure with green density in thick-film PZT. Key Engineering Materials. 2004, 264-268(1): 309-312.
    [153] Olszyna, A. R., Marchlewski, P., Kurzydlowski, K. J. Sintering of high-density, high-purity alumina ceramics. Ceramics International. 1997, 23(4): 323-328.
    [154] Tsai, S. C., Zammouri, K. Role of interparticular van der Waals force in rheology of concentrated suspensions. Journal of Rheology. 1988, 32(7): 737-750.
    [155] Horn, R. G. Surface forces and their action in ceramic materials. Journal of the American Ceramic Society. 1990, 73(5): 1117-1135.
    [156] Monneraye, M. Les Encres Sérigraphiables en Microélectronique hybride: Les Matériaux et leur Comportement. Acta Electronica. 1978, 21(4): 263-281
    [157] Onoda, J. G. Y., Hench, L. L. Ceramic Processing Before Firing. (1st Edition). New York: John Wiley and sons, 1987.391-394.
    [158] Bayramli, E., Van De Ven, T. G. M. Experimental study of liquid bridges between spheres in a gravitational field. Journal of Colloid and Interface Science. 1987, 116(2): 503-510.
    [159] Horn, R. G. Surface Forces and Their Action in Ceramic Materials. Journal of American Ceramic Society. 1990, 73(5): 1117-1135.
    [160] Braun, L., Morris, J. R., Jr., Cannon, W. R. Viscosity of tape-casting slips. American Ceramic Society Bulletin. 1985, 64(5): 727-729.
    [161] Wang, G., Sarkar, P., Nicholson, P. S. Influence of acidity on the electrostatic stability of alumina suspensions in ethanol. Journal of the American Ceramic Society. 1997, 80(4): 965-972.
    [162] Chartier, T., Jorge, E., Boch, P. Dispersion properties of BaTiO3 tape-casting slurries. Journal of the European Ceramic Society. 1993, 11(5): 387-393.
    [163] Dimilia, R. A., Reed, J. S. Dependence of compaction on the glass transition temperature of the binder phase. American Ceramic Society Bulletin. 1983, 62(4): 484-488.
    [164] Darinskii, B. M., Sidorkin, A. S., Milovidova, S. D. Appearance of internal bias field in ferroelectric growth process. Ferroelectrics. 1993, 142(1-2): 45-50.
    [165] Lohkamper, R., Neumann, H., Arlt, G. Internal bias in acceptor-doped BaTiO3 ceramics: numerical evaluation of increase and decrease. Journal of Applied Physics. 1990, 68(8): 4220-4224.
    [166] Eichel, R.-A. Defect structure of oxide ferroelectrics-valence state, site of incorporation, mechanisms of charge compensation and internal bias fields : IInvited review for J. Electroceram. Journal of Electroceramics. 2007, 19(1): 9-21.
    [167] Nagata, H., Takenaka, T. Additive effects on electrical properties of (Bi1/2Na1/2)TiO3 ferroelectric ceramics. Journal of the European Ceramic Society. 2001, 21(10-11): 1299-1302.
    [168]陈文,周静,徐庆, et al. Na1/2Bi1/2TiO3体系的电子结构及极化特性.计算物理. 2004, 21(6): 543.
    [169]李标荣,王筱珍,张绪礼.无机电介质. (第一版).武汉:华中理工大学出版社, 1995.121-140
    [170] Kreisel, J., Glazer, A. M., Jones, G., et al. X-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: The (Na1-xKx)0.5Bi0.5TiO3 (0<=x<=1) solid solution. Journal Of Physics: Condensed Matter. 2000, 12(14): 3267-3280.
    [171] Qi, Z. Effects of Mn doping on the ferroelectric properties of PZT thin films. Journal of Physics D (Applied Physics). 2004, 37(1): 98-101.
    [172] Setter, N., Cross, L. E. The role of B-site cation disorder in diffuse phase transitionbehavior of perovskite ferroelectrics. Journal of Applied Physics. 1980, 51(8): 4356-4360.
    [173] Siny, I. G., Tu, C. S., Schmidt, V. H. Critical acoustic behavior of the relaxor ferroelectric Na1/2Bi1/2TiO3 in the intertransition region. Physical Review B (Condensed Matter). 1995, 51(9): 5659-5665.
    [174] Pena, M. A., Fierro, J. L. G. Chemical structures and performance of perovskite oxides. Chemical Reviews. 2001, 101(7): 1981-2017.
    [175] Kobune, M., Tomoyoshi, Y., Mineshige, A., et al. Effects of MnO2 addition on piezoelectric and ferroelectric properties of PbNi1/3Nb2/3O3-PbTiO3-PbZrO3 ceramics. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan. 2000, 108(1259): 633-637.
    [176] Ignatieva, A., Xu, Y. Q., Wu, N. J., et al. Pyroelectric, ferroelectric and dielectric properties of Mn and Sb-doped PZT thin films for uncooled IR detectors. in. College Park, MD, USA: Elsevier, vol. 56, 1998. 191-194.
    [177]刘梅冬,许毓春.压电铁电材料及器件. (第一版).武汉:华中理工大学出版社, 1990.228-249
    [178] Abe, J., Kobune, M., Nishimura, T., et al. Effects of manganese addition on pyroelectric properties of (Bi0.5Na0.5TiO3)0.94(BaTiO3)0.06 ceramics. Integrated Ferroelectrics. 2006, 80(1): 87-95.
    [179] Takayama, R., Tomita, Y. Preparation of epitaxial Pb(ZrxTi1-x)O3 thin films and their crystallographic, pyroelectric, and ferroelectric properties. Journal of Applied Physics. 1989, 65(4): 1666-1670.
    [180] Sasaki, A., Chiba, T., Mamiya, Y., et al. Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers. 1999, 38(9B): 5564-5567.
    [181] Nagata, H., Takenaka, T. Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-1/2(Bi2O3·Sc2O3) system. Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers. 1997, 36(9B): 6055-6057.
    [182] Takenaka, T., Sakata, K. Dielectric, piezoelectric and pyroelectric properties of (BiNa)1/2TiO3- based ceramics Ferroelectrics. 1989, 95(1): 153 - 156
    [183] Arlt, G., Neumann, H. Internal bias in ferroelectric ceramics: origin and time dependence. Ferroelectrics. 1988, 87: 109-120.
    [184] Seifert, A., Sagalowicz, L., Muralt, P., et al. Microstructural evolution of dense and porous pyroelectric Pb1-xCaxTiO3 thin films. Journal of Materials Research. 1999, 14(5): 2012-2022.
    [185] Suyal, G., Seifert, A., Setter, N. Pyroelectric nanoporous films: Synthesis and properties. Applied Physics Letters. 2002, 81(6): 1059.
    [186] Yi, J. Y., Lee, J.-K., Hong, K.-S. Dependence of the microstructure and the electrical properties of lanthanum-substituted (Na1/2Bi1/2)TiO3 on cation vacancies. Journal of the American Ceramic Society. 2002, 85(12): 3004-3010.
    [187] Sugiyama, O., Saito, S., Kato, K., et al. Lead zirconate titanate ceramics. Journal of the Ceramic Society of Japan. 1999, 107(9): 857-860.
    [188] Chu, B.-J., Chen, D.-R., Li, G.-R., et al. Electrical properties of Na1/2Bi1/2TiO3-BaTiO3 ceramics. Journal of the European Ceramic Society. 2002, 22(13): 2115-2121.
    [189] Thomas, N. W. A new framework for understanding relaxor ferroelectrics. Journal of Physics and Chemistry of Solids. 1990, 51(12): 1419-1431
    [190]吕文中,汪小红.电子材料物理. (第一版).北京:电子工业出版社, 2002.154-156
    [191] Herabut, A., Safari, A. Processing and electromechanical properties of (Bi0.5Na0.5)(1-1.5x)La xTiO3 ceramics. Journal of the American Ceramic Society. 1997, 80(11): 2954-2958.
    [192] Ma, C., Wang, X. H., Chen, R. Z., et al. The effect of different doping methods of sintering aids on the barium titanate based X7R ceramics. Key Engineering Materials. 2007, 336-338(1): 83-86.
    [193] Wang, X. X., Tang, X. G., Kwok, K. W., et al. Effect of excess Bi2O3 on the electrical properties and microstructure of (Bi1/2Na1/2)TiO3 ceramics. Applied Physics A: materials Science and Processing. 2005, 80(5): 1071-1075.
    [194] Kaneko, S., Dong, D., Murakami, K. Effect of simultaneous addition of BiFeO3 and Ba(Cu0.5W0.5)O3 on lowering of sintering temperature of Pb(Zr,Ti)O3 ceramics. Journal of the American Ceramic Society. 1998, 81(4): 1013-1018.
    [195] Zhou, L. J., Zimmermann, A., Zeng, Y.-P., et al. Effects of PbO content on the sintering behavior, microstructure, and properties of La-doped PZST antiferroelectric ceramics. Journal of Materials Science: Materials in Electronics. 2004, 15(3): 145-151.
    [196]钟维烈.铁电体物理学. (第一版).北京:科学出版社, 2000.130-148
    [197] Bordia, K., Raj, R. Sintering behavior of ceramic films constrained by a rigid substrate Journal of the American Ceramic Society. 1985, 68(6): 287-292.
    [198] Bordia, R. K., Scherer, G. W. Constrained sintering: I. Constitutive models for a sintering body. Acta Metallurgica. 1988, 36(9): 2393-2397
    [199] Bordia, R. K., Scherer, G. W. Constrained sintering: II. Comparison of constitutive models. Acta Metallurgica. 1988, 36(9): 2399-2409
    [200] Bordia, R. K., Scherer, G. W. Constrained sintering: III. Rigid inclusions. Acta Metallurgica. 1988, 36(9): 2411-2416
    [201] Zhao, Y., Dharani, L. R. Theoretical model for the analysis of a ceramic thin film sintering on a non-sintering substrate. Thin Solid Films. 1994, 245(1-2): 109-114.
    [202] Bordia, R. K., Raj, R. sintering behavior of ceramic films constrained by a rigid substrate. Journal of the American Ceramic Society. 1985, 68(6): 287-292.
    [203] Johnson, D. L. New method of obtaining volume, grain-boundary, and surface diffusion coefficients from sintering data. Journal of Applied Physics. 1969, 40(1): 192-200.
    [204] Brook, R. J. Pore-grain boundary interactions and grain growth Journal of the American Ceramic Society. 1969, 52(1): 56-57.
    [205] Brook, R. J. Pores and grain growth kinetics. Journal of the American Ceramic Society. 1969, 52(6): 339-340.
    [206] Nichols, F. A. Theory of grain growth in porous compacts. Journal of Applied Physics. 1966, 37(13): 4599-4602.
    [207] Tagantsev, A. K., Landivar, M., Colla, E., et al. Identification of passive layer in ferroelectric thin films from their switching parameters. Journal of Applied Physics. 1995, 78(4): 2623.
    [208] Tagantsev, A. K., Pawlaczyk, C. Z., Brooks, K., et al. Depletion and depolarizing effects in ferroelectric thin films and their manifestations in switching and fatigue. Integrated Ferroelectrics. 1995, 6(1-4 pt 1): 309.
    [209] Postnikov, V. S., Pavlov, V. S., Turkov, S. K. Internal friction in ferroelectrics due to interaction of domain boundaries and point defects. 1970, 31(8): 1785-1791.
    [210] Carl, K., Haerdtl, K. H. Electrical after-effects in Pb(Ti,Zr)O3 ceramics. Ferroelectrics. 1978, 17(3-4): 473-486.
    [211] Neumann, H., Arlt, G. Deformation of hysteresis curves by an internal bias in ferroelectric ceramics. in. Denver, CO, USA: IEEE, New York, NY, USA, 1987. 671-674.
    [212] Arlt, G., Neumann, H. Internal bias in ferroelectric ceramics: Origin and time dependence Ferroelectrics. 1988, 87(1): 109-120.
    [213] Ingle, S. G., Joshi, S. C. Unstable point domains in ferroelectrics. Physical Review B. 1986, 34(7): 4840-4845.
    [214] Mokry, P., Tagantsev, A. K., Setter, N. Effect of spontaneous polarization screening on dielectric response of ferroelectric polydomain films. Ferroelectrics. 2005, 319: 209-217.
    [215] Holc, J., Hrovat, M., Kosec, M. Interactions between alumina and PLZT thick films. Materials Research Bulletin. 1999, 34(14-15): 2271-2278.
    [216] Bersani, M., Morten, B., Prudenziati, M., et al. Interactions between lead oxide and ceramic substrates for thick film technology. Journal of Materials Research. 1997, 12(2): 501-508.
    [217] Jin, B. M., Kim, J., Kim, S. C. Effects of grain size on the electrical properties of PbZr0.52Ti0.48O3 ceramics. Applied Physics A: Materials Science & Processing. 1997, 65(1): 53-56.
    [218] Okazaki, K., Igarashi, H., Nagata, K., et al. Effects of grain size on the electrical properties of plzt ceramics. Ferroelectrics. 1974, 7(1-4): 153-155.
    [219] Arlt, G., Hennings, D., de With, G. Dielectric properties of fine-grained barium titanate ceramics. Journal of Applied Physics. 1985, 58(4): 1619-1625.
    [220] Arlt, G. The influence of microstructure on the properties of ferroelectric ceramics. Ferroelectrics. 1990, 104(1): 217-227.
    [221] Li, X., Shih, W. Y., Vartuli, J. S., et al. Effect of a transverse tensile stress on the electric-field-induced domain reorientation in soft PZT: In situ XRD study. Journal of the American Ceramic Society. 2002, 85(4): 844-850.
    [222] Scott, J. F., Galt, D., Price, J. C., et al. Model of voltage-dependent dielectric losses for ferroelectric MIMIC devices. Integrated Ferroelectrics. 1995, 6(1-4 pt 1): 189-203.
    [223] Apostolopoulos, G., Vellianitis, G., Dimoulas, A., et al. Complex admittance analysis for La2Hf2O7/SiO2 high-k dielectric stacks. Applied Physics Letters. 2004, 84(2): 260-262.
    [224] Tu, W.-C., Lange, F. F. Liquid precursor infiltration processing of powder compacts: I, kinetic studies and microstructure development. Journal of the American Ceramic Society. 1995, 78(12): 3277-3282.
    [225] Tu, W.-C., Lange, F. F. Liquid precursor infiltration processing of powder compacts: II, fracture toughness and strength. Journal of the American CeramicSociety. 1995, 78(12): 3283-3289.
    [226] Okazaki, K., Nagata, K. Effects of grain size and porosity on electrical and optical properties of plzt ceramics. Journal of the American Ceramic Society. 1973, 56(2): 82-86.
    [227] Gebhardt, S., Seffner, L., Schonecker, A., et al. Bi-layered PZT films by combining thick and thin film technology. Journal of the European Ceramic Society. 2004, 24(6): 1101-1105.
    [228] Wang, X. X., Tang, X. G., Chan, H. L. W. Electromechanical and ferroelectric properties of (Bi1/2Na 1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics. Applied Physics Letters. 2004, 85(1): 91-93.
    [229] Newnham, R. E., Skinner, D. P., Cross, L. E. Connectivity and piezoelectric-pyroelectric composites. Materials Research Bulletin. 1978, 13(5): 525-536.
    [230] Frantti, J., Lantto, V. Structural studies of Nd-modified lead zirconate titanate ceramics between 11 and 680 K at the morphotropic phase boundary. Physical Review B (Condensed Matter). 1997, 56(1): 221-236.
    [231] Hongxue, Z., Uusimaki, A., Leppavuori, S., et al. Phase transition revealed by Raman spectroscopy in screen-printed lead zirconate titanate thick films. Journal of Applied Physics. 1994, 76(7): 4294-4300.
    [232] Jones, G. O., Thomas, P. A. Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallographica Section B: Structural Science. 2002, 58(2): 168-178.
    [233] Kreisel, J., Glazer, A. M., Jones, G., et al. An X-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: The (Na1-xKx)0.5Bi0.5TiO3 (0<=x<=1) solid solution. Journal of Physics: Condensed Matter. 2000, 12(14): 3267-3280.
    [234] V N Denisov, A N Ivlev, A S Lipin, et al. Raman spectra and lattice dynamics of single-crystal a-Bi2O3. Journal of Physics: Condensed Matter. 1997, 9(23): 4967-4978.
    [235] Siny, I. G., Smirnova, T. A., Kruzina, T. V. The phase transition dynamics in Na1/2Bi1/2TiO3. Ferroelectrics. 1991, 124: 207-212.
    [236] Lima-Silva, J. J., Guedes, I., Filho, J. M., et al. Phase diagram of the relaxor (1 - x)Pb(Zn1/3Nb 2/3)O3 - xPbTiO3 investigated by dielectric and Raman spectroscopies. Solid State Communications. 2004, 131(2): 111-114.
    [237] Kreisel, J., Glazer, A. M., Bouvier, P., et al. High-pressure Raman study of a relaxor ferroelectric: The Na0.5Bi0.5TiO3 perovskite. Physical Review B (Condensed Matter and Materials Physics). 2001, 63(17): 174106-174101.
    [238] Lee, S.-H., Jang, H. M., Cho, S. M., et al. Polarized Raman scattering of epitaxial PbTiO3 thin film with coexisting c and a domains. Applied Physics Letters. 2002, 80(17): 3165.
    [239] Lian, L., Sottos, N. R. Effects of thickness on the piezoelectric and dielectric properties of lead zirconate titanate thin films. Journal of Applied Physics. 2000, 87(8): 3941-3949.
    [240] Pertsev, N. A., Zembilgotov, A. G., Tagantsev, A. K. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Physical ReviewLetters. 1998, 80(9): 1988-1991.
    [241] Garino, T. J., Harrington, H. M. Residual stress in PZT thin films and its effect on ferroelectric properties. in. Boston, MA, USA: Mater. Res. Soc, 1992. 341-347.
    [242] Haeni, J. H., Irvin, P., Chang, W., et al. Room-temperature ferroelectricity in strained SrTiO3. Nature. 2004, 430(7001): 758-761.
    [243] Choi, K. J., Biegalski, M., Li, Y. L., et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science. 2004, 306(5698): 1005-1009.
    [244] Lappalainen, J., Lantto, V., Frantti, J., et al. X-ray diffraction and Raman investigations of thickness dependent stress effects on Pb(ZrxTi1-x)O3 thin films. Applied Physics Letters. 2006, 88(25): 252901-252903.
    [245] Spierings, G. A. C. M., Dormans, G. J. M., Moors, W. G. J., et al. Stresses in Pt/Pb(Zr,Ti)O3/Pt thin-film stacks for integrated ferroelectric capacitors. Journal of Applied Physics. 1995, 78(3): 1926-1933.
    [246] Berfield, T. A., Ong, R. J., Payne, D. A., et al. Residual stress effects on piezoelectric response of sol-gel derived lead zirconate titanate thin films. Journal of Applied Physics. 2007, 101(2): 024102.
    [247] Noyan, I. C., Cohen, J. B. X-ray diffraction study of changes in stress-strain distributions during the fatigue of a two-phase alloy. Materials Science and Engineering. 1986, 79(2): 149-155.
    [248] Noyan, I. C., Cohen, J. B. Residual stresses in materials. American Scientist. 1991, 79(2): 142-153.
    [249] Zhu, W., Liu, Z. Q., Lu, W., et al. A systematic study on structural and dielectric properties of lead zirconate titanate/(Pb,La)(Zr(1 - x)Ti(x))O3 thin films deposited by metallo-organic decomposition technology. Journal of Applied Physics. 1996, 79(8): 4283-4290.
    [250] Sengupta, S. S., Park, S. M., Payne, D. A., et al. Origins and evolution of stress development in sol-gel derived thin layers and multideposited coatings of lead titanate. Journal of Applied Physics. 1998, 83(4): 2291-2996.
    [251] Kumazawa, T., Kumagai, Y., Miura, H., et al. Effect of external stress on polarization in ferroelectric thin films. Applied Physics Letters. 1998, 72(5): 608-610.
    [252] Lu, X., Zhu, J., Li, X., et al. Effect of uniaxial stress on the polarization of SrBi2Ta2O9 thin films. Applied Physics Letters. 2000, 76(21): 3103-3105.
    [253] Kelman, M. B., McIntyre, P. C. Effect of applied mechanical strain on the ferroelectric and dielectric properties of Pb(Zr0.35Ti0.65)O3 thin films. Journal of Applied Physics. 2003, 93(11): 9231-9236.
    [254] Carl, K. ferroelectric properties and fatiguing effects of modified PbTiO3 ceramics. Ferroelectrics. 1975, 9(1-2): 23-32.
    [255] Jiang, Q., Wang, Y. Residual stresses in polycrystalline ferroelectric ceramics. in. San Diego, CA, USA: Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, USA, vol. 3039, 1997. 156-163.
    [256] Tagantsev, A. K. Mechanisms of polarization switching in ferroelectric thin films. Ferroelectrics. 1996, 184(1-4 pt 2): 79-88.
    [257] pan, W. Y., Yue, C. F., Tosyali, O. Fatigue of Ferroelectric Polarization and the Electric Field Induced Strain in Lead Lanthanum Zirconate Titanate Ceramics.Journal of American Ceramic Society. 1992, 75(6): 1534-1540.
    [258] Jiang, Q. Y., Cross, L. E. Effects of porosity on electric fatigue behavior in PLZT and PZT ferroelectric ceramics. Journal of Materials Science. 1993, 28(16): 4536-4543.
    [259] Yoo, I. K., Desu, S. B. Fatigue modeling of lead zirconate titanate thin films. Materials Science & Engineering B: Solid-State Materials for Advanced Technology. 1992, B13(4): 319-322.
    [260] Ogawa, T., Nakamura, K. Bipolar pulse poling and space charge field in lead zirconate titanate ceramics. Journal of the European Ceramic Society. 2001, 21(10-11): 1391-1394.
    [261] Taylor, G. W. Electrical Properties of Niobium-Doped Ferroelectric Pb(Zr, Sn, Ti)O3 Ceramics. Journal of Applied Physics. 1967, 38(12): 4697-4706.
    [262] Jiang, Q., Cao, W., Cross, L. E. Electric fatigue in lead zirconate titanate ceramics. Journal of the American Ceramic Society. 1994, 77(1): 211-215.
    [263] Mihara, T., Watanabe, H., De Araujo, C. A. P. Polarization fatigue characteristics of sol-gel ferroelectric Pb(Zr0.4Ti0.6)O3 thin-film capacitors. Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers. 1994, 33(7A): 3996-4002.
    [264] Tagantsev, A. K., Stolichnov, I. A. Injection-controlled size effect on switching of ferroelectric thin films. Applied Physics Letters. 1999, 74(9): 1326-1328.
    [265] Kholkin, A. L., Tagantsev, A. K., Colla, E. L., et al. Piezoelectric and dielectric aging in Pb(Zr,Ti)O3 thin films and bulk ceramics. Integrated Ferroelectrics. 1997, 15(1-4 pt 2): 317-324.
    [266] Robels, U., Arlt, G. Domain wall clamping in ferroelectrics by orientation of defects. Journal of Applied Physics. 1993, 73(7): 3454.
    [267] Robels, U., Schneider-St?rmann, L., Arlt, G. Domain wall trapping as a result of internal bias fields Ferroelectrics. 1992, 133(1): 223 - 228
    [268] Robels, U., Lohkamper, R., Arlt, G. Internal bias and aging of materials properties in ferroelectric ceramics. in. Champaign, IL, USA: Publ by IEEE, Piscataway, NJ, USA, 1992. 447-450.
    [269] Okazaki, K., Sakata, K. Space charge polarization and aging of barium titanate ceramics. Electronic Technology Journal of Japan. 1962, 7(1): 13-18.
    [270] Lohk?mper, R., Neumann, H., Arlt, G. Internal bias in acceptor-doped BaTiO3 ceramics: Numerical evaluation of increase and decrease. Journal of Applied Physics. 1990, 68(8): 4220-4224.
    [271] Schulze, W. A., Biggers, J. V., Cross, L. E. Aging of dielectric dispersion in PLZT relaxor ceramics. Journal of the American Ceramic Society. 1978, 61(1-2): 46-49.
    [272] Pan, W., Furman, E., Dayton, G. O., et al. Dielectric ageing effects in doped lead magnesium niobate: lead titanate relaxor ferroelectric ceramics. Journal of Materials Science Letters. 1986, 5(6): 647-649.
    [273] Ling, H. C., Yan, M. F., Rhodes, W. W. Aging behavior of xPb(Fe2/3W1/3)O3·(1 - x)Pb(Fe1/2Nb1/2)O3 ceramic. Journal of the American Ceramic Society. 1991, 74(2): 287-289.
    [274] Robels, U., Arlt, G. Domain wall clamping in ferroelectrics by orientation of defects. Journal of Applied Physics. 1993, 73(7): 3454-3460.
    [275] Dawber, M., Scott, J. F. A model for fatigue in ferroelectric perovskite thin films. Applied Physics Letters. 2000, 76(8): 1060-1062.
    [276] Scott, J. F., Araujo, C. A., Melnick, B. M., et al. Quantitative measurement of space-charge effects in lead zirconate-titanate memories. 1991, 70(1): 382-388.
    [277] Turik, A. V. Experimental investigation of the statistical distribution of domains in a ferroelectric ceramic. Soviet Physics-solid State. 1964, 5: 2141-2143.
    [278] Damjanovic, D. Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. Journal of Applied Physics. 1997, 82(4): 1788-1797.
    [279] Taylor, D. V., Damjanovic, D., Setter, N. Nonlinear contributions to dielectric and piezoelectric properties in lead zirconate titanate thin films. Ferroelectrics. 1999, 224(1-4): 299-306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700