用户名: 密码: 验证码:
利用纳米晶W、Co、C过渡相粉末制备硬质合金的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米晶硬质合金具有高强度和高硬度等一系列优异的力学性能,可广泛应用于航天、信息、模具、切削刀具等领域。然而,纳米硬质合金粉末烧结过程中WC晶粒的快速长大行为使得难于获得真正意义上的纳米晶硬质合金块体材料。
     为此,本研究探索了以高能球磨法制备的纳米晶W、Co、C过渡相粉末为原料来制备超细晶/纳米晶硬质合金的新工艺。利用X-ray,SEM等分析测试技术对该过渡相粉末固相烧结时的相转变特征、WC晶粒长大特性、WC晶粒长大的抑制、碳含量的控制及性能等进行了研究。
     结果表明纳米晶W、Co、C过渡相粉末在烧结过程中转化为W_2C,Co_6w_6C,Co_3W_3C过渡相。烧结温度升高或烧结时间延长,有助于该过渡相将转化为WC和Co。1375℃烧结30min,可获得密度为14.46g/cm~3,收缩率为27.2%的致密YG10硬质合金。
     改性纳米ZrO_2粉体可有效细化WC晶粒,促进烧结致密化,并显著提高硬质合金的硬度,是一种有效的WC晶粒长大抑制剂。而利用外加0.3-0.42wt%的碳黑可有效弥补烧结时合金碳含量的损失,获得碳含量位于5.37-5.53wt%间,相组成为WC和β-Co,强度、硬度分别为2763MPa和91.1HRA的硬质合金。烧结合金中WC晶粒为长棒状结构,1375℃烧结30min时其径向尺寸约为100nm左右,长度约为1.2μm。
     利用纳米晶W、Co、C过渡相粉末为原料有望获得原位生成的长棒状WC晶粒增强的硬质合金,是一种可行的制备高性能硬质合金的新工艺。
Nano-grained cemented carbides possess a series of excellent mechanical performances such as high transverse rupture strength and high hardness, which can meet the urgent demands in aerospace, information technology, mould and cutting application. However, the rapid intrinsic growth characteristic of nanometer WC grain during sintering process lead nano-grained cemented carbides with excellent mechanical performances is not acquired.Therefore, the purpose of this dissertation was explored the preparation of superfine grain or nano-grained cemented carbide, which used nano-grained W、 Co、 C transitional phase powders as raw materials through high energy ball milling W-Co-C mixed powders.In this paper, phase transformation, WC grain growth characteristic and WC grain growth inhibiting during sintering of W、 Co、 C transitional phase powders were studied by X-ray and SEM. Carbon content control, performances of sintered alloys was also studied.During sintering process, nano-grained W、 Co、 C transitional phase powders transformed into transitional phases such as W_2C, Co_6W_6C and Co_3W_3C. These transitional phases would be completely transformed into WC and Co by the diffusion of carbon when sintering temperature increased or sintering time prolonged. So, YG10 cemented carbides with sintering density 14.46g/cm~3 and shrinkage rate 27.2% were obtained when W、 Co、 C transitional phase powders compacts sintering at 1375℃ for 30min.Research showed that modified nanometer ZrO_2 could effectively decrease the size of WC grain, promote sintering densification and remarkable improve the hardness of cemented carbides, which was a kind of effective WC grain growth inhibitor. And introduction of 0.3-0.42wt% carbon black excess effectively balanced the carbon loss due to the absorption of O_2. And cemented carbides with carbon content 5.37-5.53wt%composed of WC and β-Co phase, which strength and hardness were 2763MPa and 91.1HRA respectively, were acquired.Rod-like WC grains with 100nm in radial dimension and 1.2 am in length were formed as sintering at 1375℃ for 30min. In-situ formation of
    nanometer rod-like WC reinforced cemented carbide is hopeful being obtained using nano-grained W> Co> C transitional phase powders as raw materials, and which is a feasible new method of fabrication high performance hardmetal alloy.
引文
[1] Kenneth J, Brookes A. Halfa century of hard metals. Metal Powder Report, 1995, 50(10): 22-28
    [2] Gillea G, Szesny B, Dreyer K, et al. Submicron and ultrafine grained hardmetals for microdrills and metal cutting inserts. International Journal of Refractory Metals & Hard Materials, 2002, 20(3): 3-22
    [3] Asada N, Yamamoto Y. Particle Size of Fine Grain WC by the 'Continuous Direct Carburizing Process'. Metal Powder Report, 1990, 45(1): 60-64
    [4] 唐振方.反应性热等离子体合成超细粉体及其特性研究:[博士学位论文].广州:中山大学,2001
    [5] 张汉林,刘韩星,欧阳世翕,等.流化床还原碳化法制备超细WC-Co复合粉末.粉末冶金技术,1995,13(3):202-204
    [6] 邵刚勤,吴伯麟.用流态化工艺制备WC-Co粉末.金属学报,1999,35(2):144-146
    [7] Mohan K, Strutt P R. Microstructure of spray converted nanostruetured tungsten carbide-cobalt composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 209(1-2): 237-242
    [8] 高荣根.纳米结构WC-Co复合粉末的制备与应用.粉末冶金技术,1995,13(7):49-54
    [9] Seegopaul P, McCandlish L E, Shinneman F M. Production capability and powder processing methods for nanostructured WC-Co powder. International Journal of Refractory Metals & Hard Materials, 1997, 15(3): 133-138
    [10] Zhong Y Z, Wahlberg S, Ming S W, et al. Processing of nanostructured WC-Co powder from precursor obtained by co-precipitation. Nanostructured Materials, 1999, 12(4): 163-166
    [11] Wahlberg S, Crenthe I, Muhammered M. Nanostructured hard material composites by molecular engineering Ⅰ. Synthesis from soluble tungstate salts Nanostructured Materials, 1997, 9(1): 105-105
    [12] Srikanth R, David L B.Synthesis and Evaluation of Advanced Nanocrystalline Tungsten-based Materials. Powder Metallurgy Science & Technology Briefs, 1999, 1(1): 9-14
    [13] 马学鸣,赵凌,董远达.机械合金化制备纳米硬质合金.上海大学学报,1998,4(2):156-159
    [14] Wang G M, Campbell S J. Synthesis and structural evolution of tungsten carbide prepared by ball milling. Journal of Materials Science, 1997, 32(3): 1461-1467
    [15] 唐振方,高勇,杨远政,等.WC粉体的高能球磨超细化.中国有色金属学报,2000,10(1):246-249
    [16] 毛昌辉.高能机械研磨纳米结构WC-Co复合粉末的研究.稀有金属,1999,23(3):185-190
    [17] Goren-Muginstein G R, Berger S, Rosen A. Sintering study of nanocrystalline tungsten carbide powders. Nanostructured Materials, 1998, 10(5): 795-804
    [18] 黎文献,唐嵘.用MA制超细WC-Co-Cr_3C_2复合粉.中国有色金属学报,1998,8(增1):90-92
    [19] Sherif E E M. Fabrication of nanocrystalline WC and nanocomposite WC-MgO refractory materials at room temperature. Journal of Alloys and Compounds, 2000, 296(5): 175-182
    [20] Tan G L, Wu X. Mechanochemical synthesis of nanocrystalline tungsten carbide powders. Powder Metallurgy, 1998, 41(4): 300-302
    [21] Ha G H, Kim B K. Synthesis of ultrafine WC/Co powder by mechanochemical process. Powder Metallurgy, 2002, 45(1): 29-32
    [22] Goren-Muginstein G R. Sintering Study of Nanocrystalline Tungsten Carbide Powders. Nanostructured Materials, 1998, 10(5): 795-799
    [23] Berger S, Porat R, Rosen R. Nanocrystalline Materials: a study of WC-based Hard metals[J]. Progess in Materials Science, 1997, 42(3): 311-315
    [24] Porat R, Berger S, Rosen A. Dilatomertric study of the sintering mechanism of nanocrystalline cemented carbides. Nanostructured Materials, 1996, 7(4): 429-436
    [25] 张丽英,晏洪波,胡钊辉.纳米级超细晶粒硬质合金烧结收缩动力学曲线特征的研究.粉末冶金工业,2000,10(5):15-21
    [26] Arato P, Bartha L, Porat R, et al. Solid or liquid phase sintering of nanocrystalline WC/Co hardmetals. Nanostructured Materials, 1998, 10(2): 245-255
    [27] 刘海兵,周根树,郑茂盛.超细晶粒WC-Co硬质合金的收缩与晶粒长大.华东理工大学学报,1999,25(5):494-498
    [28] Gille G, Leitner G, Roebuck B. In: Proceedings of the European Conference on Advances in Hard Materials Production, Stockholm, 1996: 195-210
    [29] Leiderman, M.; Botstein, O, Rosen, A. Sintering, microstructure, and properties of submicrometre cemented carbides. Powder Metallurgy, 1997, 40(3): 219-225
    [30] Jia K, Fischer T E, Gallois B. Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites. Nanostructured Materials, 1998, 10(5): 875-891
    [31] Ungar T, Borbely A, Goren-Muginstein G R, et al. Particle-size, size distribution and dislocations in nanocrystalline tungsten-carbide. Nanostructured Materials, 1999, 11(1): 103-113
    [32] Goren-Muginstein, G R, Berger S. Rosen, A. Sintering study of nanocrystalline tungsten carbide powders. Nanostructured Materials, 1998, 10(5): 795-804
    [33] Goren-Muginstein, G. R, Rosen, A. Proceeding of 14th international plansee seminar. Eds. G. Kneringer. P. rod-hammer and P. withartitz.Plansee AG.Reutte. 1997(2): 622-627
    [34] Engqvist H, BoRon G A, Axen N, et al. A study of grain boundaries in a binderless cemented carbide. International Journal of refractory metals hard materials, 1998, 16(5): 309-313
    [35] Kim B K, Ha G H, Lee D W, et al. chemical processing of nanostructured cemented carbide. Advanced Performance Materials, 1998, 14(5): 341-352
    [36] Fang Z, Eason J W. Study on nanostructured WC-Co Coposites.Proc.13th International Plansee Seminar 1993, 3. metallwerk Plansee. Reutte 625-638
    [37] Schubert W D, Bock A, Lux B. General Aspects and Limits of Conventional Ultrafine WC Powder Manufacture and Hard Metal Production. International Journal of Refractory Metals & Hard Materials, 1995, 13(5): 281-296
    [38] Zhang L, Madey T E. Initial Stages of Sintering of Nanostructured WC-7wt.%Co" .NanoStructured Materials, 1993, 2(2): 487-493
    [39] Da Silva A.G.P, Schubert W D, Lux B.The Role of the Binder Phase in the WC-Co Sintering.Materials Research, 2001, 4(2):59-62
    [40] Koo M Y, Doh-Yeon Kim, Nong M. H. Ostwald ripening kinetics of angular grains dispersed in a liquid phase by two dimensional nucleation and abnormal grain growth. Journal of European ceramic society. 2002, 22(5): 603-612
    [41] Rios P R. Abornal grain growth development from uniform grain size distribution. Acta Materialia, 1997, 145(4): 1785-1789
    [42] Ryoo H S, Hwang S K. Anisotropic atomic packing model for abnormal grain growth mechanism of WC-25Co alloy. Scripta Materialia, 1998, 39(11): 577-1583
    [43] Sadangi R K, McCandlish L E, Kear B H, et al. grains growth inhibition in liquid phase sintered nanophase WC/Co alloys. Powder Metallurgy International,1999,15 (1): 27-33
    [44] Upadhyaya A, Sarathy D, Wagner G. Advances in alloy design aspects of cemented carbides. Materials and Design, 2001, 22(5):511-517
    [45] Silvana L, Mohamed Z A, et al. Comparison between V_8C_7 and Cr_3C_2 as grain refiners for WC-Co. Materials and Design, 2001,22(4) :507-510
    [46] 刘永福.发展我国新型的超细晶粒硬质合金.第六次全国硬质合金学术会议,1995.46-51
    [47] Yamamoto T, Ikuhara Y, Sakuma T. High resolution transmission electron microscopy study in VC-doped WC-Co compound. Science and Technology of Advanced Materials, 2000, 11(1): 97-101
    [48] Yamamoto T, Ikuhara Y, Watanabe T, et al. High resolution microscopy study in Cr3C2-doped WC-Co. Journal of Materials Science, 2001, 36(6): 3885-3890
    [49] Sadangi R K, McCandlish L E, Kear B H, et al. Grains growth inhibition in liquid phase sintered nanophase WC/Co alloys. Advances in Powder Metallurgy and Particulate Materials, 1998, (1): 51-59
    [50] Michael S, Schubert W D, Erich Z, et al. On the formation of very large WC crystals during sintering of ultrafine WC-Co alloys. International Journal of Refractory Metals & Hard Materials, 2002, 20(4): 41-50
    [51] 黄建民,吕海波.微细晶粒WC-10Co硬质合金低压热等静压处理.硬质合金,1996,13(3):142-145
    [52] 邬荫芳.“双高”超细合金的研制.硬质合金,2000,17(4):214-220
    [53] Azcona A, Ordonez J M, Sanchez F C. Hot isostatic pressing of ultrafine tungsten cardide-cobalt hardmerals. Journal of Materials Science, 2002, 37(4): 4189-4195
    [54] Yao Z G, Stiglich J J, Sudarshan T S. Nanosized WC-Co holds promise for the future. J. Metal Powder Report, 1998, 53(3): 26-32
    [55] 陈亚军.超细WC-Co硬质合金烧结.中国民航学院学报,2003,21(1):14-18
    [56] Seung I. C, Soon H H, Kim B K. Spark plasma sintering behavior of nanocrystalline WC-10Co cemented carbide powders. Materials Science and Engineering A,2003,351(6):31-38
    [57] Agawal D,Cheng J,Seegopaul P, et al.Grain growth control in microwave sintering of ultrafine WC-Co composite powder compacts. Powder Metallurgy, 2000, 43(1):5-16
    [58] Rodiger K, Dreye K, Gerdes T, et al.Microwave sintedng of hardmetals. International Journal of Refractory Metals & Hard Materials, 1998, 16(3): 409-416
    [59] 曹顺华,高海燕,李元元,等.利用反应热处理制备纳米晶WC-10Co复合粉末.中南工业大学学报(自然科学版)2003,34(5):480-483
    [60] Da Silva A G P, Schubert W D, Lux B. The Role of the Binder Phase in the WC-Co Sintering. Matedals Research, 2001,4(2):59-62
    [61] Lavergne O, Robaut F, Hodaj F, et al. Mechanism of solid-state dissolution of WC in Co-based Solutions. Acta Matedalia, 2002, 50(3):1653-1692
    [62] 齐卫宏,汪明朴,徐根应.纳米颗粒熔点和颗粒尺寸关系.全国粉末冶金学术会议论文集,2003:391-393
    [63] 国外硬质合金编写组.国外硬质合金.北京:冶金工业出版社,1976.480-484
    [64] 席生岐,屈晓燕,刘心宽等.高能球磨固态扩散反应研究.材料科学与工程,2000,8(3):88-91
    [65] 杨君友,张同俊,李星国,等.材料制备新技术.机械合金化.材料导报,1994,5(2):11-13
    [66] 唐仁正.物理冶金基础.北京,冶金工业出版社,1997:152-153
    [67] 李树棠.晶体X射线衍射学基础.北京,冶金工业出版社,1996.59-69
    [68] 刘寿荣,宋俊亭,郝建民,等.WC-Co硬质合金中的相转变.硬质合金,2001,18(3):129-133
    [69] Goeuriot P. Boron as sintering additive in cemented WC-Co (or Ni) alloys. Ceramics International, 1987, 11(3)93-103
    [70] 张保松,张祖培,刘宝昌.热压法制造金刚石-硬质合金复合柱齿的研究.粉末冶金技术,2000,18(1):28-31
    [71] Sherif E E M, Mahday A A, Ahmed H A, et al. Synthesis and characterizations of ball milled nano-crystalline WC and nanocomposite WC-Co powders and subsequent consolidations. Journal of Alloys and Compounds, 2000, 312(3)315-325
    [72] Gerhard G, Bredthauer J, Gries B, et al. Advanced and new grades of WC and binder powder their properties and application. International Journal of Refractory& Hard Materials 2000, 18(4): 87-102
    [73] Mahday A. A, Sherif EI-Eskanarany M, Ahmed H. A, et al. Mechanically induced solid state carburization for fabrication of nanocrystalline ZrC refractory material powders. Journal of Alloys and Compounds, 2000, 299(2): 244-253
    [74] 刘寿荣.WC-Co硬质合金的性能与成分和显微结构的关系.理化检验-物理分册,2003,39(2):70-75
    [75] 刘寿荣,任庆峰,刘宜.Co-W-C系合金的磁性及其应用.硬质合金,1995,12(4):211-215
    [76] Sundin S, Haglund S. A comparison between magnetic properties and grain size for WC/Co hard materials containing additives of Cr and V. International Journal of Refractory& Hard Materials, 2000, 18(4):297-300
    [77] Zhang L, Huang B Y, Wu E X. WC nanorod reinforced cemented carbide material and technology design for PCB microdrill. P/M Science & Technology Briefs, 2001, 3(4): 8-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700