用户名: 密码: 验证码:
铜转运P型ATP酶基因在微紫青霉菌菌株GXCR中抗铜的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属是生物体必需的元素,然而过高的浓度会对有机体产生毒性。在真核和细菌中通过各种机制达到对重金属的抗性。铜转运蛋白P型ATP酶在真核生物中广泛存在,在胞内起着转运铜的作用,以达到对铜的抗性。
     根据已报道的与铜转运P型ATP酶同源的氨基酸序列,设计简并引物,在丝状真菌Penicillium janthinillum GXCR中扩增得到与铜转运P型ATP酶基因同源的部分序列。构建了该基因RNA干扰表达载体pCPXBn-ihp1,采用PEG/Cacl_2介导的方法转化GXCR原生质体,经过PCR检测、Southern杂交分析证实获得三个干扰突变体,对它们进行实时荧光定量PCR分析表明铜转运P型ATP酶基因表达水平降低,分别是野生型的24.92%、40.23%和32.89%。对突变体进行抗铜水平检测发现抗Cu~(2+)能力与野生型对照有下降,表明铜转运P型ATP酶基因在丝状真菌微紫青霉菌Penicillium janthinillum GXCR的抗铜能力上起一定作用。
Although many heavy metals are essential, high heavy metal concentrations are toxic to organism. Resistance to high heavy metal concentrations is achieved by a variety of mechanisms both in bacteria and in fungi. Copper-transporting P-type ATPases are found in eukaryotes as well, where they play a major role in intracellular copper transport.
    DNA sequence which was partial homogeneous with Copper-transporting P-type ATPase gene was amplified from filaceous fungi Penicillium janthinillum GXCR by designed degenerate primers based on the reported amino acid sequence. A RNAi expression vector pCPXBn-ihp1 was constructed aimed at interfering the copper-transporting P-type ATPase gene of Penicillium janthinillum GXCR and then transfered into protoplasts of GXCR with PEG/CaCl_2 method. Three mutants were identified by PCR and Southern hybriding blot. The expression level of Copper-transporting P-type ATPase genes of the three mutants decreased by 24.92%、 40.23% and 32.89%, respectively, measured with real-time fluorescence quantitative PCR (Q-PCR) . Compared to the wild type, the mutants' resistant capacity to Cu~(2+) declined and indicates that the Copper-transporting P-type ATPase gene plays an important role in resistance to heavy metal ion such as Cu~(2+) in filaceous fungi Penicillium janthinillum GXCR
引文
1.贾广宁.重金属污染的危害与防治.有色矿冶.2004,20(1):39-42.
    2. Sagner S., Kneer R., Wanner G., et al. Hyperaccumulation, complexation and distribution of nicke in Sebertia acuminata. Phytochemistry. 1998, 47:339-347
    3.涂从,郑春荣,陈怀满.铜矿尾矿库土壤—植物体系的现状研究.土壤学报,2000,37(2):284-287
    4.张民,龚子同.我国菜园土壤中某些重金属元素的含量与分布.土壤学报,1996,33(1):85-92.
    5.陶红群,李晓林,张俊伶.从枝菌根菌丝对重金属元素Zn和Cd 吸收的研究.环境科学学报,1998,18(5):545-548.
    6. Valentine J S, Gralla E B. Delivering copper inside yeast and human cells. Science. 1997, 278(5339):817-8.
    7. Ennifar E, Walter P, Dumas E A crystallographic study of the binding of 13 metal ions to two related RNA duplexes. Nucleic Acids Res.2003, 31 (10) :2671-2682.
    8. O'Halloran T V, Culotta V C. Metallochaperones, an Imtracellular Shuttle Service for Metal Ions. J Biol Chem. 2000, 275(33):25057-25060.
    9. Culotta V C, Joh H D, Lin S J, et al. A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering. J Biol Chem. 1995, 270(50):29991-7.
    10. Fogarty RV, Tobin JM. Fungal melanins and their interactions with metals. Enzyme Microb Technol. 1996, 19(4):311-317.
    11. Claudia G, Mark K. Identification of the copper regulon in saccharomyces cerevisiae by DNA microarrays. J.Biol. Chem. ,2000,275(41) :32310-32316
    12. Zhiqi H ,Shaolin C. Cloning, expression and characterization of cadmium and manganese uptake genes from lactobacillus plantarum. Applied and Environmental Microbiology, 1999,65(11) : 4746-4752
    13.陈素华.微生物与重金属间的相互作用及其应用研究.应用生态学报.2002,13(2):239-242
    14.卫扬保.微生物生理学.高等教育出版社1989.
    15.王保军,扬惠芳.微生物与重金属的相互作用.重庆环境科学.1996,18(1):35-39.
    16.叶锦韶,尹华,彭辉.微生物抗重金属毒性研究进展.环境污染治理技术与设备.2002,3(4):1-4.
    17. Valix M, Loon L O. Adaptive tolerance behaviour of fungi in heavy metals. Minerals Engineering. 2003,16: 193-198.
    18. Valix M, Tang J Y. and Malik R. Heavy metal tolerance of fungi. Minerals Engineering. 2001,5:499-505.
    19.常学秀,文传浩,王焕校.重金属污染与人体健康.云南环境科学.2000,19(1):59-61.
    20.李霞.重金属对微生物的毒性作用.吉林师范学院学报.1999.20(3):64-65.
    21. Trevors J T, Cotter C M. Copper toxicity and uptake in microorganisms. Journal of Industrial Microbiology and Biotechnology. 1990,6(2): 77-84.
    22. Edward H, Helena M, Su-Ju Lin, et al. Identification of a Functional Homolog of the Yeast Copper Homeostasis Gene ATXl from Arabidopsis. Plant Physiology. 1998, 117: 1227-1234.
    23. Ana Alonso, Patricia Sanchez, and Jose L. Martinez. Stenot rophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrobial Agents and Chemotherapy.2000,44 (7) :1778—1782
    24. Strandberg G W, Shumate S E, Parrot J R. Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl Environ Microbiol. 1981, 41: 237-245
    25.张慧,李宁,戴友芝.重金属污染的生物修复.化工进展.2000,23(5):562-574
    26. Marc V, Silvia A. Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nature Biotechnology.2000,18:661-665
    27. Simon V, Shareeka L. Smith, A .et al. Stimulation of strontium accumulation in linoleate-enriched Saccharo myces cerevisiae is a result of reduced Sr2+ efflux. Applied and Environmental.Microbiology. 1999,65(3):1191-1197.
    28. Thomas S, Ralf D, Stoppel H G. Schlegel. High-Level Nickel Resistance in Alcaligenes xylosoxydans 31A and Alcaligenes eutrophus KTO_2. Appl Environ Microbiol. 1991, 57(11): 3301-3309.
    29. Silver S, Misra T K. Plasmid-mediated heavy metal resistances. Ann Rev Mictobio, 1988,42:717-743.
    30.林雅兰,田哲贤.微生物对重金属的抗性及解毒机理.微生物学通报.1998,25(1):36-39
    31. Borremans B, Hobman J L. Cloning and Functional Analysis of the pbr Lead Resistance Determinant of Ralstonia metallidurans CH34. Journal of Bacteriology, 2001,183:5651-5658.
    32. Ivey D M, Guffanti A A, Shen Z. et al. The cadC gene product of alkaliphilic Bacillus firmus OF_4 partially restores Na+ resistance to an Escherichia coli strain lacking an Na+/H+ antiporter (NhaA). J.Bacteriol. 1992,174(15):4878-4884.
    33. Ye J, Kandegedara A, Martin P, et al. Crystal structure of the Staphylococcus aureus p1258 CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor. J.Barteriol.2005,187( 12)4214-4221.
    
    34. Sun Y, Wong M D, Rosen B P. Role of cysteinyl residues in sensing Pb(II), Cd(II), and Zn(II) by the plasmid pI258 CadC repressor. J. Biol. Chem.2001,276(18) 14955-14960.
    
    35. Nies D H. CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus. J.Bacteriol.1992,174(24): 8102-8110.
    
    36. Diels L, Dong Q, Lelie D, et al. The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals. J.Ind Microbiol. 1995,14(2): 142-153.
    
    37.Antje L, Gregor G, Andreas A. et al. Interplay of the Czc system and two P-type ATPases in conferring metal rsistance to Ralstonia metallidurans. J.Bacteriology, 2003,185:4354-4361.
    38.Anton A, Grobe C, Reibmann J. CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp.strain CH34. J.Bacteriology. 1999, 181:6876~6881
    39.Nies D H. CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc and cadmium (czc system) in Alcaligens eutrophus. J Bacteriol, 1992,174:8102-8110
    40.Silver S, Walderhaug M. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria . Microbiol Mol Biol Rev. 1992 , 56(1): 195-228
    
    41.Zhang L, Koay M, Maher M J,et al. Intermodular Transfer of Copper Ions from the CopC Protein of Pseudomonas syringae. Crystal Structures of Fully Loaded Cu(I)Cu(II) Forms. J.Am.Chem.Soc. 2006, 128(17):5834-5850
    
    42.Adaikkalam V, Swarup S. Characterization of copABCD operon from a copper-sensitive Pseudomonas putida strain. J.Microbiol.2005,51(3):209-216.
    
    43.Cha J S, Cooksey D A. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins.Proc.Natl.Acad.Sci.U.S.A. 1991,88(20): 8915-8919.
    
    44.Lee S M, Grass G, Rensing C, et al. The Pco proteins are involved in periplasmic copper handling in Escherichia coli. Biochem.Biophys.Res.Commun. 2002,295(3): 616-620
    
    45.Wernimont A K, Huffman D L,Finney L A, et al. Crystal structure and dimerization equilibria of PcoC, a methionine-rich copper resistance protein from Escherichia coli. J.Biol.Inorg.Chem. 2003,8(1): 185-194.
    
    46.Bang S W, Clark D S. Engineering Hydrogen Sulfide Production and Cadmium Removal by Expression of the Thiosulfate Reductase Gene (phsABC) from Salmonella enterica Serovar Typhimurium in Escherichia coli. Applied and Environmental Microbiology. 2000,66:3939-3944.
    
    47. Wang C L, Maratukulam P D.Metabolic Engineering of an Aerobic Sulfate Reduction Pathway and Its Application to Precipitation of Cadmium on the Cell Surface. Applied and Environmental Microbiology. 2000,66: 4497-4502.
    48.Holmes J D, Richardson D J. Cadmium-specific formation of metal sulfide "Q-particles" by klebsiella pneumoniae. Microbiology. 1997,143: 2521-2530
    49.Basnakova G, Stephens E R. The use of Escherichia coli bearing aphoN gene for the removal of uranium and nickel from aqueous flows. Appl Microbiol Biotechnol. 1998,50: 266-272.
    
    50.1noue Y, Kobayashi S, Kimura A. Cloning and phenotypic characterization of a gene enhancing resistance against oxidative stress in Saccharomyces cerevisiae. J Ferment Bioeng. 1993,75: 327-331.
    51.Khunajakr N, Liu C Q,Charoenchai P. A plasmid-encoded two-component regulatory system involved in copper-inducible transcription in Lactococcus lactis. Gene. 1999, 229: 229-235.
    52.Silver S. Bacterial resistance to toxic metal ions-a Review. Gene. 1996,179:9-19.
    
    53. Strausak D ,Mercer J F,Dieter H H ,et al .Copper in disorders with neurological symptoms: Alzheimer's,Menkes,and Wilson disease. Brain.Res.Bull.2001,55 (2): 175-185.
    
    54. Simpson J A, Cheeseman K H, Smith S E, et al . Free-radical generation by copper ions and hydrogen peroxide stimulation by hepes buffer. Biochem J. 1988, 254(2): 519-523.
    
    55. Tanzi R E, PetrukhinK PI. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nature Genetics J. 1993 (5):344-350.
    
    56.Bull P C, Thomas G R, Rommens J M, et al. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet. 1993 ,5(4): 327-337.
    
    57.Tanzi RE, Petrukhin K, Chernov I, et al. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet. 1993 Dec;5(4):344-350.
    
    58. Vulpe C, Levinson B, Whitney S, et al. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet. 1993, 3(1): 7-13.
    
    59. Perry J R and Carol A K. Role of a Candida albicans PI-Type ATPase in Resistance to Copper and Silver Ion Toxicity. Journal of Bacteriology.2000,4899-4905.
    
    60. Bury N R, Walker PA, Glover C N. Nutritive metal uptake in teleost fish. J Exp Biol. 2003,206: 11-23.
    
    61. Lanfranco L , Bolchi A , Ros E C, et al. Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol. 2002, 130: 58-67
    
    62. Sergi P and Dennis J T. Molecular mechanisms of copper uptake and distribution.Bioinorganic chemistry. 2002, 6:171-180
    
    63. Harris E D.Cellular copper transport and metabolism. Annu RevNutr. 2000, 20: 291-310.
    
    64. Zhou H, Thiele D J. Identification of a novel high affinity copper transport complex in the fission yeast Schizosaccharomyces pombe.J Biol Chem. 2001, 276: 20529-20535.
    
    65. Dancis A, Haile D, Yuan D S, et al. The Saccharomycescerevisiae copper transport protein (Ctrlp) biochemical characterization, regulation by copper, and physiologic role in copper uptake. J Biol Chem. 1994,269:25660-25667.
    
    67. Harrison M D, Dameron C T. Molecular mechanisms of copper metabolism and the role of the Menkes disease protein. J Biochem Mol Toxicol. 1999, 13:93-106.
    
    68. Meyer L A, Durley A P, Prohaska J R, et al. Copper transport andmetabolism are normal in aceruloplasminemic mice. J Biol Chem.2001, 276:36857-36861.
    
    69.Eide D J .The molecular biology of metal ion transport in saccharomyces cerevisiae. Annual Review of Nutrition. 1998,18:441-469.
    
    70.Rajendra R, Terrance G. Cooper in vivo specificity of Ure2 protection from heavy metal ion and oxidative cellular damage inSaccharomyces cerevisiae. Yeast. 2005,22(5):343-348.
    
    71.Ranjit S S, Sapna K D, Yue Liu, et al. Fluorescence-based sensing system for copper using genetically engineered living yeast cells. Biotechnology and Bioengineering. 2004, 88(5):664-671
    
    72.Srinivasan C, Posewitz M C,George G N, et al. Characterization of the copper chaperone Coxl7 of Saccharomyces cerevisiae. 1998,37(20):7572-7577.
    
    73.Arnesano F, Banci L, Bertini I, et al.Characterization of the binding interface between the copper chaperone Atxl and the first cytosolic domain of Ccc2 ATPase. J. Biol. Chem.2001,276(44):41365-41376.
    
    74.Culotta V C, Lin S J, Schmidt P, et al. Intracellular pathways of copper trafficking in yeast and humans. Adv.Exp.Med.Biol. 1999,448:247-254.
    
    75. Banci L,Bertini I, Del C R, et al. Copper trafficking: the solution structure of Bacillus subtilis CopZ. Biochemistry. 2001,40(51): 15660-15668.
    
    76.Tottey S, Rondet S A, Borrelly G P, et al. A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets, interaction with an importer, and alternative sites for copper acquisition. J. Biol. Chem. 2002,277(7):5490-5487.
    
    77.Gamonet F, Lauquin G J. The Saccharomyces cerevisiae LYS7 gene is involved in oxidative stress protection. Eur.J.Biochem. 1998,251 (3):716-723.
    78. Horecka J, Kinsey P T, Sprague G F. Cloning and characterization of the Saccharomyces cerevisiae LYS7 gene: evidence for function outside of lysine biosynthesis. Gene. 1995,162(1):87-92.
    79. Nishihara E, Furuyama T, Yamashita S, et al. Expression of copper trafficking genes in the mouse brain. Neuroreport. 1998,9(14):3259-3263.
    80. Markossian K A, Kurganov B I. Copper chaperones, intracellular copper trafficking proteins. Function, structure, and mechanism of action. Miochemistry(Mosc). 2003,68(8):827-837.
    81. Punter F A, Glerum D M. Mutagenesis reveals a specific role for Cox17p in copper transport to cytochrome oxidase. J. Biol. Chem. 2003,278(33):30875-30880.
    82.王镜岩,朱圣庚,徐长法.生物化学.高等教育出版社.2002年.
    83. Wu C C, Bal N, Petard J, et al. A cloned prokaryotic Cd~(2+) P-type ATPase increases yeast sensitivity to Cd~(2+). Biochem.Biophys.Res.Commun. 2004, 324(3):1034-1040.
    84. Hou Z, Mitra B. The metal specificity and selectivity of ZntA from Escherichia coil using the acylphosphate intermediate. J. Biol. Chem. 2003,378(31):28455-28461.
    85. Fan B, Rosen B P. Biochemical characterization of CopA, the Escherichia coli Cu(Ⅰ)-translocating P-type ATPase. J. Biol. Chem.2002,277(49):46987-46992.
    86. Tsai K J, Lin Y F, Wong M D, et al. Membrane topology of the p1258 CadA Cd(Ⅱ)/Pb(Ⅱ)/Zn(Ⅱ)-translocating P-type ATPase. J.Bioenerg.Biomembr 2002,34(3):147-156.
    87. Suzuki C. Immunochemical and mutational analyses of P-type ATPase Spflp involved in the yeast secretory pathway. Biosci. biotechnol.Biochem. 2002,65(11):2405-2411.
    88. Sergi P and Dennis J T. Molecular mechanisms of copper uptake and distribution. Chemical Biology. 2002, 6:171-180.
    89. Salah E A-G ,Patricia M M, Krishna K N, et al.Two P-Type ATPases are required for Copper delivery in Arabidopsis thaliana chloroplasts. The Plant Cell. 2005, 17:1233-1251.
    90. Lutsenko S, Cooper M J. Localization of the Wilson's disease protein product to mitochondria, pro natl acad sci U.S.A. 1998,95(11 ):6004-6009.
    91. Rensing C, Fan B,Sharma R. et al. CopA: an Escherichia coli Cu(Ⅰ)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA. 2000,97:652-656.
    92. DiDonato M, Narindrasorasak S, Forbes J R. Expression, purification, and metal binding properties of the N-terminal domain from the wilson disease putative copper-transporting ATPase (ATP7B). J. Biol. Chem. 1997272:33279-33282.
    93.Lutsenko S, Petrukhin K. Cooper M J, et al. N-terminal domains of human copper-transporting adenosine triphosphatases (the Wilson's and Menkes disease proteins) bind copper selectively in vivo and in vitro with stoichiometry of one copper metal-binding repeat. J. Biol. Chem. 1997,272(30): 18939-18944.
    
    94.Gitschier J, Moffat B, Reilly D, et al. Solution structure of the fourth metal-binding domain from the Menkes copper-transporting ATPase. Nat.Srtuct.Biol. 1998,5( 1 ):47-54.
    
    95.Lee S W, Glickmann E, Cooksey D A. Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl.Environ.Micmbiol. 2001,67(4): 1437-1444.
    
    96.Dancis A, Yuan D S, Haile D, et al. Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell. 1994,76(2):393-402.
    
    97.Silver S, Nucifora G, Chu L, et al. Bacterial resistance ATPases: primary pumps for exporting toxic cations and anions. Trends Biochem.Sci. 1989,14(2):76-80.
    
    98.Solioz M, Vulpe C. CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem.Sci. 1996,21 (7):237-241.
    
    99.Forbes J R, His G, Cox D W. Role of the copper-binding domain in the copper transport function of ATP7B, the P-type ATPase defective in Wilson disease. J Biol Chem, 1999,274( 18): 12408-12413
    
    100.Odermat A,Solioz M. J Bio Chem, 1995;270(9):4349-4354
    
    101.Fu D, Beeler T J, Dunn T M. Sequence, mapping and disruption of CCC2, a gene that cross-complements the Ca(2+)-sensitive phenotype of csgl mutants and encodes a P-type ATPase belonging to the Cu(2+)-ATPase subfamily.Yeast. 1995,11(3): 283-292.
    
    102. Yuan D S, Dancis A, Klausner R D. Restriction of copper export in Saccharomyces cerevisiae to a lateGolgi or post-Golgi compartment in the secretory pathway. J Biol Chem,1997,272(41):25787-25793.
    
    103.ZivaW, IsraelaB, Ben-ZionC, et al. The high copper tolerance of Candida albicans is mediated by a P-type ATPase. PAMS,2000,97:73520-3525.
    
    104.Chelly J, Tumer Z, Tonnesen T. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat. Genet. 1993, 3(1): 14-19.
    
    105.Bull P C,Thomas G R, Rommens J M, et al. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat. Genet. 1993, 5(4):327-337.
    
    106 Hammond S M, Caudy A A, Hannon G J. Post-Transcriptional Gene Silencing by Double-stranded RNA. Nature Reviews Genet. 2001, 2:110-119.
    107.Nykanen A, Haley B, Zamore P D. ATP requirements and small Interfering RNA structure in the RNA interference pathway. Cell. 2001, 107:309-321.
    
    108.Schwarz D S, Hutvagner G, Haley B. Evidence that siRNA fuction as Guides, not Primers, in the Drosophila and Human RNAi Pathways. Mol. Cell 2002, 10:537-548.
    
    109.Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature. 2004. 431:343-349.
    
    110.Cogoni C. Macino, G. Post-transcriptional Gene Silencing across Kingdoms. Curr. Opin. Genet. Dev. 2000,10:638-643.
    
    111. Guru T. A Silence that Speaks Volumes. Nature.2000, 404: 804-808.
    
    112.Fire A, Xu S, Montgomery M K. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998391(6669):806-811.
    
    113.Sharp P A. RNA Interference. Genes Dev. 2001, 15:485-490.
    
    114Donze Q, Picard D. RNA interference in mammalian cells using siRNA synthesized with T7 RNA polymerase. Nucleic Acids Res.2002;30 (10):e46.
    
    115.Yu J Y, DeRuiter S L, Thmer D L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalianc ells.Proc Natl Acad Sci USA. 2002, 99(9):6047-6052.
    
    116.Paddison P J, Caudy A A, Bernstein E, et al. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 2002,16:948-958.
    
    117.McManus M T, Sharp P A. Gene silencing in mammals by small interfering RNAs. Nat. Rev. 2002,3: 737-747.
    
    118.Tuschl T. Expanding small RNA interference. Nat. Biotechnol. 2002,20, 446-448.
    
    119. Orbach M J, Porro E B, Yanofsky C. Cloning and characterization of the gene for beta-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as adominant selectable marker. Mol Cell Biol. 1986, 6: 2452-2461.
    
    120.Churchill A C L, Ciufetti L M, Hansen D R. Transformation of the fungal pathogen Cryphonectria parasitia with a variety of heterologous plasmids. Current Genetics. 1990, 25 :25 -31.
    
    121. Nakayashiki H. RNA silencing in fungi: mechanisms and applications.FEBS Lett. 2005, in press.
    
    122. Kadotani N, Nakayashiki H, Tosa Y, et al. RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Mol Plant Microbe Interact 2003, 16:769-76.
    
    123. Richard J W , Kim M P , Margaret A C . Approaches to functional genomics in filamentous fungi. Cell Research. 2006,16:31-44.
    124. Mouyna I, Henry C, Doering TL, et al. Gene silencing with RNA interference in the human pathogenic fungus Aspergillus fumigatus. FEMS Microbiol Lett. 2004,237:317-24.
    125.乐宁.应用RNA干涉技术对水稻SDKB基因的功能鉴定.[学位论文].广西大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700