用户名: 密码: 验证码:
煤泥水化学微生物法深度处理的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤泥水处理是煤炭行业老大难问题,目前受管理、资金及技术等因素限制,仍然存在煤泥水外排、循环水利用率低和煤能源的浪费等问题。随着世界各国环保压力加大及节约能源的要求不断提高,急需选择高效的处理技术方法,从根本上改变目前煤泥水的处理利用现状。
     论文以徐州夹河矿煤泥水、张双楼矿煤泥水、及河南永城薛湖矿煤泥水为研究对象,借助激光粒度分析仪、XRD、原子吸收光谱仪、紫外分光光度计、离子色谱仪等先进的分析仪器,对煤泥水体系的基本性质进行了测定分析。通过数学建模、回归分析、线性拟合、Design-Expert试验设计等先进的理论分析及试验方法,研究了煤泥水处理的影响因素、作用规律及相关参数。通过微生物协同处理煤泥水,研究了煤泥水中黄铁矿的脱出机理。得到以下系列研究成果:
     论文创新设计了化学-微生物法协同处理煤泥水的新思路;通过氧化亚铁硫杆菌改性优育菌株选择性吸附及特性转化黄铁矿,对煤泥水中夹杂的黄铁矿进行协同深度处理,得到了相对理想的时间内(7天)较高的脱硫率79.3%;给出了煤泥水中黄铁矿脱出机理及作用过程的系列化学反应方程及生化反应方程,并具体解释了煤泥水中黄铁矿在微生物化学协同作用下的微观化学机制,反应条件,影响因素及目标产物的选择性控制及耦合过程。
     设计开发了煤泥水化学-微生物法协同处理试验模型装置,微生物与可降解淀粉基聚丙烯酰胺类高分子化学絮凝剂(st-PAM)及氯化钙分步协同,既充分利用高分子药剂煤泥水处理的高效性,又避免了常规化学药剂单一使用的二次污染大的弊端,实现煤泥水环保处理。
     优化实验研究,揭示出st-PAM对各矿煤泥水均有一定的絮凝沉降效果,沉降速度相对理想;单用氯化钙对煤泥水沉降速度无明显促进作用,但对上清液透光率有提升,与st-PAM连用,明显提升沉降速度和透光率;白腐菌单用情况下,煤泥水沉降速度和透光率在短时间内无明显效应,参与到st-PAM、氯化钙处理体系中,分别体现出了提高沉降速度、透光率、增强沉降速度提升的稳定性及获得理想投药量的协同处理效果。
     煤泥脱水系列技术参数及基本理论数据研究结果表明,氯化钙和高分子絮凝剂联用可改善滤饼通透性,增大煤泥恒压过滤常数K,添加微生物絮凝剂,更加突出改善煤泥脱水性能,增大过滤速度;但是添加微生物絮凝剂后煤泥滤饼含水率略有升高。
     论文根据最小二乘法建构二次多项预测模型方程,借助Design-Expert试验设计软件,利用多因素多水平响应曲面正交实验设计,对煤泥水进行了因素优化正交试验,进行多元回归拟合,并进行精确性及显著性等检验,得出试验条件下透光率、沉降速度、上清液pH值、压滤脱水时间、压缩层高/总高的模型方程。对处理夹河矿煤泥水上清液给出了透光率90.48%的指导优化因素实验方案,指明了上清液pH值3D表面响应规律,并对张双楼矿、薛湖矿相关评价指标响应值给出了因素交互作用规律及影响程度。
Coal slurry treatment is a difficult problem in the coal industry. Due to therestriction from management, funds, technology and other factors, there are still coalslurry efflux, low circulating water utilization rate and the waste in coal energy. Withthe increase of pressure on the world environmental protection and the improvementof energy conservation requirement, it is needed to change the current utilizationstatus of coal slurry treatment, and choose high effective methods.
     Coal slurry from Xuzhou Jiahe mine, Zhangshuanglou mine and YongchengXuehu mine as the research object, with the help of advanced analytical instrumentsof laser particle size analyzer, XRD, atomic absorption spectrometer, UVspectrophotometer, ion chromatography, basic properties of coal slurry system weremeasured.The influence factors, rules and related parameters of coal slurry treatmentwere studied by mathematical modeling, regression analysis, linear fitting,Design-Expert design and other advanced theoretical analysis,test method. Throughthe combination of microbial co processing of coal slurry, the removal mechanism ofpyrite in coal slurry was researched. The series of results:
     The new idea of coal slurry treatment by chemical and microbial method waspresented. With the selective adsorption to pyrite, pyrite was released from the coalslime by Thiobacillus ferrooxidans(T.f), and the high desulfurization rate79.3%wasobtained during relatively ideal time7days. The removal mechanism of pyrite wasget through the chemical reaction and biochemical reaction equations. Under theinteraction of microorganisms and chemistry, the micro chemical mechanism, reactionconditions, and influencing factors of pyrite were explained, as well as selectivecontrol and coupling process of the target product.
     Chemical and microbiological method collaborative processing model test deviceto manage and clean coal slurry was designed deeply in the experimental research ofthis thesis. Microorganism, degradable modified polyacrylamide polymer flocculant(st-PAM) and calcium chloride were used by collaboration to make full use of highperformance polymer agent in coal slurry treatment, but also avoid subsequentpollution from conventional chemical ways by single use in the management of coalslurry, the implementation of environmental protection of coal slurry treatment wasfinished in the process.
     Research on coal slurry by single factor and composite experimental design was optimized. The effect of st-PAM on the settlement of coal slurry had a certainflocculation effect, and the sedimentation velocity was ideal relatively.
     Use calcium chloride alone has little effect on coal slurry sedimentation velocity,but a significant increase on transmittance, and both significant enhance by using withst-PAM in the sedimentation velocity and transmittance.
     In the White rot fungi(W.r.f) single case, coal slurry sedimentation velocity andlight transmission rate had no obvious effect in a short time, while the increase ofsedimentation velocity, the enhancing of stability in fast sedimentation and the idealprocessing effect of dosage were reflected respectively by collaborative usingst-PAM, calcium chloride and W.r.f.
     The permeability of filter cake and the constant pressure filtration coefficient Kwith calcium chloride and polymeric flocculant was improved through the study onthe technical parameters and the basic data results of coal slime dewatering. Thefiltration speed was further increased by adding microbial flocculant, but after addingmicrobial flocculant filter cake moisture content increased slightly.
     With the help of Design-Expert software, the two predictive model equationaccording to the least square method, and orthogonal experimental design of multiplefactors and levels, orthogonal test factors were optimized of coal slurry treatment wascarried. The model equations under the condition of transmittance, sedimentationvelocity, pH value, filter press dewatering time, compression height/total height wereobtained through multiple regression, and accuracy and significant test. Factoroptimization experiment scheme of Jiahe coal slurry supernatant transmittance90.48%and the supernatant pH3D surface response rule were given. ForZhangshuanglou and Xuehu coal slurry, the interaction rules and influence of relatedevaluation index response value were provided.
引文
[1]张明旭.选煤厂煤泥水处理[M].徐州:中国矿业大学出版社,2005.
    [2]叶大武,2009-2010年我国原煤生产和选煤厂概况[J].选煤技术.2012(2):1-3.
    [3]陈清如,骆振福.干法选煤评述[J].选煤技术,2003(6):34-37.
    [4]吕平海.酸性高泥化煤泥水处理试验研究[D].西安:长安大学,2007.
    [5]刘科峰,许艳红,赵春,等.新型混凝剂处理洗煤废水的优化研究[J].环境科学与管理.2010,35(10):64-68.
    [6]李亚峰,苏永渤,朱龙,等.高浓度洗煤废水治理方法的研究[J].环境保护科学,1997,23(82):11-14.
    [7]张崇淼,张大伦,罗运军.聚酰胺胺(PAMAM)树形分子在洗煤废水处理中的应用研究[J].能源环境保护,2003,17(4):20-24.
    [8]王贤纲.粉煤灰基絮凝剂处理洗煤废水的效果及作用机制[J].湿法冶金,2011,30(3):245-247.
    [9]徐华成,徐晓军,徐兴虎,等.微波处理洗煤废水的效果及作用机理分析[J].青岛理工大学学报,2008,29(1):60-62.
    [10]李竹荣,王秀琴.中国煤炭与环境问题初探[J].煤炭经济研究,1999,36(10):36-37.
    [11]邓立龙,焦华喆,侯保青,等.选煤厂煤泥水危害及处理工艺浅析[J].西部探矿工程,2012(3):131-135.
    [12]李亚峰,刘铁成,曹丽丹.洗煤废水难处理的原因及处理方法研究[J].矿业安全与环保,1999(2):1-4.
    [13]Hogg R,Brunnaul P,Suharyono H.Chemical and physical variables in polymer induced flocculation[J].Miner.Metall.Process,1993,10:81-85.
    [14]宋会卿.浅谈原矿浓度测定方法的改进[J].能源技术与管理,2011(5):138-151.
    [15]王卫东,解维伟,张成联.基于超声波衰减法煤泥水浓度检测的研究[J].选煤技术.2011(1):47-49.
    [16]吴媛媛.基于计算机图像法的煤泥水浓度测定系统设计[J].煤炭技术,2010,29(3):173-176.
    [17]刘雁鹏.选煤厂煤泥水絮凝沉降试验研究[J].中国煤炭,2011,37(9):79-91.
    [18]李亚峰,胡筱敏,陈健,等.高浓度洗煤废水处理技术与工程实践[J].工业水处理,2004,24(12):68-70.
    [19]马永梅.煤泥水处理方法的研究[J].煤炭科学技术,2007,35(5):80-83.
    [20]卢安民.泥化条件下煤泥沉降试验与研究[J].煤炭工程,2005(9):64-67.
    [21]李莉,裴亚生.煤炭洗选废水处理利用技术综述[J].山西能源与节能,2001(1):36-37.
    [22]郑刚,杜建军,沈海东.岱庄选煤厂处理高灰细泥煤泥水的研究与实践[J].煤质技术,2008,(1):61-63.
    [23]刘炯天,张明青,曾艳.不同类型黏土对煤泥水中颗粒分散行为的影响[J].中国矿业大学学报,2010,39(1):59-63.
    [24]Sabah E, Cengiz I. An evaluation procedure for flocculation of coal preparation plant tailings [J].Water Research,2004,38(6):1542-1549.
    [25]Arnold B J, Aplan F. The effect of clay slimes on coal flotation:the nature of the clay[J]. International Journal of Mineral Processing,1986,17(3):225-242.
    [26]Duran J D, Ramos M M, Arroyo F J, et al. Rheological and electrokinetic properties of sodium montmorillonite suspensions [J]. Journal of Colloid and Interface Science,2000,229(1):107-117.
    [27]亓欣,匡亚莉,林喆,等.高灰细泥煤泥水沉降实验研究[J].煤炭工程,2011(2):88-90.
    [28]盖春艳.高泥化煤泥水特性与处理工艺研究[D].太原:太原理工大学,2006.
    [29]陈忠杰,闵凡飞,朱金波,等.高泥化煤泥水絮凝沉降试验研究[J].煤炭科学技术,2010,38(9):117-120.
    [30]邝爱玲.高悬浮物浓度煤泥水处理试验研究[D].西安:长安大学,2008.
    [31]冯莉,刘炯天,张明青,等.煤泥水沉降特性的影响因素分析[J].中国矿业大学学报,2010,39(5):671-675.
    [32]王荣彩.煤泥水处理的探讨与实践[J].河北煤炭,2009(5):33-37.
    [33]程小冬.煤泥水的处理技术研究[J].洁净煤技术,2009,15(5:)27-29.
    [34]李亚萍.煤泥水絮凝沉降试验中沉降时间的探讨[J].煤炭工程,2011(7):98-99.
    [35]苏永渤,李亚峰,朱龙,等.煤泥水治理方法的试验研究[J].沈阳建筑工程学院学报,1995,11(1):71-75.
    [36]张华,曾艳,张明青.煤泥水絮凝沉降性能影响因素试验研究[J].能源环境保护,2009,23(4):28-31.
    [37]张腊,姚润生,李春.聚丙烯酰胺的光敏引发法制备及其在洗煤废水中的应用特性[J].太原理工大学学报,2010,41(6):745-747.
    [38]吉登高,郭旭龙,蔡光顺,等.水质变化对煤泥水絮凝沉降的影响[J].洁净煤技术,2011,17(1):12-15.
    [39]Churaev N V. Inclusion of structural forces in the theory of stability of colloids and films[J]. Journal of Colloid and Interface Science,1985,103(2):542-553.
    [40]Pashley R M. Mloecular layering of water in thin films between micasur faces and its relation to hydration forces [J]. Journal of Colloid and Interface Science,1984,101(2):511-523.
    [41]Tonthai T K. Effect of aging on rheology of ball clay suspension[D].New Jersey:The State University of New Jersey,2002.
    [42]张景,王泽南,宋树磊.煤泥水pH值对絮凝沉降效果的影响[J].洁净煤技术,2011,17(6):16-18.
    [43]江明东,宋晓,罗琼,等.添加钙、镁离子型凝聚剂实现煤泥水深度澄清的实验室试验[J].煤质技术,2009(5):51-55.
    [44]栗金贵,朱子祺.神东石圪台选煤厂煤泥水试验研究[J].洁净煤技术,2011,17(2):21-23.
    [45]苟鹏.煤质对煤泥水性质的影响及处理技术研究[D].西安:西安建筑科技大学,2008.
    [46]温雪峰,李昌平,关嘉华,等.浮选尾煤煤泥水特性及沉降药剂的选择性研究[J].煤炭工程,2004(2):55-57.
    [47]盖春燕,樊民强.pH值对煤泥水处理的影响[J].选煤技术,2010(2):24-26.
    [48]Sabah E. Yuzer H, Celik M S. Characterization and dewatering of fine coal tailings by dual-flocculant systems[J].Mineral processing.2004,74(1-4):303-315.
    [49]范彬,刘炯天.水质硬度对选煤厂循环水澄清的影响[J].中国矿业大学学报,1999,28(3):296-299.
    [50]李亚峰,陈健,班福臣.钙镁复合药剂处理洗煤废水的效果及作用机理研究[J].工业水处理,2006,26(4):47-49.
    [51]张敏,王永田,刘炯天.矿物型凝聚剂用于煤泥水澄清[J].中国煤炭,2003,29(10):46-47.
    [52]曹学章,冯晔,王晓坤.难沉降煤泥水的沉降试验研究[J].选煤技术,2011(5):11-15.
    [53]连建华,白素玲.洗水硬度对煤泥水系统影响的分析[J].煤,2011,20(2):48-50.
    [54]张明青,刘炯天,刘汉湖,等.水质硬度对煤和蒙脱石颗粒分散行为的影响[J].中国矿业大学学报,2009,38(1):114-118.
    [55]邓明伟.水质硬度对煤泥浮选影响的分析[J].煤炭技术,2008,27(10):92-94.
    [56]张志军,刘炯天,邹文杰,等.水质硬度对煤泥浮选的影响[J].中国矿业大学学报,2011,40(4):612-615.
    [57]张明青,刘炯天,王永田.水质硬度对煤泥水中煤和高岭石颗粒分散行为的影响[J].煤炭学报,2008,33(9):1058-1062.
    [58]Jeanine L K, Mary E W, Robert E S, et al. Polyscrylamide as a substrate for microbial amidase in culture and soil[J].Soil Biol.Biochem.1998,30(13):1647-1654.
    [59]崔广文,刘惠杰,朱付显,等.不同性质煤泥水的絮凝沉降试验研究[J].选煤技术,2009(4):28-30.
    [60]李亚萍.粒度组成对煤泥水沉降影响的研究[J].广东化工,2011,38(6):312-314.
    [61]林喆,杨超,沈正义,等.高泥化煤泥水的性质及其沉降特性[J].煤炭学报,2010,35(2):312-315.
    [62]唐海香,张荣曾.煤泥水絮凝过程动力分析[J].煤炭学报,2005,30(3):371-373.
    [63]张明青,刘炯天,王永田.煤变质程度对煤泥水沉降性能的影响[J].煤炭科学技术,2008,36(11):102-104.
    [64]Naik P K, Reddy P R, Misra V N.Interpretation of interaction effects and optimization of reagent dosages for fine coal flotation[J].International journal of mineral processing,2005,75(1-2):83-90.
    [65]Yan Y D, Glover S M, Jameson G J,et al.The flocculation efficiency of poly-disperse polymer flocculants[J].International journal of mineral processing,2009,73:161-175.
    [66]Aplan,F.The historical development of coal flotation in the United States.In:Parekh,B.K., Miller,J.D.(Eds),Advances in flotation technology. SME,Littleton,CO.1997:269-287.
    [67]Loenard J.Coal preparation.5th edn.SME,Littleton,CO,1991:66.
    [68]Sabah E, Cengize I.An evaluation procedure for flocculation of coal preparation plant tailings[J].Waterresearch.2004,38:1542-1549.
    [69]Sotjam K B, Loo C E.Flocculant selection for coal process streams. In Proceedings Dewatering Technology and Practice Conf.l989:37-45.
    [70]Cao Y J, Gui X H, Ma Z L, et al. Process mineralogy of copper nickel sulphide flotation by a cyclonic static micro bubble flotation column [J]. Mining Science and Technology,2009,19(6):784-787.
    [71]王少会,徐初阳.难净化煤泥水的沉降试验研究[J].安徽理工大学学报,2004,(5):80-82.
    [72]Yang X J, Chu L K, Liu D M, et al. Research on kaolinite in coal measures of West Beijing by Mossbauer spectroscopy [J]. Journal of China University of Mining&Technology,2006,16(1):61-63.
    [73]闵凡飞,张明旭,朱金波.高泥化煤泥水沉降特性及凝聚剂作用机理研究[J].矿冶工程,2011,31(4):55-58.
    [74]柳迎红,李伟民.煤泥水加药絮凝闭路循环试验研究[J].辽宁工程技术大学学报,2003,22(2):284-285.
    [75]董世优,李秋萍.矿井煤泥水综合治理实现闭路循环[J].江西煤炭科技,2008(3):48.
    [76]马向勤.煤泥水处理中值得注意的几个问题[J].煤矿环境保护,2002,16(6):39-40.
    [77]王少会.选煤厂煤泥水处理的应用分析[J].中国矿业,2004,13(5):13-15.
    [78]李静.高泥化煤泥水的絮凝沉降[J].煤炭加工与综合利用,2006(2):31-32.
    [79]Reichur A M. The potential forselective floculation of coal from pyrite using a hydrophobic bacterium [J]. Fuel and Energy Abstracts,1997,38(1):7-9.
    [80]Sergeer P V. Selective Floculation of Coals [J].Fuel and Energy Abstracts,1996,37(4):255-257.
    [81]Novak J T, Mark L. The use of polymers for improving chemical sludge dewatering on sand bed [J].AWWA,1977,66(2):106-109.
    [82]李亚峰,苏永渤.石灰在煤泥水混凝中的作用机理研究[J].环境工程,1999,17(1):26-28.
    [83]郭德,张秀梅,吴大为.对Ca2+影响煤泥浮选和凝聚作用机理的认识[J].煤炭学报,2003,28 (4):433-436.
    [84]Bolto B A. Soluble polymers in water purification [J]. Progress in Polymer Science,1995,20(6):1014-1016.
    [85]武光辉.有效治理细泥积聚实现清水洗煤[J].煤,2007,16(2):23-25.
    [86]蒋卫红,周春琼,王杨君.当前絮凝剂的发展趋势及应用研究[J].韶关学院学报(自然科学版),2005,26(3):69-72.
    [87]陶群,付聚强,蒋家慕,等.采用凝聚剂、絮凝剂配合添加技术强化细煤泥沉降[J].煤质技术,2005(S1):19-22.
    [88]邸西勇.新型乳液絮凝剂在治理煤泥水中的应用[J].山东煤炭科技,2008(6):33-34.
    [89]邝爱玲,高俊发,张英慧,等.混凝剂在煤泥水处理中的研究[J].西安文理学院学报(自然科学版),2007,10(3):51-54.
    [90]苏丁,雷灵琰,王建新.凝聚剂、絮凝剂在难净化煤泥水中的使用[J].选煤技术,2002(2):10-12.
    [91]Stefan J L, Rudolf K, Hermann H H, Mechanisms of flocformation in sluge conditioning with polymers [J]. Wat Sci Tech,1994,30(8):129-138.
    [92]Sabah E, Erkan Z E.Interaction mechanism of flocculants with coal waste slurry [J].Fuel,2006,85:350-359.
    [93]李梅,黄廷林,汪国雅.洗煤废水高效处理的实验研究[J].西安建筑科技大学学报(自然科学版),2002,34(1):38-41.
    [94]Concha F, Rulyov N N, Laskowski J S.Settling velocities of particulate systems18:Solid flux density determination by ultra-flocculation[J].International Journal of Mineral Processing,2012,104-105:53-57.
    [95]Selomulya C, Liao J Y H, Bickert G, et al.Micro-properties of coal aggregates:Implications on hyperbaric filtration performance for coal dewatering[J].Int. J. Miner. Process.2006,80:189-197.
    [96]Singh B P. Ultrasonically assisted rapid solid-liquid separation of fine clean coal particles [J]. Minerals Engineering,1999,12(4):437-443.
    [97]于恒江,于建军,杜士龙,等.科学分析煤泥水性质合理确定净水药剂制度[J].煤炭技术2003,22(7):63-65.
    [98]廖寅飞,赵江涛,胡晓东.难沉降煤泥水的凝聚—絮凝沉降试验研究[J].煤炭工程,2010(12):98-100.
    [99]夏仁专.不同阴离子度聚丙烯酰胺与硫酸铝协同作用对煤泥水沉降处理效果的实验研究[J].广东化工,2011,38(5):129-131.
    [100]Triphty T, Bhagat R P, Singh R P.The flocculation performance of grafted sodium alginate and other polymeric flocculants in relation to iron ore slime suspend [J]. European Polymer Journal.2001,37(1):125-130.
    [101]TriphtyT, Singh R P.High performance flocculating agent based on paritially hydrolysed sodium Alginate-g-polyacrylamide[J].European Polymer Journal.2000,36(7):1471-1476.
    [102]Sarioglu M, Cebeic Y, Beyaizt N. Investigation of the effects of some operating parameters using anionic and cationic flocculants for removing solid material in the Asian lignite [J]. J.Chem.2002,14(1):388-394.
    [103]Malayoglu U A,Seyrandaya A.Developing sedimentation criteria for slimes of omerler coal washing plant by flocculation[J].Innovations in Mineral and Coal Processing.7th International Mineral Processing Symposium.Istanbul,Turkey.A.A.Balkema,Rotterdam,Brookfiele.1998:195-200.
    [104]Tao D, Groppo J G, Parekh B K.Enhanced ultrafine coal dewatering using flocculation filtration processes [J].Miner.Eng.2000,166(2):163-171.
    [105]王佳雁.有机高分子凝聚剂改善细粒煤泥沉降的研究初探[J].煤质技术2010(6):57-60.
    [106]赵刚,孙晓霞.选煤厂煤泥水药剂絮凝沉降的研究与实践[J].山东煤炭科技,2009(4):44-46.
    [107]贾荣仙,聂容春,邵群.光引发聚合阴离子型聚丙烯酰胺工艺及其产品絮凝效果的研究[J].安徽化工,2008,39(5):13-15.
    [108]贾荣仙,聂容春,邵群.光引发聚合阴离子型聚丙烯酰胺对煤泥水的絮凝作用[J].工业用水与废水,2008,39(6):75-77.
    [109]赵秀芳,司亚梅.煤泥水处理中高分子絮凝剂的影响因素分析[J].煤炭加工与综合利用,2010(2):38-40.
    [110]刘晓梅,刘炯天,吕鑫磊.煤泥水处理药剂综述[J].洁净煤技术,2009,15(5):20-24.
    [111]罗慧.阳离子型聚丙烯酰胺的絮凝性能研究[J].应用化工,2006,35(11):864-866.
    [112]刘洋,胡应模,沈乐欣,等.三元共聚阳离子型聚丙烯酰胺的合成及应用[J],2011,28(3):280-283.
    [113]马永梅.阳离子淀粉絮凝剂在煤泥水处理中的应用研究[J].四川化工,2004,7(5):7-9.
    [114]降林华,邹立壮,徐初阳,等.改性淀粉高分子絮凝剂在选燥厂煤泥水中的应用[J].洁净煤技术,2007,13(3):17,21-24.
    [115]马永梅.煤泥水处理方法的研究[J].煤炭科学技术,2007,35(5):80-83.
    [116]陈元彩,肖锦.天然有机高分子絮凝剂研究与应用[J].工业水处理,1999,19(4):11-14.
    [117]卢珍仙.利用玉米淀粉制备高取代度阳离子淀粉的研究[J].化学世界,2005(12).734-737.
    [118]王小雄,张媛,刘光利,等.淀粉絮凝剂的研究概况[J].工业水处理,2009,29(1):6-9.
    [119]Lanthong P, Nuisin R, Kiatkamjornwong S. Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents [J].Carbohydrate Polymers,2006,66(2):229-245.
    [120]Athawale V D, Lele V.Graft copolymerization onto starch.II.Grafting of acrylic acid and preparation of its hydrogels [J].CarbohydratePolymers,1998,35(1-2):21-27.
    [121]王镇,王孔星,谢裕敏,等.几株微生物絮凝剂产生菌的特性研究[J].微生物学报,1995,35(2):121-129.
    [122]Nakaura J, Miyashiro S, Hirosa Y. Purification and chemical analysis of microbial cell flocculant produced by aspergillus sojae AJ7002[J].Agi.Biol.Chem.,1976,40(3):619-624.
    [123]胡勇有,高宝玉.微生物絮凝剂[M].北京:化学工业出版社,2007.
    [124]刑丽贞,孔进,陈文兵.微生物絮凝剂及其在废水处理中的应用[J].工业水处理,2003,23(4):10-13.
    [125]周杰,张苓花,王运吉.产絮凝剂微生物的分离与鉴定及其絮凝特性[J].大连轻工业学院学报,2006,25(4):235-238.
    [126]张欣欣,张永明,李步祥.微生物絮凝剂产生菌的筛选及其絮凝影响因素[J].上海师范大学学报,2004,33(4):96-100.
    [127]Gao Q,Zhu X H,Mu J,et al.Using Ruditap esphilippinarum conglutination mud to produce Bioflocculant and its applications in wastewater treatment[J].BioresourceTechnology,2009,100(21):4996-5001.
    [128]AI-Shahwani M F, AI-Rawi E H. Bacterial extracellular material from brewery wastewater for raw water treatment[J]. Biological Wastes,1989,28(4):271-276.
    [129]Bruus J H, Nielsen P H, Keiding K.On the stability of activated sludge flocs with implicati-ons to dewatering[J].Water Research,1992,26:1597-1604.
    [130]Fujita M., Ike M, Tachibana S, et al.Characterization of a bioflocculant produced by Citroba-ctersp[J].Journal of Bioscience and Bioengineering2000,89(1):40-46.
    [131]Labille J, Thomas F, Milas M, et al. Flocculation of colloidal clay by bacterial polysaccharides:effect of macromolecule charge and structure [J]. Journal of Colloid and Interface Science,2005,284(1):149-156.
    [132]Zouboulis A I, Chai X L, Katsoyiannis I A. The application of bioflocculant for the removal of humic acids from stabilized landfillleachates [J]. Journal of Environmental Management,2004,70(1):35-41.
    [133]张东晨,张明旭,陈清如.微生物絮凝剂的应用及展望[J].选煤技术,2004(2):1-3.
    [134]Smith R W,Misra M, Schneider A H,et al微生物在选矿中作为选矿药剂的应用[J].国外金属矿选矿.1996(6):46-49.
    [135]Smith R W.Mineral bioprocessing overview[J].Mineral processing.1991,4(7-11):1127-1141.
    [136]Bin L, Ye C, Jin Z, et al.Microbial flocculation by Bacillus mucilaginosus:applications and mechanisms[J].Bioresource Technology,2008,99:4825-4831.
    [137]张东晨,张明旭.草分枝杆菌选择性絮凝脱除煤中黄铁矿硫的研究[J].煤炭学报,2004, 29(5):585-589.
    [138]周桂英,张强.利用微生物絮凝剂处理煤泥水的试验研究[J].能源环境保护,2004,18(5):36-41.
    [139]吴学风,张东晨,姜绍通.酱油曲霉絮凝煤泥水的试验研究[J].煤炭学报,2007,32(4):433-436.
    [140]于皓,程丽娜.微生物絮凝剂处理煤泥水研究[J].露天采矿技术,2007(5):73-74.
    [141]王艳梅,王雅珍,马宇亮.洗煤废水微生物絮凝剂产生菌的筛选及其培养条件初探[J].鸡西大学学报,2010,10(4):55-56.
    [142]罗志敏,钱伟,陈盛.DSF-1菌产生的絮凝剂及处理洗煤废水的试验研究[J].环境污染治理技术与设备,2005,6(1):73-77.
    [143]Liang Z, Han B P, Liu H.Optimum conditions to treat high-concentration microparticle slime water with bioflocculants[J].Mining Science and Technology,2010,20(3):478-484.
    [144]唐跃刚,张会勇,彭苏萍,等.中国煤中有机赋存状态、地质成因的研究[J].山东科技大学学报(自然科学版).2002,21(4):1-4.
    [145]景国东.浅谈煤炭脱硫技术[J].煤矿现代化,2004(1):58-59.
    [146]邱亚玲,杨丽,许守东,等.煤的微生物浸出脱硫技术[J].陕西煤炭,2006(1):30-32.
    [147]丁益雷.谈清洁煤生产中的微生物脱硫[J].环境保护,1998(8):11-12.
    [148]刘汉钊,张永奎.微生物在矿物工程上应用的新进展.国外金属矿选矿,1999(12):9-12.
    [149]张同军.煤泥水处理技术与实践[J].科技创新导报,2011(20):98-100.
    [150]陈开玲.浅析煤泥水的特点及治理方法[J].洁净煤技术,2008,14(2):15-17.
    [151]蔡璋.选煤厂固-液、固-气分离技术[M].北京:煤炭工业出版社,1992.
    [152][英]L·斯瓦罗夫斯基.固液分离(第二版)[M].北京:化学工业出版社,1981.
    [153]王淀佐,李宏煦,阮仁满.硫化矿的生物冶金及其研究进展[J].矿冶(增刊),2002(11):6-12.
    [154]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,1998.
    [155]Gomez J M, Cantero D, Webb C. Immobilization of thiobacillus ferrooxidans cells on nickel alloy fibre for ferrous sulphate oxidation [J]. Appl. Microbiol. Biotechnol.,2000,54:335-340.
    [156]Olsson G, Pott B M, Larsson L,et al.Microbial desulfurization of coal by Thiobacillus ferrooxidans and thermophilic archaea [J].Fuel Processing Technology,1994,40(2-3):277-282.
    [157]P·K·沙尔姆,徐晓东.氧化亚铁硫杆菌与硫化矿物的反应和从黄铁矿中优先浮选黄铜[J].国外金属矿选矿,2002(4):16-23.
    [158]高培基,许平.资源环境微生物技术[M].北京:化学工业出版社,2004.
    [159]内斯托D用氧化亚铁硫杆菌生物浸出难处理金矿物的机理[J].国外金属矿选矿,2001(11):11-15.
    [160]姜成林,徐丽华.微生物资料学[M].北京:科学出版社,1997.
    [161]魏德洲.资源微生物技术[M].北京:冶金工业出版社,1996.
    [162]童雄.微生物浸矿的理论与实践[M].北京:冶金工业出版社,1997.
    [163]巩冠群,陶秀祥.煤炭生物脱硫的白腐菌浮选和浸滤研究[J].煤炭科学技术,2006,34(2):49-56.
    [164]巩冠群,陶秀祥,张兴,等.氧化亚铁硫杆菌优化培养及脱硫的研究[J].中国矿业大学学报,2006,35(4):510-514.
    [165]张志强,余莹,林波.微生物絮凝剂的研究概况与发展趋势[J].江西科学,2003(2):136-140.
    [166]葛义杰,张兴,高明侠.凝聚剂与微生物絮凝剂对煤泥水的分步处理]J[.煤炭加工与综合利用,2010(5):22-24.
    [167]Kurane R, Hatamochi K, Kakuno T, et al.Purification and characterization of liquid bioflocculant produced by Rhodococcus erythropolis [J].Biosci Biotechnol Biochem.,1994,58:1977-1982.
    [168]王涛,张东晨.微生物絮凝剂对煤泥水絮凝机理研究[J].陕西煤炭,2010(4):64-67.
    [169]Wang X C, Tam B N. The mechanism of pellet flocculation in a fluidized-bed operation [J]. Water SRT-Aqua,1993,42(2):67-76.
    [170]李亚峰,苏永彬.混凝沉淀法处理煤泥水的试验研究[J].安全与环境学报,2002,23(2):11-13.
    [171]陈健,李亚峰,班福忱.钙镁复合药剂处理煤泥水的试验研究[J].煤炭工程,2005(11):73-75.
    [172]李亚峰,郭勇,陈健,等.氯化钙与硫酸盐复配处理高泥质煤泥水的试验研究[J].沈阳建筑大学学报(自然科学版),2005,21(3):238-241.
    [173]Reichur A M. The potential for selective floculation of coal from pyrite using a hydrophobic bacterium[J].Fuel and Energy Abstracts,1997,38(1):7-9.
    [174]Sergeer P V. Selective floculation of coals [J]. Fuel and Energy abstracts,1996,37(4):255-257.
    [175]Fang Q X. Research on the effect and mechanism of calcium and magnesium on fine particle
    dispersion[J].External Metallic Mineral Processing,1998,6:42-45.[176]朱建东,朱书全,崔广文.煤泥水混凝机理研究及其应用[J].选煤技术,2004(4):69-72.
    [177]Omelia C R, Coagulation in wastewater treatment, In The Scientific Basis of Flocculation, NATO ASI Series,Ives, K J, Ed, Sijthoff and Noordhoff, Aalphenaan den Rijn, Netherlands,1978.
    [178]杨智宽.污染控制化学[M].武汉:武汉大学出版社,1998.
    [179]Hishida K, Ando A, Maeda M. Experiments on particle dispersion in a turbulent mixing layer[J]. International Journal of Multiphase Flow,1992,18(2):181-194.
    [180]Wang D S, Tang H X, Cao F C.Particle speciation analysis of inorganic polymer flocculants: an examination by correlation spectroscopy [J]. Colloid and Surfaces,2000,166(1-3):27-32.
    [181]胡筱敏.混凝理论与应用[M].北京,科学出版社.2007.
    [182]徐晓军.化学絮凝剂作用原理[M].北京:科学出版社,2005.
    [183]常青.水处理絮凝学[M].北京:化学工业出版社,2011.
    [184]Dentel S K, Gossett J M. Mechanisms of coagulation with aiuminum salts [J]. Am. Water Works Assoc,1988,80(4):187.
    [185]李东颖.煤泥水的絮凝沉降规律研究[Jl.煤炭加工与综合利用,2006(2):9-11.
    [186]毛艳丽,张延风,罗世田,等.水处理用絮凝剂絮凝机理及研究进展[J].华中科技大学学报,2008,25(2):78-81.
    [187]刘明华.水处理化学品[M].北京:化学工业出版社,2010.
    [188]张晓健,黄霞.水与废水物化处理的原理与工艺[M].北京:清华大学出版社,2011.
    [189]马青山,贾瑟,孙丽珉.絮凝化学和絮凝剂[M].北京:中国环境科学出版社,1988.
    [190]王金官.两种药剂联合使用对煤泥水有效絮凝的探索[J].煤化工,2008(1):44-46.
    [191]田玲,王九思,李玉金.水处理絮凝剂的絮凝原理及其研究进展[J].甘肃教育学院学报(自然科学版),2004,18(1):54-57.
    [192]于洋,牛福生,吴根.选择性絮凝工艺分选微细粒弱磁性铁矿技术现状[J].中国矿业,2008,17(8):91-93.
    [193]吴修利,黄玉珍,薛冬桦.阳离子淀粉在水处理上的絮凝研究[J].化学与生物工程,2010,27(11):80-82.
    [194]陈辉,尹慧,强颖怀.ATP/PAM接枝聚合物对煤泥水的絮凝研究[J].中国煤炭,2011,37(2):72-76.
    [195]于水利,李圭白.高浊度水絮凝投药控制[M].大连:大连理工大学出版社,1997.
    [196]薛广雷,王龙,郑洪领,等.微生物絮凝剂絮凝机理及絮凝效果影响因素[J].水科学与工程技术,2010(1):36-38.
    [197]邓述波,余刚,蒋展鹏,等.微生物絮凝剂MBFA9的絮凝机理研究[J].水处理技术,2001,27(1):22-25.
    [198]Labille J, Thomas E, Milas M,et al. Flocculantion of colloidal clay by bacterial polysaccharides:effect of macromolecule charge and structure [J]. Journal of colloid and interface science.2005,284(1):149-156.
    [199]马放,张金凤,远立江,等.复合型生物絮凝剂成分分析及其絮凝机理的研究[J].环境科学学报,2005,25(11):1491-1496.
    [200]秦培勇,张通,陈翠仙.微生物絮凝剂MBFTRJ21的絮凝机理[J].环境科学,2004,25(3):1491.
    [201]樊艳春,林波.微生物絮凝剂絮凝机理研究进展[J].江西化工,2006(3):1-3.
    [202]曹芳,余秀梅,郭娟利,等.高絮凝活性芽孢杆菌的筛选及其絮凝特性研究[J].浙江大学学报(农业与生命科学版),2011,37(6):617-623.
    [203]王兰,唐静,赵璇.微生物絮凝剂絮凝机理的研究方法[J].环境工程学报,2011,5(3):481-488.
    [204]魏炜,李英燕,王天蛟,等.微生物絮凝剂絮凝特性研究[J].沈阳建筑大学学报(自然科学版),2011,27(6):1168-1172.
    [205]郑怀礼.生物絮凝剂与絮凝技术[M].北京:化学工业出版社,2004.
    [206]朱伟萍,张晶.水处理生物学[M].北京:中国电力出版社,2008.
    [207]刘永军.水处理微生物学基础与技术应用[M].北京:中国建筑工业出版社,2010.
    [208]Levy N Y, Bar-or Y, Magdassi V S. Flocculation of bentonite particles by a cyanobacterial bioflocculant[J].Colloids and Surfaces,1990,48:337-349.
    [209]巩冠群.电化学调控煤炭生物脱硫的研究[D].徐州:中国矿业大学,2006.
    [210]夏清,陈常贵.化工原理(下册)[M].天津:天津大学出版社,2005.
    [211]夏清,陈常贵.化工原理(上册)[M].天津:天津大学出版社,2005.
    [212]曾凡,胡永平.矿物加工颗粒学[M].徐州:中国矿业大学出版社.1995.
    [213]谢广元.选矿学[M].徐州:中国矿业大学出版社.2001.
    [214]Holmes D S. Biorecovery of metals from mining, industrial and urban wastes. in:A.M Martin and T.R.Patel(edi.)Bioconversion of waste materials to industrial products.Elsevier Applied Science,1991.
    [215]Natarajan K A. Bioleaching of sulphides under applied potentials [J].Hydrometallurgy,1992,29(1-3):161-172.
    [216]Yunder S B,Radovich J M. Enhenced growth of hiobacillus Ferrooxidans in the electrolytic bioreactor[J].Biotech Bioeng,1985,27(15):307-319.
    [217]Gomez C,Blazquez M L,Ballester A.Influence of warious factors in the bioleaching of a bulk concentrate with mesophiloc microorganism in the presence of Ag(I)[J].Hydrometallurgy,1997,45(2):271-287.
    [218]Spencer P A.Bacterial oxidation technology-a viable process for refractory gold ores and base metals recovery[J].Minerals Engineering,1991,4(7-11):1143-1152.
    [219]Klein J.Technological and economic aspects of coal biodesulfurisation [J]. Biodegradation,1998,9(3-4):293-300.
    [220]Juszczak A,Domka F,Kozlowski M,et al.Microbial desulfurization of coal wth Thiobacillus ferrooxidans bacteria[J]. Fuel,1995,74(5):725-728.
    [221]张东晨,张明旭,陈清如.煤炭微生物浸出脱硫效果的灰色预测[J].中国矿业大学学报,2007,36(6):764-767.
    [222]巩冠群,张英杰,梅建,等.煤中硫被生物电化学协同脱出机理研究[J].化学工程,2007,35(6):61-65.
    [223]杨宇,师舞阳,张燕飞,等.嗜酸氧化亚铁硫杆菌对煤炭脱硫影响的研究[J].生态环境,2006,15(2):261-264.
    [224]邱建辉,邸进申,李英杰.生物脱硫的研究进展[J].微生物学报,2001,41(5):650-654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700