用户名: 密码: 验证码:
阴离子型树脂催化制备生物柴油的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪酸甲酯又被称作生物柴油,作为石油的替代品,随着石油资源的日益短缺,越来越受到人们的关注。目前,生物柴油的主要生产方法是使用NaOH作为均相碱催化剂,催化脂肪酸甘油脂(动植物油脂的主成分)和甲醇进行酯交换反应制备脂肪酸甲酯。虽然该技术比较成熟,但还是存在反应产生皂化导致分离困难、需水洗除掉碱催化剂而产生大量碱性废水造成环境污染等缺点。采用非均相固体催化剂可以避免上述问题的产生,因此该类催化剂催化酯交换反应制备生物柴油对生物柴油的推广有着重要的意义。
     本论文设计使用特种聚醚砜型树脂制备出的季铵盐型线型强碱型树脂与二氧化硅的共混物(QAPPES/SiO_2)和通用聚醚砜型树脂制备出的季铵盐型线型强碱型树脂与二氧化硅的共混物(QAPSF/SiO_2)为非均相催化剂,催化了大豆油和甲醇的酯交换反应,制备出脂肪酸甲酯。合成出的一系列的脂肪酸甲酯混合物可以通过气相色谱和质谱联用(GC/MS)的测试得到确定。通过气相色谱图,可以发现QAPPES/SiO_2和QAPSF/SiO_2催化大豆油和甲醇酯交换反应得到的产物和NaOH催化大豆油和甲醇酯交换反应得到的产物中各组分的气相色谱的保留时间和峰形基本一致。通过质谱图可以确定,最主要的三个组分具体的结构为C_(15)H_(31)COOCH_3、C_(17)H_(31)COOCH_3和C_(17)H_(35)COOCH_3。
     影响QAPPES/SiO_2和QAPSF/SiO_2催化大豆油和甲醇酯交换反应的因素主要有甲醇和大豆油的体积比、催化剂加入量和大豆油的加入量的关系(质量/体积)、反应温度、反应时间和反应的搅拌速率。这些因素通过一系列的实验加以研究和优化。实验表明,较好的反应条件为:高速搅拌条件下,反应物醇油比(体积比)为3:1-4:1,催化剂加入量与豆油加入量数值上的关系为1:4-3:8(质量/体积),反应温度为60℃。在此条件下反应8h,QAPPES/SiO_2催化大豆油和甲醇酯交换反应的转化率可达到76%,QAPSF/SiO_2催化大豆油和甲醇酯交换反应的转化率可达到74%。
     本论文中同时对季铵盐阴离子型商用大孔交联型树脂D201和D202对大豆油和甲醇酯交换反应的催化效果进行了测试。产物的测试方法同QAPPES/SiO_2和QAPSF/SiO_2催化大豆油和甲醇酯交换反应产物的测试方法。结果表明,D201和D202同样可以催化大豆油和甲醇的酯交换反应,得到一系列的脂肪酸甲酯的产物。实验表明,较好的反应条件为:反应物醇油比(体积比)为1:1-2:1,反应温度为60℃,催化剂加入量与豆油加入量数值上的关系为1:4-1:2(质量/体积)。在此条件下反应6h,D201催化大豆油和甲醇酯交换反应的转化率可达到80%,D202可达到81%。
With the gradual shortage of petroleum resource, biodiesel has been paid much more attention as one of the alternative fuel. Presently, the transesterification reaction of triglyceride which are the leading components of vegetable oil or animal fat with methanol using NaOH or KOH as a homogeneous catalyst is conducted to produce methyl fatty acid ester as biodiesel. Although this process is a mature technology, there are some disadvantages including saponification during the reaction which leads to the difficulty in separation of the production and wastewater from the washing of the production to remove the base catalyst. These problems could be avoided by using the heterogeneous solid catalysts for the production of biodiesel.
     In this work, we proposed to use a quaternary ammonium poly(phthalazinone ether sulfone)(QAPPES) anion exchange resin/SiO_2 and a quaternary ammonium polysulfone(QAPSF) anion exchange resin/SiO_2 to catalyse the transesterification of soybean oil with methanol to generate methyl fatty acid ester heterogeneously. A series of methyl fatty acid ester as the production could be determinated by gas chromatography/mass spectrometry(GC/MS). From the diagrams of GC/MS, we discovered that the components of the productions catalysed by QAPPES/SiO_2 and QAPSF/SiO_2 had the same retention time and the same form of peaks as the components of the production catalysed by NaOH. The cases had also occurred in simplex gas chromatography(GC) which was used to calculate the conversion rate of methyl fatty acid ester by peak areas. Through GC/MS, the precise components of the production could also be acquired. The three most important components were methyl palmitate(C_(15)H_(31)COOCH_3), methyl linoleate(C_(17)H_(31)COOCH_3) and methyl stearate(C_(17)H_(35)COOCH_3).
     The influences of reaction included the volume ratio of methanol to oil, the catalyst amount to oil(weight/volume), temperature, reaction time and stirring rate of reaction which were studied and optimized. The best condition were that volume ratio of methanol to oil was 3:1 to 4:1; the catalyst amount to oil(weight/volume) was 1:4 to 3:8; and the temperature was 60℃; fast stirring during the reaction was necessary. After 8h the conversion rate could reach 76% by using QAPPES/SiO_2 and 74 by using QAPSF/SiO_2.
     The commercial macroporous cross-link resins were also tested as heterogeneous catalysts to catalyze transesterification of soybean oil with methanol. A series of methyl fatty acid ester as the production could also be acquired. The analysis methods of the production catalyzed by D201 and D202 were as the same as the production catalyzed by QAPPES/SiO_2 and QAPSF/SiO_2. The best condition were that volume ratio of methanol to oil was 1:1 to 2:1; the catalyst amount to oil(weight/volume) was 1:4 to 1:2; and the temperature was 60℃. After 6h the conversion rate could reach 80% by using D201 and 81% by using D202.
引文
[1] 张呈平,杨建明,吕剑.生物柴油的合成和使用研究进展.工业催化.2005,13(5):9-13
    
    [2] 闵恩泽,唐忠,杜泽学.发展我国生物柴油的探讨.中国工程科学.2005,7(4):1-4
    
    [3] Klass D L. Biomass for Renewable Energy, Fuels and Chemicals. New York: Academic Press,1998
    
    [4] Ma F, Hanna M A. Biodiesel production: a review. Bioresource Technology. 1999, 70: 1-15
    
    [5] Vicente G, Martinez M, Aracil J. Integrated biodiesel production: a comparison ofdifferent homogeneous catalysts system. Bioresour Technol. 2004, 92: 297-305
    
    [6] 匡延云,马克平,白克智.生物质能研发展望.中国科学基金.2005,6:326-330
    
    [7] N Usta. An experiment study on performance and exhaust emissions of a diesel engine fuelled with tobacco seed oil methyl ester. Energy Conversion and Management. 2005, 46: 2373-2386
    
    [8] Shay E G. Diesel fuel from vegetable oils: status and opportunities. Biomass Bioenergy. 1993, 4: 227-242
    
    [9] 高荫榆,陈文伟,林向阳等.生物柴油研究进展.可再生能源.2004,115(3):9
    
    [10] 忻耀年,B.Sondermann,B.Emersonsleben.生物柴油的生产和应用.中国油脂.2001,5: 72-7
    
    [11] 丁莉芹,何力.国外生物燃料的发展及现状.现代化工.2002,22(11):55-56
    
    [12] Chang David. Determination of particulate and unburned hydrocarbon emissions fromdiesel engines fueled with biodiesel: [Ph D dissertation]. Iowa, USA: IOWA STATEUNIVERSITY, 1997
    
    [13] Kevin J, Harrington. Chemical and physical properties of vegetable oil esters and theireffect on diesel fuel performance. Biomass. 1986, 9: 1-17
    
    [14] Sarma A K, Konwer D, Bordoloi P K. A comprehensive analysis of fuel properties ofbiodiesel from koroch seed oil. Energy Fuels. 2005, 19: 656-657
    
    [15] Fangrui Ma. Biodiesel production: a review. Bioresource Technology. 1999, 70: 1-15
    
    [16] 薛勇,余龙江,朱敏,纪界永.利用植物油生产优质可降解新能源.山东农业科学.2004,5: 44-47
    
    [17] Goering A. Engine durability screening test of a diesel oil/soy oil/alcohol microemulsion fuel. JAOCS. 1984, 61(8): 1627-1632
    
    [18] 黄小明,谢文磊,彭红.生物柴油的现状和发展.精细石油化工.2005(1):59-61
    
    [19] Adams C, Peters J F, Rand M C, et al. Investigation of soybean oil as diesel fuel extender.JAOCS. 1984, 61(8): 1627-1632
    
    [20] Peterson. Winter rape oil fuel for diesel engines: Recovery and utilization. JAOCS.1983, 60: 1570-1587
    
    [21] Engler. Effects of processing and chemical characteristics of plant oil on performance of an indirect-injection diesel engine. JAOCS. 1983, 60: 1592-1596
    
    [22] Ziejewski M Z, Kaufman K R, Schwab A W. Diesel engine evaluation of non-sunflower oil aqueous ethanol microemlsion. JAOCS. 1984, 66: 1630-1636
    
    [23] 盛梅,李为民,邬国英.生物柴油研究进展.中国油脂,2003,28(4):66-70
    
    [24] Neuma. New microemulsion systems using diesel and vegetable oils. Fuel. 2001, 80(8):75-81
    
    [25] Pioch. Biofuels from catalytic cracking of tropical oils. Oleagineux. 1993, 48:289-291
    
    [26] Billaud. Production of hydrocarbons by pyrolysis of methyl ester from rapeseed oil.JAOCS. 1995, 72: 1149-1154
    
    [27] 梁斌.生物柴油的生产技术.化工进展,2005,24(6):577-585
    
    [28] Freedman B, Pryde E H, Mounts T L. Variables affecting the yields of fatty esters from transesterified vegetable oils. JAOCS. 1984, 61: 1638-1643
    
    [29] 姚亚光,纪威,符太军,张传龙,周庆辉.基于酸催化的餐饮业废弃油脂与醇类酯化反应试 验研究.中国农业大学学报.2006,11(3):113-116
    
    [30] Z Siti, C L Chao, R V Shaik, et al. A two step acid catalyzed process for the productionof biodiesel from rice bran oil. Bioresour Technol. 2005, 96(17): 1889-1896
    
    [31] Crabbe E, Nolasco H C, Kobayashi G, et al. Biodiesel production from crude palm oiland evaluation of butanol extraction and fuel properties. Process Biochem. 2001, 37(1):65-71
    
    [32] Freedman B, Butterfield R O, Pryde E H. Transesterification kinetics of soybean oil.JAOCS. 1986, 63(10): 1375-1380
    
    [33] Obibuzor J U, Abigor R D, Okiy D A. Recovery of oil via acid catalyzedtransesterification. JAOCS. 2003, 80: 77-80
    
    [34] 谢国剑.高酸值潲水油制取生物柴油的研究.化工技术与开发.2005,34(2):37-30
    
    [35] Y Zhang, Dube M A, McLean D D. Biodiesel production from waste cooking oil: Processdesign and technological assessment. Bioresour Technol. 2003, 89(1): 1-16
    
    [36] F R Abreu, D G Lima, E H Hamu. New metal catalysts for soybean oil transesterification.JAOCS. 2003, 80(5): 601-604
    
    [37] F R Abreu, D G Lima, E H Hamu. Utilization of metal complexes as catalysts in thetransesterification of Brazilian vegetable oils with different alcohols. J Mol CatalA. 2004, 209(1-2): 29-33
    
    [38] M Di Serio, R Tesser, M Dimiccoli, et al. Synthesis of biodiesel via homogeneous Lewisacid catalyst. J Mol Catal A. 2005, 239: 111-115
    
    [39] Hartman L. Methanolysis of triglycerides. JAOCS. 1956, 33: 129-132
    
    [40] Eckey E W. Esterification and interesterification. JAOCS. 1956, 33: 575-579
    
    [41] Sridharan R, Mathai I M. Transesterification reaction. J Scient Ind Res. 1974, 33:178-187
    
    [42] Gemma Vicente, Mercedes Martinez, Jose Aracil. Integrated biodisel production: acomparison of different homogeneous catalysts systems. Bioresource Technology. 2004,92: 297-305
    
    [43] D Darnoko, Munir Cheryan. Kinetics of palm oil transesterification in a batch reactor.JAOCS. 2000, 12: 1263-1267
    
    [44] 邬国英,林西平,巫淼鑫.棉子油间歇式酯交换反应动力学研究.高等化学工程学报.2003, 6:314-318
    
    [45] Komers K, Machek J, Stoukal R. Biodiesel from rapeseed oil, methanol and KOH. 2.Composition of solution of KOH in methanol as reaction partner of oil. Eur J LipidSci Technol. 2001, 103: 359-362
    
    [46] Komer K, Stloukal R, Machek J. Biodiesel from rapeseed oil, methanol and KOH. 3.Analysis of composition of actual reaction mixture. Eur J Lipid Sci Technol. 2001,103: 363-371
    
    [47] Komer K, Stloukal R, Machek J. Kinetics and mechanism of the KOH catalyzed methanolysisof rapeseed oil for biodiesel production. Eur J Lipid Sci Technol. 2002, 104: 728-737
    
    [48] 陈和,王金福.强碱催化棉籽油酯交换制备生物柴油的动力学.化工学报.2005,56(10): 1971-1974
    
    [49] J M Encinar, J F Gonzalez, J J Rodriguez. Biodiesel Fuels from Vegetable Oils:Transesterification of Cynara cardunculus L. Oils with Ethanol. Energy & Fuels. 2002,16: 443-450
    
    [50] Adam P Harvey, Malcolm R Mackley, Thomas Seliger. Process intensification of biodieselproduction using a continuous oscillatory flow reactor. Journal of Chemical Technologyand Biotechnology. 2003, 78: 338-341
    
    [51] 刘寿长,关新新,韩家显.脂肪酸酯的均相催化制备的研究.日用化学工业.1999,5:14-17
    
    [52] Dorado M P, Ballesteros E. An alkali-catalyzed transesterification process for highfree fatty acid waste oil. Transactions of ASAE. 2002,45(3): 525-529
    
    [53] David G B. Fast one-phase oil-rich processes for the Preparation of vegetable oil Methylesters. Biomass and Bioenergy. 1996, 11: 43-50
    
    [54] V Jordan, B Gutsche. Development of an environmentally benign process for theproduction of fatty acid methyl esters. Chemosphere. 2001, 43: 99-105
    
    [55] Shashikant Vilas Ghadge. Bio-diesel production from mahua oil having high free fattyacid. Biom-ass and Bioenergy. 2005, 28: 601-605
    
    [56] Schuchardt, Rogerio Matheus, Georges Gelbard. Alkyguanidines as catalysts fortransesterification of rapeseed oil. Journal of Molecular Catalyst A: Chemical. 1995,99: 65-70
    
    [57] 鞠庆华.有机碱催化制备生物柴油模拟体系的研究:(博士论文).南京:南京工业大学,2005
    
    [58] 汪勇,欧仕益,温勇.酶法催化合成生物柴油的研究进展.中国油脂.2006,31(1):65-68
    
    [59] 杨继国,欧仕益,吴军林.酶法合成生物柴油的进展.化工环保.2004,24(2):116-120
    
    [60] 高静,王芳,谭天伟.固定化脂肪酶催化废油合成生物柴油.化工学报.2005,56(9): 1727-1730
    
    [61] 蔡志强,邬国英,林西平.固定化脂肪酶合成生物柴油的研究.中国油脂.2004,29(8): 29-32
    
    [62] 陈志峰,吴虹,宗敏华.固定化脂肪酶催化高酸废油脂酯交换生产生物柴油.催化学报. 2006,27(2):146-150
    
    [63] H Noureddini, X Gao, R S Philkana. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technology. 2005, 96: 769-777
    
    [64] Mamoru Iso, Baoxue Chen. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. Journal of Molecular Catalysis B: Enzymatic. 2001, 16: 53-58
    
    [65] Oznur Kose, Melek Tuter. Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in a solvent-free medium. Bioresource Technology. 2002, 83: 125-129
    
    [66] 方岳亮.酯交换家属制备生物柴油的研究:(硕士论文).南京:浙江工业大学,2005
    
    [67] Kazuhiro Bana, Masaru Kaieda. Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochemical Engineering Journal. 2001, 8: 39-43
    
    [68] 曾静.霉菌R.oryzae IFO催化大豆油脂合成生物柴油的研究.现代化工.2005,25(增刊): 228-230
    
    [69] 赵宗保.加快微生物油脂研究微生物柴油产业提供廉价原料.中国生物工程杂志.2005, 25(2):8-11
    
    [70] 薛飞燕,张翔,谭天伟.为生物柴油脂研究进展及展望.生物加工工程.2005,3(1):23-27
    
    [71] 曹向禹,宋旭海.固体酸催化合成酯交换鱼肝油的研究.中国油脂.2004,29(4):41-43
    
    [72] F R Abreu, M B Alves. New multi-phase catalytic systems based on tin compounds active for vegetable oil transesterification reaction. J Mol Catal A. 2005, 227 (1-2): 263-267
    
    [73] Suppes G J, Bockwinkl K, Lucas S. Calcium carbonate catalyzed alcoholysis of fats and oils. JAOCS. 2001, 78(2): 139-145
    
    [74] 孟鑫,辛忠.KF/CaO催化剂催化大豆油酯交换反应制备生物柴油.石油化工.2005,34: 382-386
    
    [75] Xie Wenlei, Peng Hong. Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Applied Catalysis A, General. 2006, 300(1): 67-74
    
    [76] Wenlei Xie, Xiaoming Huang. Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO catalyst. Catalyst letter. 2006, 107(1-2): 53-59
    
    [77] 崔士贞,刘纯山.固体碱催化大豆油酯交换反应的研究.工业催化.2005,13(7):32-35
    
    [78] Kim H J, Kang B S, Kim M J, et al. Transesterification of vegetable oil to biodieselusing heterogeneous base catalyst. Catalysis Today. 2004(93-95): 315-320
    
    [79] Ebiura Takahiro, Echizen Tsuneo, Ishikawa Akio, et al. Selective transesterificationof triolein with methanol to methyl oleate and glycerol using alumina loaded withalkali metal salt as a solid-base catalyst. Apllied Catalysis A, General. 2005,283(1-2): 111-226
    
    [80] Jitputti, Jaturong. Transesterification of crude palm kernel oil and crude coconutoil by different solid catalysis. Chemical Engineering Journal. 2006, 116(1): 61-66
    
    [81] Bancquart S, Vanhove C. Glycerol transesterification with methyl stearate over solidbasic catalysts 1: Relationship between activity and basicity. Applied Catalysis. 2001,218: 1-11
    
    [82] Dossin Tanguy F. Kinetic of heterogeneously MgO catalyzed transesterification. AppliedCatalysis B, Enviromental. 2006, 62(1-2): 35-45
    
    [83] M Park, C I Lee. Layered double hydroxides as potential solid base for beneficialremediation of endosulfan contaminated solils. Journal of Physics and Chemistry ofSolids. 2004, 65: 513-516
    
    [84] L Guerreiro, J E Castanheiro. Transesterification of soybean oil over sulfonic acidfunctionalized polymeric membranes. Cataltsis Today. 2006, 118: 166-171
    
    [85] Dora E Lopez, James G Goodwin Jr. Transesterification of triacetin with methanol onNafion acid resins. Jouranl of Catalysis. 2007, 245: 379-389
    
    [86] Naomi Shibasaki-Kitakawa. Biodiesel production using anionic ion-exchange resin asheterogeneous catalyst. Bioresource Technology. 2007, 98: 416-421
    
    [87] Ayhan Demirbas. Biodiesel from vegetable via transesterification in superitiealmethanol. Energy Conversion and Management. 2002, 43: 2349-2356
    
    [88] Warabi Y, Kusdianna D, Saka S. Reactivity of triglycerides and fatty acids of rapeseedoil in supercritical alcohols. Bioresource Technology. 2004, 91: 283-287
    
    [89] 孙世尧,贺华阳,王连鸳.超临界甲醇中制备生物柴油.精细化工.2005,22(12):919-922
    
    [90] F staat. Vegetable oil Methyl Ester as a Diesel Substitute. Chem and Indus. 2003, 7(11): 863
    
    [91] Bing Wang, Wenqiang Huang, Xinlin Yang. Preparation and Recovery Properties of Homogeneous Modified Polysulfone Plate Affinity Membrane Chromatography with Thiohydroxy as Chelating Groups. I . Synthesis and Preparation of Plate Matrix Membrane. Journal of Applied Polymer Science. 2005, 96: 2117-2131
    
    [92] 苏玉芹,张佐光.大孔阴离子交换树脂的制备.北京航空航天大学学报.2003,29(6): 146-150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700