用户名: 密码: 验证码:
丘陵平原区土壤有机氯农药残留迁移特征及评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管有机氯农药(OCPs)已被禁用20多年,但以OCPs污染为主要特征的持久性有机污染物(POPs)在土壤和植物中的残留,仍在威胁着人类的生存与健康。迄今为止,有关OCPs残留和迁移特征的研究报道已经不计其数,但由于我国地形复杂、生态类型多样、农药的施用量和施用方式差异较大,从而使已有的研究还不能完全满足污染土壤修复和农林业清洁生产的需要。因此,以四川省典型的丘陵平原区(五通桥区)为研究对象,按功能分区和随机采样相结合的采集方法、Kriging插值法和模拟土柱实验相结合的研究方法,检测了93个表层土壤样品和215个植物样品(43个植物种类)的有机氯及其异构体代谢物含量,研究土壤中OCPs残留和迁移特征及其对土壤酶活性的影响,研究了该区主要植物的农药残留特征,评估了土壤中滴滴涕(DDTs)及其异构体残留特征和潜在的生态风险,初步筛选了吸收农药能力较强的植物和农药含量较少的植物,为该区农林业生产布局及污染土壤的生态修复提供科学依据。
     土壤中残留的HCHs和DDTs的异构体代谢物及总量均服从正态分布,并全部属于强变异。18.4%的土壤HCHs含量达到国家土壤环境质量一级标准(<50μg·kg~(-1)),其余为二级标准(<500μg·kg~(-1));68.1%的土壤DDTs含量为国家土壤环境质量一级标准(<50μg·kg~(-1))。以农业和林业生产为主的区域(石麟镇)采集的土壤具有最高的α-HCH和β-HCH残留量;以农业生产为主的区域(冠英镇)采集的土壤具有最高的γ-HCH残留量,以人类活动频繁的区域(杨柳镇)采集的土壤具有最高的δ-HCH的残留量。以林业生产为主的区域(金山镇)采集的土壤p,p′-DDE和p,p′-DDD残留量很小;以人类活动频繁的区域(杨柳镇)采集的土壤p,p′-DDT的残留量最低。在不同的土地利用类型土壤中,OCPs总量的排序为水稻田>农林间作地>蔬菜地>果园>旱地>苗圃地>油菜地>小麦轮作地,ΣHCH残留量由高到低的排序是农林间作地>果园>蔬菜地>水稻田>油菜地>旱地>苗圃地>小麦轮作地:ΣDDT的大小排序为水稻田>蔬菜地>农林间作地>果园>苗圃地>旱地>小麦轮作地>油菜地。
     土壤HCHs各代谢物含量呈块状分布,而HCHs总量相对较高的区域都分布在农业区(蔡金镇、冠英镇和石麟镇交界处);DDT总量和p,p′-DDT含量的高值区域出现在低山丘陵区(石麟镇);p,p′-DDD和p,p′-DDE含量的高值区域出现在平原区(杨柳镇、竹根镇和西坝镇)。总体而言,研究区域存在一定程度的有机氯农药污染。
     淋溶强度与OCPs的迁移降解成正向相关。土壤含水量为25.1%有利于0~10cm的钙质紫色土OCPs降解;土壤含水量为37.5%和26.8%不利于10~20cm的OCPs的降解。土壤含水量为42.3%和36.1%不利于0~10cm的酸性紫色土OCPs的降解;土壤含水量的增加不利于10~20cm的OCPs的降解。研究区土壤多酚氧化酶活性的增加可有利于土壤OCPs的降解。脱氢酶活性和脲酶活性对OCPs降解的影响不大。钙质紫色土OCPs的残留量减少,硝酸还原酶的活性也相应减少。
     研究区土壤都存在低剂量的DDTs潜在生态风险。其中,生活区和工业区的土壤具有潜在生态风险的可能性较小;农业区的土壤对鸟类,哺乳动物和土壤动物都可能具有潜在的风险。除小麦地和油菜地之外,其他土地利用类型对哺乳动物可能具有潜在的生态风险。
     研究的植物样品中,OCPs含量高的植物有马尾松(Pinus massonianalamb)(149.30μg.kg~(-1))、芦苇(Phragmites communis)(112.99μg.kg~(-1))、蕉芋(Canna edulis)(88.18μg.kg~(-1))、甘薯(Ipomoea batatas)(75.90μg.kg~(-1))和乌泡(Rubus multibracteatus)(999.43μg.kg~(-1));含量低的植物有榕树(Firmiana simplex)(5.91μg.kg~(-1))、南瓜(Cucurbitamoschata)(1.60μg.kg~(-1))和柚(Citrus grandis)(1.44μg.kg~(-1));紫云英(Astragalus sinicus)和三叶草(Medicago sativa)未检测出OCPs。农药残留量高的蕉芋、乌泡、山茶和小叶榕可能是很好的富集植物,紫云英、三叶草和血皮菜(Gynura pseudochinabicolor)可能为很好的排异植物。
Persistent organic pollutants(POPs) characterized by organochlorine pesticides (OCPs) in the soil and plant residues remains the threats on the survival and health of human beings,although the pesticide has been prohibited over twenty years.Meanwhile, the results obtained in the past were still difficult to make the needs of polluted soil remediation and agricultural and forestry clean production resulting from the compex geomorph,diverse soils and ecological types,varied application methods and amounts of pesticide,although numerous studies have been given to the characteristics of residue and migration of OCPs.In order to provide the scientific basis with the optimal layout of agricultural and forestry clean production and polluted soil remediation,therefore,the contents of OCPs and their isomers and metabolites in 93 surface soils and 45 plants(215 plant samples) were detected in typical hilly and plain region(Wutongqiao County) of SW Sichuan,the characteristics of the residue and migration of OCPs in soils and its effect on soil enzyme activity were studied,the potential ecological risk was assessed,and the plants with higher and lower OCPs contents were distinguished based on the residual characteristics of OCPs in the representative plants,employing the methods of randomly sampling the soils according to functional zones and Kriging method in geostatistics in combination with simulated soil core experiment.
     Residual HCHs and DDTs and their isomers and metabolites in soils distributed normally with strong variations.HCHs concentration in 18.4%soils was lower than the first level of National Soil Environment Quality Standard(GB15618-1995)(<50μg·kg~(-1)), and the rest the second level(<500μg·kg~(-1)).Correspondingly,DDTs concentration in 68.1%soils were lower than 50μg·kg~(-1),which accorded with the first level of National Soil Environment Quality Standard.Soils in the region(Shilin town) mainly with agricultural and forestry production had the highestα-HCH andβ-HCH contents,while soils in the region(Guanying town) mainly with agricultural production had the highestγ-HCH content.Similarly,soils from the region(Yangliu town) with the frequent human activities had the contents of the highestδ-HCH and the lowest p,p'-DDT,while soils from the region(Jinshan town) mainly with forestry production had the contents of lower p, p'-DDE and p,p'-DDD.The ranked order of the total OCPs content was rice fields>agroforestry intercrop land>vegetables land>orchard land>dry land>nursery land>rape land>wheat rotate land,that ofΣHCH was agroforestry intercrop land>orchard land>vegetables land>rice fields>rape land>dry land>nursery land>wheat rotate land, and that ofΣDDTwas rice fields>vegetables land>agroforestry intercrop land>orchard land>nursery land>dry land>wheat rotate land>rape land.
     The contents of HCHs and their isomers and metabolites in soils distributed limpidly, while the total content of HCHs in soils were the highest in the agricultural zone(Caijin, Guanying and Shilin towns).The hilly region(Shilin town) had the highest contents of total DDT and p,p'-DDT,while the basin plain(Yangliu,Zhugen and Xiba towns) had the highest contents of p,p'-DDD and p,p'-DDE in soils.On the whole,scils in the studied region were contaminated to a certain extent by residual organochlorine pesticide.
     The transfer and degradation of OCPs correlated positively and significantly with the eluviation intensity.0~10cm soil layers had higher OCPs degradation rate when soil moisture was 25.1%in calcareous purple soil,while higher soil moisture was not favorable for OCPs degradation.Similarly,0~10cm soil layers had higher OCPs degradation rate when soil moisture was 29.9%in acid purple soil,while higher soil moisture was not favorable for OCPs degradation.PPO activity correlated was favorable for OCPs degradation in soils.However,OCPs degradation was not significantly correlated with the activities of dehydrogenase and urease in soils.In addition,residual OCPs were positively and significantly correlated with the positive correlation with nitrate reductase activity in calcium purple soil.
     Soils in the study area had the low-dose potential ecological risks of DDTs.Soils in the zones of residence and industry had the lower potential ecological risks,while agricultural zone might have the higher potential risks to birds,mammals and soil animals. In addition to wheat and rapeseed,other land use types may have the potential ecological risks of mammals.Soils in other land uses had the potential ecological risks to mammals to a certain extent expect for wheat and rape fields.
     The plants with higher contents of organochlorine pesticide included Pinus massoniana,Phragmites communis,Canna edulis,Ipomoea batatas and Rubus multibracteatus,and the contents were 149.30μg·kg~(-1),112.99μg·kg~(-1),88.18μg·kg~(-1),75.90μg·kg~(-1),and 999.43μg·kg~(-1),respectively.The plants lower contents of organophosphorus pesticide included Firmiana simplex,Cucurbita moschata and Citrus grandis had,and the contents were 5.91μg·kg~(-1),1.60μg·kg~(-1),and 1.44μg·kg~(-1),respectively.The organochlorine pesticide in Astragalus sinicus and Medicago sativa had not been detected. Organophosphorus pesticide had lower contents in all plants,only the plants of Eucalyptus grandis(31.22μg·kg~(-1)),Metasequoia glyptostnobcides(6.45μg·kg~(-1)),Artemisia annua (43.23μg·kg~(-1)),Ipomoea batata(1.70μg·kg~(-1)),Apium graveolens(22.90μg·kg~(-1)),Glycine max Merr(49.57μg·kg~(-1)) and Ficus microcarpa(4.95μg·kg~(-1)) had been detected.It was suggested that Canna edulis,Rubus multibracteatus,Camellia japomica and Ficus micro Carpa be good accumulator plants for pesticides,and Astragalus sinicus,Medicago sativa, Gynura pseudochinabicolor be good non-accumulator plants for pesticides.
引文
[1]杨万勤,张健,等.土壤生态研究[M].四川:科学技术出版社,2008,347
    [2]陈怀满.环境土壤学[M].北京:科学出版社,2005,547
    [3]余刚,牛军峰,黄俊,等.持久性有机污染物-新的全球性环境问题[M].北京:科学出版社,2005,254
    [4]赵玲,马永军.有机氯农药残留对土壤环境的影响[J].土壤,2001,33(6):309-311
    [5]郑世英.农药对农田土壤生态及农产品质量的影响[J].石河子大学学报(自然科学版),2002,6(3):255-258
    [6]Alkorta I,Garbisu C.Phytoremediation of organic contaminants in soils[J].Bioresource Technology,2001,79:273-276
    [7]Babu G S,Farooq M,Ray R S,et al.,DDT and residues in basmatidce(Oryza Sativa)cultivated in Dehradun(India)[J].Water,Air,and Soil Pollution,2003,144:149-157
    [8]胡枭,樊耀波.影响有机污染物在土壤中的迁移、转化行为的因素[J].环境科学进展,1999,7(5):14-22
    [9]Wang J H,Zhu L S,Wang J,et al.Effect of atrazine on unease activity in soils with different fertility[J].Chinese Journal Applied Ecology,2003,14(12):2281-2286
    [10]毕新慧,徐晓白.多氯联苯的环境行为[J].化学进展,2000,12(2):152-160
    [11]孟庆昱,储少岗,徐晓白.多氯联苯的环境吸附行为研究进展[J].科学通报,2000,45(15):1572-583
    [12]陈怀满.土壤中的化学物质的行为与环境质量[M].北京:科学出版社,2002,663
    [13]董玉瑛,冯霄.持久性有机污染物分析和处理技术研究进展[J].环境污染治理技术与设备,2003,6(4):49-55
    [14]国家环境保护局.持久性有机污染物(POPS)国际文件[S].北京,1996
    [15]Harry W.Vallack,Dick J,et al.Controlling persistent organic pollutants-what next?[J]Environmental Toxicology and Pharmacology,1998,6(3):143-175
    [16]杨小红,李俊,葛诚,等.微生物降解农药的研究新进展[J].微生物学通报,2003,30(6):93-96
    [17]李顺鹏,蒋建东.农药污染土壤的微生物修复研究进展[J].土壤,2004,36(6):577-583
    [18]尤民生,刘新.农药污染的生物降解与生物修复[J].生态学杂志,2004,23(1):73-77
    [19]龚平,孙铁衍,李培军.农药对土壤微生物的生态效应[J].应用生态学报,1996,(增刊):127-132
    [20]杨永华,姚健.农药污染对土壤微生物群落功能多样性的影响[J].微生物学杂志,2000,20(2):23-25
    [21]赵玲,马永军.有机氯农药在农业环境中残留现状分析[J].农业环境与发展,2001,67(1):37-39
    [22]张红,吕永龙,辛晓云,等.杀虫剂类POPs多土壤微生物群落多样性的影响[J].生态学报,2005,25(4):937-942
    [23]Senapati B K.Ecotoxicolocal effect of malathion earthworm[J].Soil Biology and Biochemistry,1992,24(12):1719-1722
    [24]Lee K E.Some trends opportunities in earthwom researvh[J].Soil Biology and Biochemistry,1992,24(12):1765-1772
    [25]史雅娟,王昕,吕永龙,等.DDT和三氯杀螨醇对蚯蚓的急性和亚急性影响[J].环境科学学报,2006,26(5):851-857
    [26]王振中,张友梅,邢协加.土壤环境变化对土壤动物群落影响的研究[J].土壤学报,2002,9(6):892-897
    [27]Tarant K A,Ficld S A,Langton S D,et al.Effects on earthworm populations of reducing pesticide in arable crop rotations[J].Soil Biology and Biochcmistry,1997,29(3-4):657-661
    [28]Katherin M S.A voidanc responseas a sublethal effect of pesticides on Lumbricus thrrestris (Oligochaeta)[J].Soil Biology and Biochcmistry,1997,29(3-4):713-15
    [29]栗方亮,章家恩.环境胁迫对土壤动物生态学影响研究进展[J].农业资源与环境科学,2007,23(6):542-546
    [30]Davies H A,Greaves M P.Effects of some pesticides on soil enzyme activities[J].Weed Res,1981,21:205-209
    [31]Zhang L L,Chen L J,Liu G F,et al.Advance in enzymologieal remediation of polluted soils [J].Chinese Journal Applied Ecology,2003.14(12):2342-2346
    [32]Zhou Y,Liu W P,Wang T T.Effects of pesticides metolachlor and S-metolachlor on soil microorganisms in aquisois of southern China.Catalase activity[J].Chinese Journal Applied Ecology,2005,16(5):895-898
    [33]杨玲,孔星云,郭明.化学农药对土壤脉酶的影响[J].塔里木农垦大学学报,2001,13(3):13-16
    [34]沈标,李顺鹏,赵硕伟,等.氯苯、对硝基酚对土壤微生物活性的影响[J].土壤学报,1997,34(3):309-314
    [35]杨春璐,孙铁琦,和文祥,陈苏.农药对土壤脲酶活性的影响[J].应用生态学报,2006,17(7):1354-1356
    [36]颜春荣,张晓强,高巍,等.土壤微生物对化学农药的生态效应及其适应机制[J].江苏农业科学,2005,2:82-86
    [37]徐瑞薇,蒋德勤,钱文恒,等.磷肥污染事故及磷肥中三氯乙醛、三氯乙酸极限含量研究[J].环境科学丛刊,1988,9(6):1-43
    [38]安琼,钱文恒,靳伟,等.三氯乙醛在土壤及小麦、玉米植株中的残留动态研究[J].土壤学报,1989,26(2):173-178
    [39]徐瑞薇,钱文恒,孙汉中,等.三氯乙醛的土壤污染及其降解研究[J].土壤学报,1980,17(3):217-227
    [40]刘世亮,骆永明,丁克强,等.土壤中有机污染物的植物修复研究进展[J].土壤,2003,35(3):187-192
    [41]Sanderman H.Plant metabolism of xenobiotics[J].Trends in Biological Sciences,1992,17:82-84
    [42]Rea P A,Li Z S,Lu Y P,Drozdowicz Y M,Martinoia E.From Vacuolar GS-X Pumps to Multispecific ABC Transporters[J].Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:727-760
    [43]Salt D E,Smith R D,Raskin I.Phytoremediation.Annual Review of Plant[J].Physiology and Plant Molecular Biology,1998,49:643-648
    [44]Karickhoff S W,Brown D S,Scott T A.Sorption of hydrophobic pollutants on natural sediments[J],Water Res.,1979,13:241-248
    [45]Chiou C T,Peters L J,Freed V H.A physical concept of soil=water equilibria for non-ionic compounds[J].Science,1979,206(16):831-832
    [46]党志,于虹,黄伟林,等.土壤-沉积物吸附有机污染物机理研究的进展[J].化学通报,2001,64(2):81-85
    [47]蔡道基.农药环境毒理学研究[M].北京:中国环境科学出版社,1999,390
    [48]江希流,华小梅,金怡,等.甲基异硫磷等四种农药在环境中的行为[M].上海:上海科普出版社,1990,130
    [49]林玉琐,龚瑞忠,朱忠林.农药与生态环境保护[M].北京:化学工业出版社,2000,211
    [50]司友斌,岳永德,周东美,等.土壤表面农药光化学降解研究进展[J].农村生态环境,2002,18(4):56-59
    [51]Scow K M.Soil microbial communities and carbon flow in agroecosystems[J].Ecology in Agriculture,1997,367-413
    [52]金志刚,张彤,朱怀兰.污染物生物降解[M].上海:华东理工大学出版社,1997,246
    [53]Macel T.Exploitation of plants for the remove of organic in environmental[J].Plant and soil,2000,18:23-34
    [54]Schnoor J J,Licht L A,Mccutcheon S C,et al.Phytoremediation of organic and nutrient contaminants[J].Environmental Science and Technology,1995,29:318A-323A
    [55]李亮亮,依艳丽,凌国鑫,王甦.地统计学在土壤空间变异研究中的应用[J].土壤通报,2005,36(2):265-268
    [56]黄勇,郭庆荣,任海,等.地统计学在土壤重金属研究中的应用及展望[J].生态环境,2004,13(4):681-684
    [57]夏学齐,陈骏,廖启林,等.南京地区表土镉汞铅含量的空间统计分析[J].地球化学,2006,35(1):95-102
    [58]张红艳,高如泰,江树人,等.北京市农田土壤中有机氯农药残留的空间分析[J].中国农业科学,2006,39(7):1403-1410
    [59]李艳,史舟,徐建明,黄明祥.地统计学在土壤科学中的应用及展望[J].水土保持学报,2003,17(1):112-116
    [60]周启星,等著.生态毒理学[M].北京:科学出版社,2004,454
    [61]McCauley D J,De Grave G M,Linton T K.Sediment quality guidelines and assessment:over and research needs[J].Environmental Sciences and Policy,2000,3:133-144
    [62]Zhang H B,Luo Y M,Li Z B,et al.Study on soil environmental quality guidelines and standards Ⅲ.Ecological risk assessment of polluted soils[J].Acta Pedologica Sinica,2007,44(2):338-349
    [63]Gong Z M,Tao S,Xu F L,Dawson R,et al.Level and distribution of DDT in surface soils from Tian Ji,China[J].Chemosphere,2004,54:1247-1253
    [64]Haruhiko N,Yuko H,Masahiro K,Tetsuji N,et al.Concentrations and compositions of organic chlorine contaminants in sediments,soils,crustaceans,shes and birds collected from Lake Tai,Hang Zhou Bay and Shanghai city region,China[J].Environmental Pollution,2005,133:415-429
    [65]Chen L G,Ran Y,Xing B S,Mai B X,et al.Contents and sources of polycyclic aromatic hydrocarbons and organochlorine pesticides in vegetable soils of Guangzhou,China[J].Chemosphere,2005,60:879-890
    [66]Ma L L,Chu S G,Xu X B.Organic contamination in the greenhouse soils from Beijing suburbs,China[J].Journal of Environmental Monitoring,2003,5:786-790
    [67]Shi Y,Meng F,Guo F,Lu Y,et al.Residues of Organic Chlorinated Pesticides in Agricultural Soils of Beijing,China[J].Archives of Environmental Contamination and Toxicology,2005,49:37-44
    [68]Zhang H,Lu Y L,Dawson R W,Shi Y J,et al.Classification and ordination of DDT and HCH in soil samples from the Guan ting reservoir,China[J].Chemosphere,2005,60:762-769
    [69]Zhu Y F,Liu H,Xi Z Q,Cheng H X,et al.Organochlorine pesticides(DDTs and HCHs) in soils from the outskirts of Beijing,China[J].Chemosphere,2005,60:770-778
    [70]陈泉宾,孙威江.武夷岩茶品质影响因素的研究现状[J].福建茶叶,2003,3:44-45
    [71]龚钟明,朱雪梅,崔艳红,等.天津市郊农田土壤中有机氯农药残留的局地分异[J].城市环境与城市生态,2002,15(4):4-6
    [72]侯景儒,尹镇南,李维明,等.实用地质统计学[M].北京:地质出版社,1998:31-72
    [73]路鹏,彭佩欣,宋变兰,等.洞庭湖平原区土壤全磷含量地统计学和GIS分析[J].中国农业科学,2005,38:1204-1212
    [74]GB9834-88,中华人民共和国国家标准.土壤有机质测定方法[S]
    [75]LY/T 1239-1999,中华人民共和国林业行业标准.森林土壤全氮的测定[S]
    [76]Jongbloed R H,Traas T P,Luttik R.A probabilistic model-for deriving soil quality criteria based on secondary poisoning of top predators Ⅱ.Calculations for dichlorodiphenyhriehloroethane(DDT) and cadmium[J].Eeotoxicology and Environmental Safety,1996,34:279-306
    [77]U.S.EPA(Environmental Protection Agency).Framework for ecological risk assessment.U.S.Washington,DC:Environmental Protection Agency,EPA/630/R-92/001,1992
    [78]Long E R,Field L J,Macdonald D D.Predicting toxicity marine sediments with numerical sediment quality guidelines[J].Environmental Toxicology Chemistry,1998,17(4):714-727
    [79]Long E R,Macdonald D D,Smith S L,et al.Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments[J].Environmental Management,1995,19(1):81-97
    [80]Zhang H B,Luo Y M,Teng Y,et al.DDT residual in the typical soil types of Pearl River delta region and its potential risk[J].Soils,2006,38(5):547-551
    [81]Manz M,Aenzel K D,Dietze U.et al.Persistent organic pollutants in agricultural soils of central Germany[J].Science of the Total Environment,2001,277(13):187-198
    [82]安琼,董元华,王辉,等.南京地区土壤中有机氯农药残留及其分布特征[J].环境科学学报,2005,25(4):470-474
    [83]张天彬,饶勇,万洪富,等.东莞市土壤中有机氯农药的含量及其组成[J].中国环境科学,2005,25(增刊):89-93
    [84]Meiber S N,Steinnes E,Ockendena A,et al.Influence of environmental variables on the spatial distribution of PCB sin Norwegian and N.K.Soil:Implications for global cycling[J].Environmental Science and Technology,2002,36(10):2146-2153
    [85]Huckins J N,Manuweera G K,Petty J D,et al.Liquid containing SPMDs for monitoring organic contaminants in water[J].Environmental Science and Technology,1993,27(12):2489-2496
    [86]Willett K L,Ulrich E M,Hites R A.Differential toxicity and environmental fates of hexachlorocy-clohexane isomers[J].Environmental Science and Technology,1998,32(15):2197-2207
    [87]毛萌,任理.农田气象条件下阿特拉津在土壤中淋溶动态的数值模拟[J]土壤学报,2006,43(4):529-539
    [88]郝建朝,吴沿友,孙连宾,等.土壤多酚氧化酶性质研究及意义[J].土壤通报,2006,37(3):470-475
    [89]杨万勤,王开运.土壤酶研究动态与展望[J].应用与环境生物学报,2002,8(5):564-570
    [90]张咏梅,周国逸,吴宁.土壤酶学的研究进展[J].热带亚热带植物学报.2004,12(1):83-90
    [91]贾新民,于泉林,沙水平,等.大豆连作土壤多酚氧化酶研究[J].黑龙江八一农垦大学学报,1995,8(2):40-43
    [92]Giuseppe Toseano,Maria Letizia Colarieti,Guido Greco.Oxidative polymefisation of phenols by aphenol oxidase from green olives[J].Enzyme and Microbial Technology,2003,33:47-54
    [93]Ctrasar C,Leiro M C,Seoane S,SoRes F G.Limitations of soil enzymes as indicators of soil pollution[J].Soil Biology and Biochemistry.2000,32:1867-1875
    [94]郭明,陈红军,王春蕾.4种农药对土壤脱氢酶活性的影响[J].环境化学,2000,19(6):523-527
    [95]朱南文,闵航,陈美慈,等.甲胺磷对土壤中磷酸酶和脱氢酶活性的影响[J].农村生态环境,1996,12(2):22-24
    [96]王艳,唐海溶,蒋磊,等.硝酸盐对球形棕囊藻生长和硝酸还原酶活性的影响[J].植物学通报,2006,23(2):138-144
    [97]孙铁珩,宋玉芳.土壤污染的生态毒理诊断[J].环境科学学报,2002,22(6):689-695
    [98]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001,401
    [99]孙铁珩,李培军,周启星,等著.土壤污染形成机理与修复技术[M].北京:科学出版社,2005,574
    [100]VROM.Circular of target values and intervention values for soil clean up NO 39.Minis try for Housing,Spatial Planning and Environmental Protection[S].Report nr 2000
    [101]金肇熙,周向阳,钟娇娥,等.深圳市主要蔬菜基地土壤环境质量现状及评价[J].广东农业科学,2000,14(3):32-33
    [102]Qiu x H,Zhu T,Yao B,Hu J X,Hu S W.Contribution of dicofol to the current DDT pollution in China[J].Environmental Science and Technology,2005,39:4385-4390
    [103]麦碧娴,林峥,张干,等.珠江三角洲河流和珠江口表层沉积物中有机污染物研究-多环芳烃和有机氯农药的分布及特征[J].环境科学学报,2000,20(2):192-197
    [104]国家环境保护总局.土壤环境质量标准(GB15618-1995)[S].北京:中国标准出版社,1996
    [105]Heberer T,Dunnbier U,DDT metabolite(chlorophenyl) acetic acid:The neglected environmental contaminant[J].Environmental Science and Technology,1999,33:2346-2351
    [106]王政权.地统计学在生态学中的应用[M].科学出版社,1999,197
    [107]章海波,骆永明,滕应,等.珠江三角洲地区典型类型土壤中DDT残留及其潜在风险[J].土壤,2006,38(5):547-551
    [108]关卉,杨国义,李丕学,等.雷州半岛典型区域土壤有机氯农药污染探查研究[J].生态环境,2006,15(2):323-326
    [109]Sovik A K,Aagaard P.Spatial variability of.a solid porous framework with regard to chemical and physical properties[J].Geoderma,2003,113:47-76
    [110]Halsall C J.Long-range transport:implications for polar regions.Persistent orgions pollutants:environmental behavior and pathways for human exposure[J].Kluwer academic publishers,2001,556-561
    [111]Netherlands Ministry of Housing.Spatial Planning and the Environment.Intervention Values and Target Values-Soil Quality Standards[S].Netherlands,2001
    [112]U.S Department of Health and Human Services.Toxicological Profile for Chlordane(Draft for Public Comment)[S],U.S Government Printing Office,Washington DC,1992
    [113]Hamer T,Wideman J L,Jantunen L M M,et al.Residues of organochlorine pesticides in Alabama soils[J].Environmental Pollution,1999,106:323-332
    [114]耿存珍,李明伦,杨永亮,等.青岛地区土壤中OCPs和PCBs污染现状研究[J].青岛大学学报,2006,21(2):42-47
    [115]Quensen J P,Mueller S A,Jain M K,et al.,Dechlorination of DDE to DDMU in Marine Sediment Microcosms[J].Science,1998,280:722-724
    [116]杨秀虹,李适宇.地统计学方法在环境污染研究中的应用[J].中山大学学报(自然科学版),2005,44(3):97-101
    [117]张莉,陈乃富.多酚氧化酶的酶学性质及其应用研究[J].安徽农学通报,2006,12(12):29-30
    [118]丁克强,骆永明,刘世亮,等.黑麦草对菲污染土壤修复的初步研究[J].土壤,2002,4:233-236
    [119]Gianfreda L,Sannino F,Ortega N,et al.Activity of free and immobilized urease in soil:Effects of pesticides[J].Soil Biology and Biochemistry,1994,26:777-784
    [120]Gianfreda L,Sannino F,Violante A.Pesticides effects on the activity of free immobilized and soil in vertase[J].Soil Biol Biochem,1995,27:1201-1208
    [121]四川省乐山市五通桥区/森林资源二类调查报告.四川林业勘察设计院,2000.
    [122]夏会龙,吴良欢,陶勤南.凤眼莲植物修复水溶液中甲基对硫磷的效果与机理研究[J].环境科学学报,2002,22(3):229-332
    [123]王英姿,纪明山,祁之秋,等.几种除草剂防除大豆田杂草效果评价[J].世界农药,2007,29:44-46
    [124]张伟,张忠明,王进军,等.有机农药污染的植物修复研究进展[J].农药,2007,46(4):217-226
    [125]吴灵琼,成水平,杨立华,等.Cd~(2+)和Cu~(2+)对美人蕉的氧化胁迫及抗性机理研究[J].农业环境科学学报,2007,26(4):1365-1369
    [126]吴双桃.美人蕉在镉污染土壤中的植物修复研究[J].工业安全与环保,2005,31(9):13-15
    [127]卢桂宁,党志,陶雪琴,等.农药污染土壤的植物修复研究进展[J].土壤通报,2006,37(1):189-193
    [128]沈向红,张晶,周晓萍.浙江省部分地区蔬菜、水果中有机磷残留分析[J].中国公共卫生,2005,21(2):207-208
    [129]陆德胜,于村,吕伟芝.浙江省27年来部分食品中有机氯农药残留消长趋势分析[J].中国公共卫生,2000,16(11):1027-1028
    [130]GB 2763-2005,食品中农药的最大残留限量[S]
    [131]Raveton M,Ravanel P,Serre A M,Nurita F,Tissuta M.Kinetics of uptake and metabolism of atrazine in model plant systems[J].Pesticide Science,1997,49:157-163
    [132]Lunney A I,Zeeb B A,Reimer K J.Uptake of weathered DDT in vascular plants:potential for phytoremediation[J].Environmental Science and Technology,2004,38:6147-6154
    [133]李兆君,马国瑞.有机污染物污染土壤环境的植物修复机理[J].土壤通报,2005,36(3):436-438
    [134]韩庆莉,沈嘉祥.杂草抗药性的形成、作用机理研究进展[J].云南农业大学学报,2004,19(5):556-561

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700