用户名: 密码: 验证码:
海底沉积物微生物燃料电池阳极表面改性及电极构型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪我们所面临的主要难题之一是能源短缺和环境污染。可再生的生物质能由于不会增加二氧化碳的净排放量而被认识是减缓当前能源与环境危机的途径之一。微生物燃料电池(MFC)是一种可以利用微生物的催化作用通过氧化有机及无机物质产生电能的装置。它是一种利用废水或者其它废弃物产生电能的新技术,具有极大的研究价值和发展空间。海底沉积物微生物燃料电池(BMFC)是MFC的一种特殊形式,在海底环境中运行。BMFC的阳极埋在厌氧的海底沉积物中,通过外电路与上部海水中的阴极相连,海洋沉积物中的有机物质作为电池的“燃料”,海水中的溶解氧充当氧化剂。BMFC具有免维护、连续供应、底物丰富、内阻低、环境友好和造价低廉等优点,因此它非常有希望作为一种能源装置用于驱动在偏远海域工作的低功率监测仪器。但是,目前限制BMFC广泛应用的关键问题是其相对低下的输出功率密度。为了增加BMFC的输出功率密度,在实验室构建了海底沉积物微生物燃料电池的基础上,我们研究了石墨阳极表面化学氧化改性以及电极构型对电池性能的影响。
     主要研究方案框图见附录,主要结果如下:
     (1)通过不同的化学氧化方法对石墨电极进行了改性处理,并通过SEM、EDX和吸附实验等表征了改性前后电极表面特性的变化。结果表明:经过化学氧化改性之后,石墨电极比表面积和表面润湿性有明显增加。经过酸性KMnO4、浓HN03和混酸(浓H2SO4和浓HN03)改性后的石墨电极真实表面积分别增加了49%、56%和67%;表面接触角从132°减小为63°、58°和42°。
     电化学及其它实验表明:石墨电极的化学氧化改性对电池性能的提高有积极影响,可以增加电极的动力学活性。经过酸性KMnO4、浓HN03和混酸(浓H2SO4和浓HN03)改性后,对应BMFC的最高输出功率密度从24.6 mW/m2分别增加到40.6m W/m2、44.4 mW/m2和44.5 mW/m2;电池的表观内阻也对应的从732Ω减小到443Ω、462Ω和482Ω;交换电流密度从1.965×10-3A/m2增加到0.309A/m2、2.586 A/m2和0.893 A/m2。通过涂布法对阳极微生物数量的分析结果表明:以上四种石墨电极表面微生物的细菌密度分别为5509/cm2、16526/cm2、51988/cm2和17559/cm2。这一结果和电极表面荧光显微镜分析结果一致。
     长期放电实验表明:改性的石墨阳极在电池启动期间表现出较强的抗极化能力,以改性石墨电极作为阳极的BMFCs在长期通电中可以输出更高的电压。
     经化学氧化改性后,石墨电极表面润湿性的增加、比表面积的增加、表面化学反应活性点的增多、生物相容性的增加(生物相容性的增加是由改性过程中在石墨电极表面引入的含氧官能团引起的)是BMFC性能提高的主要原因。本实验第一次研究了BMFC阳极表面润湿性与其电化学性能之间的关系。
     化学氧化过程中所用的材料和设备均常见并且价格低廉,并且该方法容易实现工业化。所以化学氧化改性石墨电极是一个提高BMFC性能的理想方法。
     (2)因为电极的结构对海底沉积物微生物燃料电池(BMFC)的性能有很大的影响,本实验设计了不同形状的石墨电极(柱状、圆盘状、桶状)。由柱状和圆盘状电极组成的BMFC的最高输出功率密度分别为20.2 mW/m2和14.9mW/m2,其电池内阻分别为333Ω和598Ω。内径分别为2.5 cm、1.0 cm、0 cm的石墨桶状电极组成的三个BMFC分别简称为BMFC-Ⅰ、BMFC-Ⅱ和BMFC-Ⅲ。结果表明BMFC-Ⅰ、BMFC-Ⅱ和BMFC-Ⅲ的最高输出功率密度分别为13 mW/m2、11 mW/m2和16 mW/m2,电池内阻分别为435Ω、488Ω和419Ω。BMFC-a(由多孔电极组装而成)和BMFC-b(由平板电极组装而成)的最高输出功率分别为37.6 mW/m2和28.3 mW/m2,内阻分别为203Ω和265Ω。BMFC-A(平板阴极)和BMFC-B(三相阴极)的最高输出功率分别为16.7 mW/m2和25.6 mW/m2,内阻分别为357Ω和268Ω。说明柱状及多孔状的电极结构与圆盘状和桶状的电极结构相比具有更小的内阻和更高的功率密度。阴极的三相界面可以提高BMFC的功率输出密度。该研究结果可以为实际应用中BMFC电极结构的设计提供参考。
     总之,通过对石墨阳极进行化学氧化改性和优化电极构型都可以在实际应用中进一步提高BMFC的性能。
Energy shortage and environment pollution is one of the critical challenges we are facing in 21th century. Renewable bioenergy without a net carbon dioxide emission is viewed as one of the ways to alleviate the current global energy and environment crisis. Microbial fuel cell (MFC) is a device that uses bacteria as the catalysts to oxidize organic and inorganic matter to generate current. It is a new method of producing electric power from wastewater and other waste, and it has great value for further research and development. The benthic sediment microbial fuel cell (BMFC) is a special type of MFC, which operates on the ocean floor. In the BMFC, the anode embedded in anoxic marine sediment is connected to the cathode positioned in overlying sea water by an electrical circuit. The organic matter in the marine sediment serves as the cell "fuel", and the oxygen dissolved in the sea water serves as the oxygenate. The BMFC has many advantages such as maintenance free, supply continuously, rich in substrate, low internal resistance, environmental friendly and low cost etc, so it is very promising to be used as energy installations to supply a wide range of low-power monitoring instruments in the remote marine environment. But the key problem for BMFC is its low output power density at the moment, which prohibits the widespread application of the BMFCs. In order to increase the output power density, on the basis of the BMFC construction in the laboratory, the effect of graphite anode chemical oxidation modification and electrode shape on the performance of the BMFC is studied. The research sketch map is attached in the appendix, and results are as follows:
     (1) Different chemical oxidation methods are conducted on graphite anodes and the surface properties are characterized by SEM, EDX and adsorption analysis. Results indicate that the specific surface area and surface wettability of the graphite anodes increase obviously after chemical oxidation modification. The true surface area increase by 49%,56% and 67%; the contact angle decrease from 132°to 63°,58°and 42°when the graphite anodes are modified with KMnO4, concentrated HNO3, and the mixed solution of H2SO4/HNO3 respectively.
     Electrochemical tests and other experiments demonstrate that the chemical oxidation modified graphite anodes have a clear active influence on the system performance and the kinetic activity increase compared with unmodified graphite anode in the BMFCs. The maximum power density (Pm) increase from 24.6 mW/m2 to 40.6 mW/m2,44.4 mW/m2 and 44.5 mW/m2 respectively; the apparent internal resistance of the BMFCs decrease from 732Ωto 443Ω,462Ωand 482Ωrespectively; the exchange current density increase from 1.965×10-3 A/m2 to 0.309 A/m2,2.586 A/m2 and 0.893 A/m2 respectively when the anodes are modified by acidic KMnO4, concentrated HNO3, and the mixed solution of H2SO4/HNO3.
     The quantitative analysis of bacteria by the method of plating indicates that:The bacterial density of anodes unmodified, modified with KMnO4, HNO3, and H2SO4/HNO3 are 5509/cm2,16526/cm2,51988/cm2, and 17559/cm2 respectively. The result is consistent to the fluorescence images.
     The long time discharge experiments indicate that modified anodes of BMFCs demonstrated a very good capability of anti-polarization in the start-up phase. The BMFCs with a modified anode output higher voltage than the BMFC with unmodified anode in the long time discharge.
     The increase of the cell performance may be due to the enhancement in anode surface wettability, increase in anode specific surface area, increase in active site for chemical reaction on the electrode surface, or by an increase in the biocompatibility by introducing the oxygen-containing functional groups on the anodes surface. The relationship between the anode surface wettability and the electrochemistry performance is studied in the BMFC.
     The materials and equipments used in the chemical oxidation modification of the graphite anodes are all low cost and common, and this method is suitable for the industrialization. Therefore, the chemical oxidation modification of the graphite anode is an ideal method to enhance the performance of the BMFCs.
     (2) As the electrode structure has a great effect on the performance of the BMFC, several graphite electrodes with different shapes (column, plane disk and tubular shape for example) are designed in this study. The maximum power density (Pm) of BMFC-column and BMFC-disk are 20.2 mW/m2 and 14.9 mW/m2 respectively, and the internal resistances are 333Ωand 598Ωrespectively. Three cells are composed of three different sizes of graphite tubes, and their internal diameters of these electrodes are 2.5 cm (called it BMFC-I for short); 1.0 cm (BMFC-II) and 0 cm (column shape for comparison, BMFC-III) respectively. Test results show that the Pm of BMFC-I, BMFC-Ⅱand BMFC-Ⅲare 13 mW/m2,11 mW/m2and 16 mW/m2 respectively, and their internal resistances are 435Ω,488Ω. and 419Ωrespectively. The Pm of BMFC-a (composed of porous electrode) and BMFC-b (composed of plane electrode) are 37.6 mW/m2 and 28.3 mW/m2 respectively, and the internal resistances are 203Ωand 265Ωrespectively. The Pm of BMFC-A (composed of plane cathode) and BMFC-B (composed of three-phase cathode) are 16.7 mW/m2 and 25.6 mW/m2 respectively, and the internal resistance are 357Ωand 268Ωrespectively.
     Results show that the column and porous structure electrode has a lower internal resistance and higher power density than the disk and tubular structure electrode. The three-phase in the cathode can enhance the performance of the BMFC. Results of the research can be utilized to design BMFC structure in practical application.
     So the performance of the BMFC can be further enhanced by the ways of anode chemical oxidation modification or optimization of electrode shape.
     Energy shortage and environment pollution is one of the critical challenges we are facing in 21th century. Renewable bioenergy without a net carbon dioxide emission is viewed as one of the ways to alleviate the current global energy and environment crisis. Microbial fuel cell (MFC) is a device that uses bacteria as the catalysts to oxidize organic and inorganic matter to generate current. It is a new method of producing electric power from wastewater and other waste, and it has great value for further research and development. The benthic sediment microbial fuel cell (BMFC) is a special type of MFC, which operates on the ocean floor. In the BMFC, the anode embedded in anoxic marine sediment is connected to the cathode positioned in overlying sea water by an electrical circuit. The organic matter in the marine sediment serves as the cell "fuel", and the oxygen dissolved in the sea water serves as the oxygenate. The BMFC has many advantages such as maintenance free, supply continuously, rich in substrate, low internal resistance, environmental friendly and low cost etc, so it is very promising to be used as energy installations to supply a wide range of low-power monitoring instruments in the remote marine environment. But the key problem for BMFC is its low output power density at the moment, which prohibits the widespread application of the BMFCs. In order to increase the output power density, on the basis of the BMFC construction in the laboratory, the effect of graphite anode chemical oxidation modification and electrode shape on the performance of the BMFC is studied. The research sketch map is attached in the appendix, and results are as follows:
     (1) Different chemical oxidation methods are conducted on graphite anodes and the surface properties are characterized by SEM, EDX and adsorption analysis. Results indicate that the specific surface area and surface wettability of the graphite anodes increase obviously after chemical oxidation modification. The true surface area increase by 49%,56% and 67%; the contact angle decrease from 132°to 63°,58°and 42°when the graphite anodes are modified with KMnO4, concentrated HNO3, and the mixed solution of H2SO4/HNO3 respectively.
     Electrochemical tests and other experiments demonstrate that the chemical oxidation modified graphite anodes have a clear active influence on the system performance and the kinetic activity increase compared with unmodified graphite anode in the BMFCs. The maximum power density (Pm) increase from 24.6 mW/m2 to 40.6 mW/m2,44.4 mW/m2 and 44.5 mW/m2 respectively; the apparent internal resistance of the BMFCs decrease from 732Ωto 443Ω,462Ωand 482Ωrespectively; the exchange current density increase from 1.965×10-3 A/m2 to 0.309 A/m2,2.586 A/m2 and 0.893 A/m2 respectively when the anodes are modified by acidic KMnO4, concentrated HNO3, and the mixed solution of H2SO4/HNO3.
     The quantitative analysis of bacteria by the method of plating indicates that:The bacterial density of anodes unmodified, modified with KMnO4, HNO3, and H2SO4/HNO3 are 5509/cm2,16526/cm2,51988/cm2, and 17559/cm2 respectively. The result is consistent to the fluorescence images.
     The long time discharge experiments indicate that modified anodes of BMFCs demonstrated a very good capability of anti-polarization in the start-up phase. The BMFCs with a modified anode output higher voltage than the BMFC with unmodified anode in the long time discharge.
     The increase of the cell performance may be due to the enhancement in anode surface wettability, increase in anode specific surface area, increase in active site for chemical reaction on the electrode surface, or by an increase in the biocompatibility by introducing the oxygen-containing functional groups on the anodes surface. The relationship between the anode surface wettability and the electrochemistry performance is studied in the BMFC.
     The materials and equipments used in the chemical oxidation modification of the graphite anodes are all low cost and common, and this method is suitable for the industrialization. Therefore, the chemical oxidation modification of the graphite anode is an ideal method to enhance the performance of the BMFCs.
     (2) As the electrode structure has a great effect on the performance of the BMFC, several graphite electrodes with different shapes (column, plane disk and tubular shape for example) are designed in this study. The maximum power density (Pm) of BMFC-column and BMFC-disk are 20.2 mW/m2 and 14.9 mW/m2 respectively, and the internal resistances are 333Ωand 598Ωrespectively. Three cells are composed of three different sizes of graphite tubes, and their internal diameters of these electrodes are 2.5 cm (called it BMFC-I for short); 1.0 cm (BMFC-II) and 0 cm (column shape for comparison, BMFC-III) respectively. Test results show that the Pm of BMFC-I, BMFC-Ⅱand BMFC-Ⅲare 13 mW/m2,11 mW/m2and 16 mW/m2 respectively, and their internal resistances are 435Ω,488Ω. and 419Ωrespectively. The Pm of BMFC-a (composed of porous electrode) and BMFC-b (composed of plane electrode) are 37.6 mW/m2 and 28.3 mW/m2 respectively, and the internal resistances are 203Ωand 265Ωrespectively. The Pm of BMFC-A (composed of plane cathode) and BMFC-B (composed of three-phase cathode) are 16.7 mW/m2 and 25.6 mW/m2 respectively, and the internal resistance are 357Ωand 268Ωrespectively.
     Results show that the column and porous structure electrode has a lower internal resistance and higher power density than the disk and tubular structure electrode. The three-phase in the cathode can enhance the performance of the BMFC. Results of the research can be utilized to design BMFC structure in practical application.
     So the performance of the BMFC can be further enhanced by the ways of anode chemical oxidation modification or optimization of electrode shape.
引文
[1] Lovley D R. Bug juice: harvesting electricity with microorganisms. Nature Rev. Microbiol,2006,4:497-508
    [2] Frank Davis, S'eamus P J, Higson. Biofuel cells-recent advances and applications. Biosensorsand Bioelectronics, 2007, 22: 1224-1235
    [3] Bond D.R, Holmes D.E, Tender L.M, Lovley D.R. Electrode-reducing microorganisms thatharvest energy from marine sediments. Science, 2002, 295 (5554): 483-485
    [4] Chaudhuri S K and Lovley D R. Electricity generation by direct oxidation of glucose inmediatorless microbial fuel cells. Nat. Biotechnol, 2003,21 (10): 1229-1232
    [5] Potter M C. Electrical effects accompanying the decomposition of organic compounds. Proc.Roy. SOC. London Ser. B, 1911, 84: 260-276
    [6] Lewis K. Symposium on bioelectrochemistry of microorganisms: IV. Biochemical fuel cells.Bacteriol. Rev, 1966, 30(1): 101-113
    [7] Sell D, Kramer P, and Kreysa G. Use of an oxygen gas diffusion cathode and athreedimensional packed-bed anode in a bioelectrochemical fuel cell. Appl. Microbiol.Biotechnol, 1989,31 (2): 211 -213
    [8] Park D H, Zeikus J G. Electricity generation in microbial fuel cells using neutral red as anelectronophore. Appl. Environ. Microbiol, 2000, 66 (4): 1292-1297
    [9] Park D.H, Kim S.K, Shin 1.H, Jeong Y.J. Electricity production in biofuel cell using modifiedgraphite electrode with neutral red. Biotechnol. Lett, 2000,22: 1301 -1304
    [10] Kim B.H, Park D.H, Shin P.K, Chang I.S, Kim H.J. M ediator-less biofuel cell. U.S. Patent,5976719, 1999
    [11] Kim H.-J, Hyun M.-S, Chang I.S, Kim B. H. A microbial fuel cell type lactate biosensorusing a metal-reducing bacterium Shewanella putrefaciens. J. Microbiol. Biotechnol, 1999, 9(3): 365-367
    [12] Shizas, I, Bagley, D. M. Experimental Determination of Energy Content of UnknownOrganics in Municipal Wastewater Streams. J. Energ. Eng, 2004, 130: 45-53
    [13] Rabaey K. A microbial fuel cell capable of converting glucose to electricity at high rate andefficiency. Biotechnol. Lett, 2003, 25: 1531-1535
    [14] Logan B. E. Microbial Fuel Cells: Methodology and Technology. Environ. Sci. Technol,2006,40:5181-5192
    [15] Liu, H. Ramnarayanan, R. Logan, B. E. Production of Electricity During WastewaterTreatment Using a Single Chamber Microbial Fuel Cell. Environ. Sci. Technol, 2004, 38:
    
    [16] Cooney M J, Roschi E, Marison W, etc. Physiologic studies with the sulfate-reducingbacterium Desulfovibrio desulfuricans: Evaluation for use in a biofuel cell. 1996, 18 (5):358-365
    [17] W. Habermann, E.-H. Pommer. Biological fuel cells with sulphide storage capacity. ApplMicrobiol Biotechnol, 1991,35:128-133
    [18] Kim B.H, Kim H.-J, Hyun M.-S, Park D.-H. Direct electrode reaction of Fe(IIl)-reducingbacterium, Shewariellaputrefaciens. J. Microbiol. Biotechnol, 1999,9 (2): 127-131
    [19] Kim H.J, Park H.S, Hyun M.S, Chang I.S, Kim M. Kim B.H. A mediator-less microbial fuelcell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol,2002,30(2): 145-152
    [20] Park H.S, Kim B.H, Kim H.S, Kim H.J, Kim G.T, Kim M, Chang I.S, Park Y.K, Chang H.I.A novel electrochemically active and Fe(IIl)-reducing bacterium phylogenetically related toClostridium butyricum isolated from a microbial fuel cell. Anaerobe, 2001, 7 (6): 297-306
    [21] Bond, D.R. and Lovley, D.R. Electricity production by Geobacter suljiurreducens attached toelectrodes. Appl. Environ. Microbiol, 2003, 69 (3): 1548-1555
    [22] Bond, D.R, Holmes, D.E., Tender, L.M. and Lovley, D.R. Electrode-reducingmicroorganisms that harvest energy from marine sediments. Science, 2002, 295 (5554):483-485
    [23] Logan, B.E. and Regan, J.M. Microbial fuel cells-challenges and applications. Environ. Sci.Technol, 2006,40 (17): 5172-5180
    [24] Bruce E. Logan. Microbial fuel cells. United States of America: John Wiley & Sons, 2007,13-14
    [25] Rabaey, K. and Verstraete, W. Microbial fuel cells: novel biotechnology for energygeneration. Trends Biotechnol, 2005,23 (6): 291 -298
    [26] Rabaey, K, Boon, N, Siciliano, S.D, Verhaege, M, Verstraete, W. Biofuel cells select formicrobial consortia that self-mediate electron transfer. Appl. Environ. Microbiol, 2004, 70(9): 5373-5382
    [27] Rabaey, K, Boon, N, Hofte, M. and Verstraete, W. Microbial phenazine production enhanceselectron transfer in biofuel cells. Environ. Sci. Technol, 2005,39 (9): 3401-3408
    [28] Gorby, Y.A. and Beveridge, T.J. Composition, reactivity, and regulation of extracellularmetal-reducing structures (nanowires) produced by dissimilatory metal reducing bacteria,Warrenton, VA. 2005,198-202
    [29] Reguera, G, McCarthy, K.D, Mehta, T, Nicoll, J.S, Tuominen, M.T. and Lovley, D.R.Extracellular electron transfer via microbial nanowires. Nature, 2005,435: 1098-1101
    
    [30] Lower, S.K., Hochella, M.F. and Beveridge, T.J. Bacterial recognition of mineral surfaces:nanoscale interactions between Shewanella and a-FeOOH. Science, 2001, 292 (5520): 1360-1363
    [31] Habermann W, Pommer EH. Biological fuel cells with sulphide storage capacity. ApplMicrobiol Biotechnol, 1991,35:128-33
    [32] R Goldstein, W. Smith. Electric Power Research Institute. U.S. Water onsumption for PowerProduction-The Next Half Century; Water and Sustainability, 2002,3:17-21
    [33] Shaoan Cheng, Bruce E. Logan. Sustainable and efficient biohydrogen production viaelectrohydrogenesis. PNAS, 2007,104: 18871-18873
    [34] Chang I S, Moon H, Jang J K, Kim B H. Improvement of a microbial fuel cell performance asa BOD sensor using respiratory inhibitors. Biosens Bioelectron, 2005,20: 1856-1859
    [35] Chang, I. S., J. K. Jang, G. C. Gil, M. Kim, H. J. Kim, B. W. Cho, and B. H. Kim.Continuous determination of biochemical oxygen demand using microbial fuel cell typebiosensor. Biosensors and Bioelectronics, 2004,19: 607-613
    [36] Kang, K. H., J. K. Jang, T. H. Pham, H. Moon, I. S. Chang, and B. H. Kim. A microbial fuelcell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol.Lett, 2003,25: 1357-1361
    [37] Kim, B. H., I. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim. Novel BOD (biological oxygendemand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett, 2003,25: 541-545
    [38] Yoshida, N., K. Yano, T. Morita, S. J. McNiven, H. Nakamura, and 1. Karube. Amediator-type biosensor as a new approach to biochemical oxygen demand estimation.Analyst, 2000,125: 2280-2284
    [39] Kim, B. H., I. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim. Novel BOD (biological oxygendemand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett, 2003,25: 541-545
    [40] Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, 1. S. Chang, J. Lee, and N. T. Phung.Enrichment of microbial community generating electricity using a fuel-cell-typeelectrochemical cell. Appl. Microbiol. Biotechnol, 2004,63: 672-681
    [41] Cheng, S. and Logan, B.E. Ammonia treatment of carbon cloth anodes to enhance powergeneration of microbial fuel cells. Electrochem. Commun, 2007,9 (3): 492-496
    [42] Tender, L.M., Reimers, C.E., Stecher, H.A., Holmes, D.E., Bond, D.R., Lowy, D.A.,Pilobello, K., Fertig, S.J. and Lovley, D.R. Harnessing microbially generated power on theseafloor. Nat. Biotechnol, 2002, 20 (8): 821-825
    [43] Bond, D.R., Holmes, D.E., Tender, L.M. and Lovley,D.R Electrode-reducing microorganismsthat harvest energy from marine sediments. Science, 483-485
    
    [44] Reimers, C.E., Girguis, P, etal. Microbial fuel cell energy from an ocean cold seep.Geobiology, 2006,4: 123-137
    [45] Bruce E. Logan. Microbial fuel cells. United States of America: John Wiley & Sons, 2007.25-26
    [46] Cheng, S.( Liu, H. and Logan, B.E. Power densities using different cathode catalysts (Pt andCoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells.Environ. Sci. Technol, 2006,40:364-369
    [47] Liu, H., Cheng, S. and Logan, B.E. Production of electricity from acetate or butyrate in asingle chamber microbial fuel cell. Environ. Sci. Technol, 2005,39 (2): 658-662
    [48] Ryckelynck, N., Stecher, H.A.I. and Reimers, C.E. Understanding the anodic mechanism of aseafloor fuel cell: interactions between geochemistry and microbial ability. Biogeochemistry,2005,76:113-139
    [49] Yu EH, Cheng S, Scott K, Logan B. Microbial fuel cell performance with non-Pt cathodecatalysts. J Power Sources, 2007,171:275-281 [50] P. Aelterman, S. Freguia, J. Keller, W. Verstraete and K. Rabaey, Appl. Microbiol. Biotechnol,2008,78:409-418
    [51] Logan, S.; Cheng, V.; Watson, G Estadt, Graphite fiber brush anodes for increased powerproduction in air-cathode microbial fuel cells. Environ. Sci. Technol, 2007,41: 331-3346
    [52] Oh, S. E.; Min, B.; Logan, B. E. Cathode performance as a factor in electricity generation inmicrobial fuel cells. Environ. Sci. Technol, 2004,38:4900-4904
    [53] Liu, H.; Cheng, S.; Logan, B. E. Power generation in fed-batch microbial fuel cells as afunction of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol,2005,39: 5488- 5493
    [54] Oh, S. E.; Logan, B. E. Proton exchange membrane and electrode surface areas as factors thataffect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol, 2006, 70:162-169
    [55] Bruce E. Logan. Microbial fuel cells. United States of America: John Wiley & Sons, 2007.50-54
    [56] Feng Zhao, Robert C. T. Slade and John R.Varcoe. Techniques for the study and developmentof microbial fuel cells: an electrochemical perspective. Chem. Soc. Rev, 2009, 38:1926-1939
    [57] Feng Zhao, Nelli Rahunen, John R. Varcoe, et al. Factors affecting the performance ofmicrobial fuel cells for sulfur pollutants removal. Biosensors and , 2009, 24:1931-1936
    
    [58] Cheng, S., Liu, H. and Logan, B.E. Increased power generation in a continuous flow MFCwith advective flow through the porous anode and reduced electrode spacing. Environ. Sci.Technol, 2006,40:2426-2432
    [59] Allen RM, Bennetto HP. Microbial fuel-cells: electricity production from carbohydrates. ApplBiochem Biotechnol, 1993,39/40:27-40
    [60] Gil GC, Chang IS, Kim BH, Kim M, Jang JY, Park HS, et al. Operational parametersaffecting the performance of a mediatorless microbial fuel cell. Biosens Bioelectron, 2003,18:327-334
    [61] B.E. Logan. Simultaneous wastewater treatment and biological electricity generation.WaterScience and Technology, 2005, 52 (1-2): 31-37
    [62] Zhao, F., Hamisch, F., Schroder, U., Scholz, F., Bogdanoff, P. and Henmann, I. Applicationof pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts ascathode materials in microbial fuel cells. Electrochem. Commun, 2005,7: 1405-1410
    [63] Park, D.H. and Zeikus, J.G Improved fuel cell and electrode designs for producing electricityfrom microbial degradation, Biotechnol Bioeng, 2003, 81: 348-355
    [64] Lowy, D.A., Tender, L.M., Zeikus, J.G., Park, D.H. and Lovley, D.R. Harvesting energy fromthe marine sediment-water interface II-Kinetic activity of anode materials, BiosensBioelectron, 2006,21: 2058-2063
    [65] Jie Liu, Andrew G. Rinzler, Hongjie Dai, et al. Fullerene Pipes. SCIENCE, 1998:1253-1256
    [66] Leszek Suski, Agata Godula-Jopek, and J Obkowskib. Wetting of Ni and NiO by AlternativeMolten Carbonate Fuel Cell Electrolytes: I. Influence of Gas Atmosphere. J. Electrochem.Soc, 1999,146 (11): 4048-4054
    [67] Chongrak Kaewprasit, Eric Hequet, Noureddine Abidi, and Jean Paul Gourlot. Application ofMethylene Blue Adsorption to Cotton Fiber Specific Surface Area Measurement: Part I.Methodology. The Journal of Cotton Science, 1998,2:164-173
    [68] K. Scott, I. Cotlarciuc, D. Hall, etc. Power from marine sediment fuel cells: the influence ofanode material. J Appl Electrochem, 2008,38: 1313-1319
    [69] Aswin K. Manohar, Florian Mansfeld. The internal resistance of a microbial fuel cell and itsdependence on cell design and operating conditions. Electrochimica Acta, 2009, 54:1664-1670
    [70] J.T. Walker, C.W. Keevil. The dependence of Legionella pneumophila on other aquaticbacteria for survival on R2A medium. International Biodeterioration & Biodegradation, 1994,33 (3): 223-236
    [71] S.J. Yuan, Amy M.F. Choong, S.O. Pehkonen. The influence of the marine aerobic
    Pseudomonas strain on the corrosion of 70/30 Cu-Ni alloy. Corrosion Science, 2007, 49:4352-4385
    [72] Jung-Ho Wee. Effect of cerium addition to Ni-Cr anode electrode for molten carbonate fuelcells: Surface fractal dimensions, wettability and cell performance. Materials Chemistry andPhysics, 2007,101:322-328
    [73] Royce C. Engstrom, Vernon A. Strasser. Characterization of Electrochemically PretreatedGlassy Carbon Electrodes. Anal. Chem, 1984, 56:136-141
    [74] Yusuke Arima, Hiroo Iwata. Effect of wettability and surface functional groups on proteinadsorption and cell adhesion using well-defined mixed self-assembled monolayers.Biomaterials, 2007,28:3074-3082
    [75] Josefina Parellada, Arfintzazu Narv6ez, Elena Dominguez, et al. A new type of hydrophiliccarbon paste electrodes for biosensor manufacturing: binder paste electrodes. Biosensors &Bioelectronics, 1997,12 (4): 267-275
    [76] Tamada Y, Ikada Y. Effect of preadsorbed proteins on cell adhesion to polymer surfaces. JColloid Interface Sci, 1993,155:334-339
    [77] Yanzhen, Fan, Evan Sharbrough, Hong Liu. Quantification of the internal resistancedistribution of microbial fuel cells. Environ. Sci. Technol, 2008,42: 8101-8107
    [78] Wei Sun, Qiang Jiang, YanWang, etc. Electrochemical behaviors of metol on hydrophilicionic liquid l-ethyl-3-methylimidazolium tetrafluoroborate-modified electrode. Sensors andActuators B, 2009,136:419-424
    [79] Myers, C. R. & Myers, J. M. Localization of cytochromes to the outer membrane ofanaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol, 1992, 174,3429-343 8
    [80] Robert K. Jaworskil, Richard L. McCreery. Laser activation of carbon micro disk electrodes:Surface oxide effects on Ru(NH_3)_6~(2+/3+) kinetics. Journal of Electro analytical Chemistry. 1994,369(1-2): 175-181
    [81] George E Cabanis, Alex A. Diamantis, W. Rorer Murphy, etc. Electrocatalysis ofProton-Coupled Electron-Transfer Reactions at Glassy Carbon Electrodes. AmericanChemical Society, 1985, 107 (7): 1845-1852
    [82] J.L. Liu, D.A. Lowy, R.G Baumann3 and L.M. Tender. Influence of anode pretreatment on itsmicrobial colonization. The Society for Applied Microbiology Journal of AppliedMicrobiology, 2007,102: 177-183
    [83] Regisser, ¥., Lavoie, M.A., Champagne, GY. and Be'langer, D.J. Randomly orientedgraphite electrode. Part 1. Electroanal Chem, 1996,415: 47-54
    [84] Holmes, D.E., Bond, D.R. and Lovley, D.R. Electron transfer by Desulfobulbus propionicus
    to Fe (III) and graphite electrodes. Appl Environ Microbiol, 2004, 70: 1234-1237
    [85] Holmes, D.E., Bond, D.R., O'Niel, R.A., Reimers, C.E., Tender, L.M. and Lovley, D.R.Microbial communities associated with electrodes harvesting electricity from a variety ofaquatic sediments. Microb Ecol, 2004,48:178-190
    [86] Logan BE, Murano C, Scott K, Gray ND, Head IM. Electricity generation from cysteine in amicrobial fuel cell. Water Res, 2005,39:942-952
    [87] Thrash, J.C., Van Trump, J.I., Weber, K.A., Miller, E., Achenbach, L.A. and Coates, J.D.Electrochemical stimulation of microbial perchlorate reduction. Environ. Sci. Technol. 1907,41 (9): 1740- 1746
    [88] Logan, B.E. Extracting hydrogen and electricity from renewable resources. Environ. Sci.Technol, 2004,38 (9): 160A-167A
    [89] Park, D.H. and Zeikus, J.G. Impact of electrode composition on electricity generation in asingle-copartment fuel cell using Shewanella putrefucians. Appl. Microbiol. Biotechnol,2002, 59: 58-61
    [90] Jang, J.K., Pham, T.H., Chang, I.S., Kang, K.H., Moon, H., Cho, K.S. and Kim, B.H.Construction and operation of a novel mediator- and membrane-less microbial fuel cell.Process Biochem, 2004,39 (8): 1007-1012
    [91] Zhen He, Shelley D Minteer and Largus T. Angenent. Electricity eneration from artificialwastewater using an upflow microbial fuel cell. Environ. Sci. Technol, 2005, 39: 5262-5267
    [92] Jin Zhang, Hongling Zou, Quan Qing, et al. Effect of Chemical Oxidation on the Structure ofSingle-Walled Carbon Nanotubes. J. Phys. Chem. B, 2003,107: 3712-3718
    [1]Lovley D R. Bug juice:harvesting electricity with microorganisms. Nature Rev. Microbiol, 2006,4:497-508
    [2]Frank Davis, S' eamus P J, Higson. Biofuel cells-recent advances and applications. Biosensors and Bioelectronics,2007,22:1224-1235
    [3]Bond D.R, Holmes D.E, Tender L.M, Lovley D.R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science,2002,295 (5554):483-485
    [4]Chaudhuri S K and Lovley D R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol,2003,21 (10):1229-1232
    [5]Potter M C. Electrical effects accompanying the decomposition of organic compounds. Proc. Roy.SOC. London Ser. B,1911,84:260-276
    [6]Lewis K. Symposium on bioelectrochemistry of microorganisms:1V. Biochemical fuel cells. Bacteriol. Rev,1966,30 (1):101-113
    [7]Sell D, Kramer P, and Kreysa G. Use of an oxygen gas diffusion cathode and a threedimensional packed-bed anode in a bioelectrochemical fuel cell. Appl. Microbiol. Biotechnol,1989,31 (2):211-213
    [8]Park D H, Zeikus J G. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol,2000,66 (4):1292-1297
    [9]Park D.H, Kim S.K, Shin I.H, Jeong Y.J. Electricity production in biofuel cell using modified graphite electrode with neutral red. Biotechnol. Lett,2000,22:1301-1304
    [10]Kim B.H, Park D.H, Shin P.K, Chang I.S, Kim H.J. M ediator-less biofuel cell. U.S. Patent, 5976719,1999
    [11]Kim H.-J, Hyun M.-S, Chang I.S, Kim B. H. A microbial fuel cell type lactate biosensor using a metal-reducing bacterium Shewanella putrefaciens. J. Microbiol. Biotechnol,1999,9 (3):365-367
    [12]Shizas, I, Bagley, D. M. Experimental Determination of Energy Content of Unknown Organics in Municipal Wastewater Streams. J. Energ. Eng,2004,130:45-53
    [13]Rabaey K. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett,2003,25:1531-1535
    [14]Logan B. E. Microbial Fuel Cells:Methodology and Technology. Environ. Sci. Technol, 2006,40:5181-5192
    [15]Liu, H. Ramnarayanan, R. Logan, B. E. Production of Electricity During Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environ. Sci. Technol,2004,38: 2281-2285
    [16]Cooney M J, Roschi E, Marison W, etc. Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans:Evaluation for use in a biofuel cell.1996,18 (5): 358-365
    [17]W. Habermann, E.-H. Pommer. Biological fuel cells with sulphide storage capacity. Appl Microbiol Biotechnol,1991,35:128-133
    [18]Kim B.H, Kim H.-J, Hyun M.-S, Park D.-H. Direct electrode reaction of Fe(Ⅲ)-reducing bacterium, Shewanellaputrefaciens. J. Microbiol. Biotechnol,1999,9 (2):127-131
    [19]Kim H.J, Park H.S, Hyun M.S, Chang I.S, Kim M. Kim B.H. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol, 2002,30(2):145-152
    [20]Park H.S, Kim B.H, Kim H.S, Kim H.J, Kim G.T, Kim M, Chang I.S, Park Y.K, Chang H.I. A novel electrochemically active and Fe(Ⅲ)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe,2001,7 (6):297-306
    [21]Bond, D.R. and Lovley, D.R. Electricity production by Geobacter suljiurreducens attached to electrodes. Appl. Environ. Microbiol,2003,69 (3):1548-1555
    [22]Bond, D.R, Holmes, D.E., Tender, L.M. and Lovley, D.R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science,2002,295 (5554): 483-485
    [23]Logan, B.E. and Regan, J.M. Microbial fuel cells-challenges and applications. Environ. Sci. Technol,2006,40 (17):5172-5180
    [24]Bruce E. Logan. Microbial fuel cells. United States of America:John Wiley & Sons,2007, 13-14
    [25]Rabaey, K. and Verstraete, W. Microbial fuel cells:novel biotechnology for energy generation. Trends Biotechnol,2005,23 (6):291-298
    [26]Rabaey, K, Boon, N, Siciliano, S.D, Verhaege, M, Verstraete, W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol,2004,70 (9):5373-5382
    [27]Rabaey, K, Boon, N, Hofte, M. and Verstraete, W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol,2005,39 (9):3401-3408
    [28]Gorby, Y.A. and Beveridge, T.J. Composition, reactivity, and regulation of extracellular metal-reducing structures (nanowires) produced by dissimilatory metal reducing bacteria, Warrenton, VA.2005,198-202
    [29]Reguera, G, McCarthy, K.D, Mehta, T, Nicoll, J.S, Tuominen, M.T. and Lovley, D.R. Extracellular electron transfer via microbial nanowires. Nature,2005,435:1098-1101
    [30]Lower, S.K., Hochella, M.F. and Beveridge, T.J. Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and a-FeOOH. Science,2001,292 (5520):1360-1363
    [31]Habermann W, Pommer EH. Biological fuel cells with sulphide storage capacity. Appl Microbiol Biotechnol,1991,35:128-33
    [32]R Goldstein, W. Smith. Electric Power Research Institute. U.S. Water onsumption for Power Production-The Next Half Century; Water and Sustainability,2002,3:17-21
    [33]Shaoan Cheng, Bruce E. Logan. Sustainable and efficient biohydrogen production via electrohydrogenesis. PNAS,2007,104:18871-18873
    [34]Chang I S, Moon H, Jang J K, Kim B H. Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens Bioelectron,2005,20:1856-1859
    [35]Chang, I. S., J. K. Jang, G. C. Gil, M. Kim, H. J. Kim, B. W. Cho, and B. H. Kim. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosensors and Bioelectronics,2004,19:607-613
    [36]Kang, K. H., J. K. Jang, T. H. Pham, H. Moon, I. S. Chang, and B. H. Kim. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol. Lett,2003,25:1357-1361
    [37]Kim, B. H., I. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett,2003,25:541-545
    [38]Yoshida, N., K. Yano, T. Morita, S. J. McNiven, H. Nakamura, and I. Karube. A mediator-type biosensor as a new approach to biochemical oxygen demand estimation. Analyst,2000,125:2280-2284
    [39]Kim, B. H., I. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett,2003,25:541-545
    [40]Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee, and N. T. Phung. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol,2004,63:672-681
    [41]Cheng, S. and Logan, B.E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun,2007,9 (3):492-496
    [42]Tender, L.M., Reimers, C.E., Stecher, H.A., Holmes, D.E., Bond, D.R., Lowy, D.A., Pilobello, K., Fertig, S.J. and Lovley, D.R. Harnessing microbially generated power on the seafloor. Nat. Biotechnol,2002,20 (8):821-825
    [43]Bond, D.R., Holmes, D.E., Tender, L.M. and Lovley,D.R Electrode-reducing microorganisms that harvest energy from marine sediments. Science,2002,295:483-485
    [44]Reimers, C.E., Girguis, P, etal. Microbial fuel cell energy from an ocean cold seep. Geobiology,2006,4:123-137
    [45]Bruce E. Logan. Microbial fuel cells. United States of America:John Wiley & Sons,2007. 25-26
    [46]Cheng, S., Liu, H. and Logan, B.E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol,2006,40:364-369
    [47]Liu, H., Cheng, S. and Logan, B.E. Production of electricity from acetate or butyrate in a single chamber microbial fuel cell. Environ. Sci. Technol,2005,39 (2):658-662
    [48]Ryckelynck, N., Stecher, H.A.I. and Reimers, C.E. Understanding the anodic mechanism of a seafloor fuel cell:interactions between geochemistry and microbial ability. Biogeochemistry, 2005,76:113-139
    [49]Yu EH, Cheng S, Scott K, Logan B. Microbial fuel cell performance with non-Pt cathode catalysts. J Power Sources,2007,171:275-281
    [50]P. Aelterman, S. Freguia, J. Keller, W. Verstraete and K. Rabaey, Appl. Microbiol. Biotechnol, 2008,78:409-418
    [51]Logan, S.; Cheng, V.; Watson, G. Estadt, Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol,2007,41:3341-3346
    [52]Oh, S. E.; Min, B.; Logan, B. E. Cathode perfermance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol,2004,38:4900-4904
    [53]Liu, H.; Cheng, S.; Logan, B. E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol, 2005,39:5488-5493
    [54]Oh, S. E.; Logan, B. E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol,2006,70: 162-169
    [55]Bruce E. Logan. Microbial fuel cells. United States of America:John Wiley & Sons,2007. 50-54
    [56]Feng Zhao, Robert C. T. Slade and John R.Varcoe. Techniques for the study and development of microbial fuel cells:an electrochemical perspective. Chem. Soc. Rev,2009,38: 1926-1939
    [57]Feng Zhao, Nelli Rahunen, John R. Varcoe, et al. Factors affecting the performance of microbial fuel cells for sulfur pollutants removal. Biosensors and Bioelectronics,2009,24: 1931-1936
    [58]Cheng, S., Liu, H. and Logan, B.E. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ. Sci. Technol,2006,40:2426-2432
    [59]Allen RM, Bennetto HP. Microbial fuel-cells:electricity production from carbohydrates. Appl Biochem Biotechnol,1993,39/40:27-40
    [60]Gil GC, Chang IS, Kim BH, Kim M, Jang JY, Park HS, et al. Operational parameters affecting the performance of a mediatorless microbial fuel cell. Biosens Bioelectron,2003,18: 327-334
    [61]B.E. Logan. Simultaneous wastewater treatment and biological electricity generation.Water Science and Technology,2005,52 (1-2):31-37
    [62]Zhao, F., Hamisch, F., Schroder, U., Scholz, F., Bogdanoff, P. and Henmann, I. Application of pyrolysed iron (Ⅱ) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem. Commun,2005,7:1405-1410
    [63]Park, D.H. and Zeikus, J.G. Improved fuel cell and electrode designs for producing electricity from microbial degradation, Biotechnol Bioeng,2003,81:348-355
    [64]Lowy, D.A., Tender, L.M., Zeikus, J.G., Park, D.H. and Lovley, D.R. Harvesting energy from the marine sediment-water interface II-Kinetic activity of anode materials, Biosens Bioelectron,2006,21:2058-2063
    [65]Jie Liu, Andrew G. Rinzler, Hongjie Dai, et al. Fullerene Pipes. SCIENCE,1998:1253-1256
    [66]Leszek Suski, Agata Godula-Jopek, and J Obkowskib. Wetting of Ni and NiO by Alternative Molten Carbonate Fuel Cell Electrolytes:Ⅰ. Influence of Gas Atmosphere. J. Electrochem. Soc,1999,146 (11):4048-4054
    [67]Chongrak Kaewprasit, Eric Hequet, Noureddine Abidi, and Jean Paul Gourlot. Application of Methylene Blue Adsorption to Cotton Fiber Specific Surface Area Measurement:Part Ⅰ. Methodology. The Journal of Cotton Science,1998,2:164-173
    [68]K. Scott, I. Cotlarciuc, D. Hall, etc. Power from marine sediment fuel cells:the influence of anode material. J Appl Electrochem,2008,38:1313-1319
    [69]Aswin K. Manohar, Florian Mansfeld. The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions. Electrochimica Acta,2009,54: 1664-1670
    [70]J.T. Walker, C.W. Keevil. The dependence of Legionella pneumophila on other aquatic bacteria for survival on R2A medium. International Biodeterioration & Biodegradation,1994, 33 (3):223-236
    [71]S.J. Yuan, Amy M.F. Choong, S.O. Pehkonen. The influence of the marine aerobic Pseudomonas strain on the corrosion of 70/30 Cu-Ni alloy. Corrosion Science,2007,49: 4352-4385
    [72]Jung-Ho Wee. Effect of cerium addition to Ni-Cr anode electrode for molten carbonate fuel cells:Surface fractal dimensions, wettability and cell performance. Materials Chemistry and Physics,2007,101:322-328
    [73]Royce C. Engstrom, Vernon A. Strasser. Characterization of Electrochemically Pretreated Glassy Carbon Electrodes. Anal. Chem,1984,56:136-141
    [74]Yusuke Arima, Hiroo Iwata. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials,2007,28:3074-3082
    [75]Josefina Parellada, Arfintzazu Narv6ez, Elena Dominguez, et al. A new type of hydrophilic carbon paste electrodes for biosensor manufacturing:binder paste electrodes. Biosensors & Bioelectronics,1997,12 (4):267-275
    [76]Tamada Y, Ikada Y. Effect of preadsorbed proteins on cell adhesion to polymer surfaces. J Colloid Interface Sci,1993,155:334-339
    [77]Yanzhen, Fan, Evan Sharbrough, Hong Liu. Quantification of the internal resistance distribution of microbial fuel cells. Environ. Sci. Technol,2008,42:8101-8107
    [78]Wei Sun, Qiang Jiang, YanWang, etc. Electrochemical behaviors of metol on hydrophilic ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate-modified electrode. Sensors and Actuators B,2009,136:419-424
    [79]Myers, C. R.& Myers, J. M. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol,1992,174,3429-3438
    [80]Robert K. Jaworskil, Richard L. McCreery. Laser activation of carbon micro disk electrodes: Surface oxide effects on Ru(NH3)62+/3+ kinetics. Journal of Electro analytical Chemistry.1994, 369(1-2):175-181
    [81]George E Cabanis, Alex A. Diamantis, W. Rorer Murphy, etc. Electrocatalysis of Proton-Coupled Electron-Transfer Reactions at Glassy Carbon Electrodes. American Chemical Society,1985,107(7):1845-1852
    [82]J.L. Liu, D.A. Lowy, R.G. Baumann3 and L.M. Tender. Influence of anode pretreatment on its microbial colonization. The Society for Applied Microbiology Journal of Applied Microbiology,2007,102:177-183
    [83]Re'gisser, F., Lavoie, M.A., Champagne, G.Y. and Be'langer, D.J. Randomly oriented graphite electrode. Part 1. Electroanal Chem,1996,415:47-54
    [84]Holmes, D.E., Bond, D.R. and Lovley, D.R. Electron transfer by Desulfobulbus propionicus to Fe (Ⅲ) and graphite electrodes. Appl Environ Microbiol,2004,70:1234-1237
    [85]Holmes, D.E., Bond, D.R., O'Niel, R.A., Reimers, C.E., Tender, L.M. and Lovley, D.R. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol,2004,48:178-190
    [86]Logan BE, Murano C, Scott K, Gray ND, Head IM. Electricity generation from cysteine in a microbial fuel cell. Water Res,2005,39:942-952
    [87]Thrash, J.C., Van Trump, J.I., Weber, K.A., Miller, E., Achenbach, L.A. and Coates, J.D. Electrochemical stimulation of microbial perchlorate reduction. Environ. Sci. Technol.1907, 41 (9):1740-1746
    [88]Logan, B.E. Extracting hydrogen and electricity from renewable resources. Environ. Sci. Technol,2004,38 (9):160A-167A
    [89]Park, D.H. and Zeikus, J.G. Impact of electrode composition on electricity generation in a single-copartment fuel cell using Shewanella putrefucians. Appl. Microbiol. Biotechnol, 2002,59:58-61
    [90]Jang, J.K., Pham, T.H., Chang, I.S., Kang, K.H., Moon, H., Cho, K.S. and Kim, B.H. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem,2004,39 (8):1007-1012
    [91]Zhen He, Shelley D Minteer and Largus T. Angenent. Electricity eneration from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol,2005,39:5262-5267
    [92]Jin Zhang, Hongling Zou, Quan Qing, et al. Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes. J. Phys. Chem. B,2003,107:3712-3718

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700