用户名: 密码: 验证码:
无膜生物阴极微生物燃料电池处理生活污水 的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球经济的高速发展,在全世界范围内,社会发展与资源环境的矛盾日趋尖锐,能源危机和环境污染已成为制约人类生存和发展的两大重要难题。研发新的废水处理工艺从有机废水中回收有价能源已经成为环境工程领域的一个重要研究方向,是实现废水处理能源化与可持续发展的重要途径之一。
     微生物燃料电池(Microbe fuel cell,MFC)技术是一项兼顾从有机物中回收电能和废水处理的可持续性技术。该技术发展至今,就目前存在的各种形式MFC而言,由于产电过程需要贵重金属催化、加载阴阳极隔离膜、产电量偏小、MFC反应器结构不适合实际污水处理等多方面原因,导致该项技术成本过高并与实际应用仍有一段距离。针对MFC的现有问题,在考虑有效能源回收、成本降低、实际应用为目标的基础上,设计研究了更加适用于有机废水处理的无膜生物阴极MFC反应器构型,并分析了反应器的产电特性及污染负荷去处能力。主要开展了三部分的研究,分别为:挡板式MFC和无挡板式MFC产电性能及污染物去除能力研究、无挡板式MFC产电性能及污水净化效果条件优化、无挡板式MFC与A/O工艺处理实际生活污水的差异,论文取得了以下研究成果:
     使用厌氧污泥能够成功启动两种反应器,但与挡板式MFC相比,无挡板式MFC能在较短的时间内启动(150h)。在运行稳定后,外电阻Rex=500?时,挡板式MFC和无挡板式MFC反应器电压峰值分别为0.21V和0.42V。通过极化曲线测定可知,无挡板式MFC与挡板式MFC的内阻分别为79.4Ω和178.6Ω,最大功率密度分别为8.4W/m3、0.83W/m3,库仑效率分别为9.4%和6.3%。表明,由于挡板式反应器加长了阴阳极电极之间的距离,增大了电池内阻,虽然防止了阴极氧的扩散,但同时也增大了有机物转化为甲烷的比例,从而导致挡板式反应器功率密度、库仑效率偏低。挡板式和无挡板式反应器COD去除率分别为93.2%和90.7%,表明两种MFC都能够实现产电与有机物的同步降解。
     利用生活污水进行了无挡板式MFC产电性能及污水净化条件优化试验。研究结果表明,MFC的功率密度随有机底物浓度的变化具有饱和效应,在一定范围内电池的平均功率密度随有机底物浓度的增高而增高,在COD为120mg/L时功率密度增长到达平台期。通过减小水力停留时间,从而提高单位时间内的有机物绝对供给量,可以提高电池的输出功率,但当水力停留时间低于12h,出水水质无法达标。阴极溶解氧量的提高对增高电池功率输出和有机物去处是有利的,但当曝气量达到300mL/min时,电池电压为0.43V达到峰值,继续增加曝气量,电池电压则开始出现下降趋势。废水的缓冲能力对电池的功率输出有重要影响,但对污染物去除影响不明显。
     无挡板式MFC与传统A/O工艺连续处理实际生活污水对比实验表明,无挡板式MFC在水力停留时间为12h,30分钟间隔曝气(300mL/min)条件下,连续流处理生活污水,最大电压达0.42V(Rex=500Ω),最大功率密度为7.6W/m3,内阻为71Ω,出水浊度也较A/O法更低。最大COD去除率可达92.4%、氨氮去除率94.6%,而A/O的最大COD去除率和氨氮去除率为82.1%和67.7%。无挡板式MFC实际上可以看成是废水处理中A/O工艺反应器在结构和功能上的改型,更适合废水处理的实际应用,具有重要的应用推广价值。
World-wide depletion of energy reservers and environmental contamination are inspiring the search for renewable and environment-friendly technologies to recover useful energy and materials from organic wastes. This has been particularly emphasised as a significant approach so as to make the wastewater treatment more sustainable and economical in the field of environmental engineering.
     This study systematically investigated the feature and corresponding mechanisms of two-chambered MFC, including the basic characteristics of power generation, the effects of MFC power generation performance and optimization of wastewater treatment effects, differences between MFC and A/O. Some findings have been made as follows:
     Using anaerobic sludge can successfully start the two reactors, but compared with the flapper MFC, non-flapper MFC can start within in a short time (150 h). When external resistance Rex = 500?, the two MFC’s peak voltage were 0.21V and 0.42V. MFC’s internal resistance were 79.4? and 178.6Ω, maximum power density was 8.4 W/m3, 0.83W/m3, coulomb efficiency was 9.4% and 6.3%. Shows that due to flapper MFC lengthened the distance between the anode and cathode electrodes, battery internal resistance increases, while preventing the spread of the oxygen, but it also increases the proportion of organic matter into methane, leading to baffle reactor low coulombic efficiency. Two MFC’s COD removal rates were 93.2% and 90.7%, showed that the two MFC can achieve power generation and synchronization of organic matter degradation.
     MFC power generation performance and optimization of wastewater treatment test. The results show that, MFC power density with the organic substrate concentration in a saturation effect. In a certain range of the average power density of batteries with higher concentrations of organic substrate and increase in COD was 120mg/L when the power density increased to reach plateau. By reducing the hydraulic retention time, thereby enhancing the unit of time the absolute supply of organic matter can increase the output power of the battery, but when the hydraulic retention time is less than 12 hours, water quality can not be complianced. Cathode to increase the amount of dissolved oxygen increased power output and the battery is beneficial organic place, but when the aeration reached 300mL/min, the battery voltage is 0.43V, continued to increase aeration, the battery voltage is then began to decline. Buffering capacity of the wastewater of the power output has an important influence, but no significant effect on contaminant removal.
     MFC with traditional A/O process treating domestic wastewater continuously experiment shows that MFC in HRT 12h, 30 min interval aeration (300mL/min) conditions, the continuous flow treatment of domestic sewage can receive maximum voltage of 0.42V (Rex = 500Ω), the maximum power density of 7.6 W/m3, resistance to 71Ωturbidity. Maximum COD removal rate reached 92.4% and 94.6% and ammonia removal rate were 82.1% and 67.7%. Non-flapper MFC actually can be regarded as A/O process reactor in structure and function, and is more suitable for application of wastewater treatment and has important value in applications.
引文
1唐炼.世界能源供需现状与发展趋势.国际石油经济, 2005,13(1):30~33
    2解救能源危机发展可再生能源是人类社会实现可持续发展的必由之路.科技智囊, 2005(12):12-151
    3 K. Rabaey. Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology, 2005, 23(6):291-298.
    4 B. E. Logan. Simultaneous wastewater treatment and biological electricity generation. Water Science and Technology, 2005,52(1-2): 31-37.
    5 J. B. Davis, H. F. Yarbrough. Preliminary experiments on a microbial fuel cell. Science, 1962,137: 615~616
    6 P. M. Vignais, B. Billoud. Occurrence, classification, and biological function of hydrogenases. Chem. Rev., 2007, 107: 4206~4272
    7贾斌,李小明,刘志华等.双室和单室微生物燃料电池的研究及比较.环境污染与防治, 2008, 30(5): 74~82
    8王刚,黄丽萍,张翼峰. MFC中生物阴极的研究与应用现状.环境科学与技术, 2008,31(12):101~103
    9张志刚,傅嘉媛.先进实用的污水生物处理新技术研究.中国生态农业学报, 2007,15(4):200~203
    10 F. Rezaei, T. L. Richard, R. A. Brennan, et al.. Substrate-enhanced Microbial Fuel Cell for Improved Remote Power Generation from Sediment-based Systems. Environ. Sci. Technol., 2007,41: 4053~4058
    11 L. M. Tender, C. E. Reimers, H. A. Stecher. Harnessing Microbially Generated Power on the Seafloor. Nat. Biotechnol., 2002,20: 821~825
    12 B. E. Logan. Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell. Environ. Sci. Technol., 2004,38: 5809~5814
    13 B. E. Logan, S. A. Cheng. Graphite Fiber Brush Anodes for Increased Power Production in Air-cathode Microbial Fuel Cells. Environ. Sci. Technol., 2007,41: 3341~3346
    14 S. Tanisho, N. Kamiya, N. Wakao. Microbial Fuel Cell Using Enterobacter Aerogenes. Bioelectrochem. Bioenergin., 1989, 21: 25~32
    15 K. Rabaey, G. Lissens, S. D. Siciliano, et al.. A Microbial Fuel Cell Capable of Converting Glucose to Electricity at High Rate and Efficiency. Biotechnol. Lett., 2003,25: 1531~1535
    16 B. R. Ringeisen, E. Henderson, P. K. Wu, et al.. High Power Density from a Miniature Microbial Fuel Cell Using Shewanella Oneidensis DSP10. Environ. Sci. Technol., 2006,40: 2629~2634
    17 J. C. Biffinger, J. Pietron, R. Ray, et al.. A Biofilm Enhanced Miniature Microbial Fuel Cell Using Shewanella oneidensis DSP10 and Oxygen Reduction Cathode. Biosen. Bioelectron., 2007, 22: 1672~1679
    18 B. R. Ringeisen, R. Ray, B. Little. A Miniature Microbial Fuel Cell Operating with an Aerobic Anode Chamber. J. Power Sources, 2009, 165: 591~597
    19 K. Rabaey, P. Clauwaert, P. Aelterman, et al.. Tubular Microbial Fuel Cells for Efficient Electricity Generation. Environ. Sci. Technol., 2005, 39: 8077~8082
    20 Z. He, S. D. Minteer, L. T. Angenent. Electricity Generation from Artificial Wastewater Using an Upflow Microbial Fuel Cell. Environ. Sci. Technol., 2005,39: 5262~5267
    21 Z. He, N. Wagner, S. D. Minteer, et al.. The Upflow Microbial Fuel Cell with an Interior Cathode: Assessment of the Internal Resistance by Impedance spectroscopy. Environ. Sci. Technol., 2006,40: 5212~5217
    22赵庆良,张金娜,尤世界等环境科学学报, 2006,26(12)2052—2057
    23 B. E. Logan. Biologically extracting energy from wastewater: Biohydrogen production and microbial fuel cells. Environ Sci Technol, 2004,38(9): 163~167
    24 B. E. Logan. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Microbial Biotechnol, 2006,70: 162~169
    25 B. E. Logan. Production of electricity from proteins using a microbial fuel cell Water Environ Res, 2009,78(5): 531~537
    26 K. Rabaey. Continuous microbial fuel cells convert carbohydrates to electricity. Water SciTechnol,2005,52(1 /2): 512~523
    27 B. E. Logan. Electricity generation from swine wastewater using microbial fuel cells. Water Res, 2005,39: 4961~4968
    28曹效鑫,梁鹏,黄霞.“三合一”微生物燃料电池的产电特性研究.环境科学学报, 2006,26(8): 1252-1257.
    29冯玉杰,王鑫,李贺等.乙酸钠为基质的微生物燃料电池产电过程.哈尔滨工业大学学报, 2007,39(12):1890~1894
    30付宁.利用微生物燃料电池技术处理有机废水的研究.大连理工大学硕士学位论文,2006:3
    31黄霞,梁鹏,曹效鑫,等.无介体微生物燃料电池研究进展.中国给水排水, 2007,23(4): 1-6.
    32 B. E. Logan. Analysis of ammonia loss mechanisms in microbial fuel cells treating animal waste-water. Biotechnol.Bioeng, 2009,99:1120–1127.
    33 K. Rabaey, W. Verstraete. Microbial fuel cells: novel biotechnology for energy generation.Trends Biotechnol.2005,23:291–298.
    34 B. E. Logan, J.R. Kim. Analysis of ammonia loss mechanisms in microbial fuel cells treating animal waste water. Biotechnol. Bioeng., 2008,99:1120–1127.
    35 H. Liu, B. E. Logan.Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol., 2005,39:5488–5493.
    36 K. Rabaey.Microbial fuel cells for simultaneous carbon and nitrogen removal.Water Res.2009, 42:3013–3024.
    37 A. Luo. Removal of carbon, nitrogen, and phosphorus in pig manure by continuous and intermittent aeration at low redox potentials. Biosyst. Eng. 2002,82:209-215.
    38 B. E. Logan, B. Hamelers. Methodology and Technology. Environ Sci Technol, 2006,40:5181-5192.
    39 R. Korneel, V. Willy.novel biotechnology for energy generation. Trends in Biotechnol, 2005,23:291-298.
    40 Schroder U.Anodic electron transfer mechanisms and their energy efficiency.Physical Chemistry Chemical Physics, 2007,9:2619-2629.
    41 B. E. Logan. Ammonia Treatment of Carbon Cloth Anodes to Enhance Power Generation of Microbial Fuel Cells.Physical Chemistry Chemical Physics, 2007,9:492-496
    42 S. E. Oh. PowerGeneration Using DifferentCation, Anion, and Ultrafiltration Membranes in Microbial Fuel Cells.Environ. Sci. Technol., 2007,41∶1004-1009
    43 J. C. Biffinger. A Biofilm Enhanced Miniature Microbial Fuel Cell Using Shewanella Oneidensis DSP10 and Oxygen Reduction Cathodes. Biosens. Bioelectron., 2009,22∶1672-1679
    44 B. E. Logan. Increased Performance of Single-Chamber Microbial Fuel Cells Using an Improved Cathode Structure. Electrochem.Commun., 2006,8∶489-494
    45 F. Kargi, S Eker. Electricity Generation with Simultaneou Wastewater Treatment by a Microbial Fuel Cell. Environ. Sci. Techno., 2007, 82(7): 658-662.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700