用户名: 密码: 验证码:
基于振镜扫描的激光微焊接技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于振镜扫描的激光微焊接技术,是指在毫米以下非常小的区域内,在计算机的控制下,通过摆动振镜反射激光束来实施快速扫描焊接的一种先进的激光加工技术,它是随着激光技术的发展而逐渐形成的一种新兴的焊接技术。
     本文从振镜扫描激光微焊接的技术特点入手,针对激光微焊接目前存在的一些问题和不足,对振镜扫描的激光微焊接技术进行深入的研究,主要内容如下:
     振镜扫描的激光微焊接机理的研究。初步研究了不同功率密度的激光束照射到金属表面时发生的物理现象;尤其对激光功率密度在104~107W/cm2范围内的、能进行激光微焊接的激光束照射到金属表面的情况作了更多的分析研究;分析了偏振激光束的特点及其在微焊接中的应用。通过计算机数值模拟,模拟出了激光微焊接过程中的温度场分布。认为激光微焊接的过程是快速加热、快速冷却的过程,且材料在激光束的作用下被动升温的速度大于由于热传导等作用下主动降温的速度。还模拟了激光束照射下形成金属熔池的情况,并对熔池的形成、特性、流态以及在激光微焊接中的作用进行了研究。研究认为激光微焊接中的熔池是表面张力作用相对很强的、Marangoni效应显著的、小雷诺数的、复杂流态的熔池。
     振镜扫描的激光微焊接技术的研究。提出了激光微焊接技术的发展趋势,即精密性、准确性、可靠性、快速性。研究了获得精密、准确、可靠、快速地进行激光微焊接的方法和途径。(1)通过合理地选择激光器、f-θ聚焦透镜和扫描振镜等,并配备CCD监视系统以及对激光束的传输变换等方式,实现准确、精密的激光微焊接;(2)通过合理设置激光微焊接过程中的工艺参数(如激光功率、焊接速度、激光光斑尺寸、离焦量、激光脉冲频率、脉冲宽度、脉冲波形等)来实现激光微焊接的可靠性;并且通过研究获得了在脉冲激光缝焊时激光脉冲频率f、激光光斑直径d及扫描速度v之间的关系式f ? d?(1 .2~1.4)?v;(3)研究了如何提高激光微焊接速度的方法。分析认为,激光器本身、焊接过程中所用的钎料(或待焊接的基体材料)以及激光微焊接的系统结构对焊接的速度都有影响。通过遗传算法处理距离循环矩阵的方法来实现对扫描路径的优化,多工位、分时工作等方式的采用来提高设备的利用率,进而提高总体的焊接速度。同时对振镜扫描的激光微焊接系统进行了研究,获得了分别由能量负反馈型Nd:YAG激光器和光纤激光器组成的两套完整的振镜扫描式激光微焊接系统。
     通过三个典型实例,即无铅激光植球、漆包线与集成电路铝电极的直接焊接、细铜丝与集成电路铝电极这两种异质金属间的焊接,对基于振镜扫描的激光微焊接技术进行了验证。(1)无铅激光植球是激光微焊接在电子封装领域中的典型应用。通过研究,认为十字交叉的扫描方式和走圆形轨迹的扫描方式不是激光植球的最佳扫描方式。相对而言,直线扫描方式有一定的优越性。能用直线扫描的方式在覆铜板上成功获得直径约为300微米的、与基体材料结合良好的无铅焊料凸点,植球速度可达25点/秒。(2)能将直径为0.10毫米的漆包线与集成电路铝电极直接进行激光微焊接。在焊接前不需要专门去除绝缘漆的过程,简化了漆包线的焊接过程,为大批量漆包线的自动化焊接创造了条件。(3)能将直径为0.25毫米的细铜丝直接焊接到集成电路的铝电极上。在焊接的过程中,激光束直接照射在高熔点的细铜丝上,熔化细铜丝,熔化后的高温液态金属铜向下流动包覆低熔点的铝电极,形成焊点。这种激光微焊接的方法克服了铜铝异质金属间特性差异给焊接过程带来的难度,避免了铝及铝合金焊接过程中易出现气孔、热裂、缺陷、接头软化等的不足。这种方法具有普遍意义,对其它异质金属间的激光焊接也有一定的借鉴意义。
Laser micro-welding technology based on galvanometer scanning, within the welding zone dimension of less than one millimeter, is an advanced laser processing technology, which under the control of the computer, the laser micro-welding is implemented through reflecting laser beam by scanning galvanometers. It is a novel welding technology, which developed along with the development of laser technology.
     Focus on the existing problems and shortcomings in laser micro-welding technology, starting with the characteristic of laser micro-welding, this paper studies more deeply laser micro-welding technology based on galvanometer scanning. The major contents are as follows:
     Laser micro-welding mechanism and the physical phenomena that laser beams with different power density irradiate the metal surface are studied in this paper. Especially, the circumstances are more analyzed that laser beam, which can be used in laser micro-welding and has the power density of 104~107W/cm2, irradiates the metal surface. Then the characteristic of polarized laser beam and its applications in laser micro-welding are analyzed. Through the numerical simulation to the process of laser micro-welding, obtaining the distribution of the temperature field and coming to the conclusion that the laser micro-welding is a flash heating and cooling process. The results also demonstrate that the heating speed is higher than the cooling speed, which because the temperature are raised passively due to laser energy input and the temperature decreases initiatively due to the heat conduction. The metal molted pool is also simulated. In addition, its formation, characteristic, fluid state and application in the laser micro-welding are studied too. The research shows that the liquid metals flow state in laser micro-welding molted pool is very complex, which the surface tension is relatively stronger, Marangon effect is significant and the Reynolds number is low.
     Through the deep study of laser micro-welding technology based on galvanometer scanning, the development trend of laser micro-welding is proposed, namely, precision, accuracy, reliability and rapidity. Then the precise, accurate, reliable and rapid methods and ways of laser micro-welding are studied. (1) The precision and accuracy of laser micro-welding can be realized by transforming laser beam, equipping with CCD real-time monitoring system, and selecting laser, f-theta lens, scanning galvanometers and so on. (2) The reliability assurance in leaser micro-welding can be realized through adjusting process parameters. The process parameters include laser power, welding speed, laser spot in the focal plane, defocusing amount, laser pulse frequency, pulse width, pulse waveform, etc. Moreover, the relation in the laser seam welding among laser pulse frequency f, laser spot d and scanning speed v is obtained through the research, that is f ? d?(1 .2~1.4)?v. (3)Finally, how to improve the laser welding speed is studied. It is considered by analysis that laser, solder (or the matrix material for welding) and the system structure of laser micro-welding had influence on the welding speed. Optimization the scanning path can increase the welding speed through genetic algorithm to the cycle-matrix of distance. It can improve laser micro-welding system utilization rate through using multiple-channel and time-sharing scheme in multi-spot welding. Then, the total laser welding speed is improved.
     The system structure of laser micro-welding based on galvanometer scanning is studied. Two kinds of laser micro-welding systems based on galvanometer scanning, which equipped with Nd:YAG laser with an energy negative feedback control system and fiber laser, are obtained through the research.
     Laser micro-welding technology based on galvanometer scanning is validated through three typical examples, namely laser soldering bump of lead-free, welding between enameled wire and IC aluminum electrode, and welding for thin copper wire and IC aluminum electrode. (1)Laser lead-free soldering bump is a representative application for laser micro-welding in electronic packaging field. It is considered that the scanning mode of decussate or cycle isn’t the best for laser soldering bump. Comparatively speaking, the linear scanning mode has certain superiority in soldering bump. Soldering bump of lead-free with diameter of 300μm, which has a good bond with the matrix material of CCL(Copper Clad Laminate), can be obtained in linear scanning mode. We can solder 25 bumps per second in this way. (2)The laser micro-welding can be implemented between enameled wire with diameter of 0.10mm and the IC aluminum electrode directly without removing insullac. This method simplifies the process of laser welding for enameled wire and creates the conditions for automatic batch welding. (3)The laser micro-welding can be implemented between thin copper wire with diameter of 0.25mm and the IC aluminum electrode. The thin copper wires are irradiated directly by laser beam and melted. The molten liquid metals Cu flow cocurrently downward and coat IC aluminum electrode, Then the welding joint would be formed. It overcomes the welding difficulty due to the characteristic difference of dissimilar meter Cu-Al, and avoids several disadvantages in laser welding for Al and Al-alloy like porosity, hot cracking, welding joint softening and defect etc. This method has universal significance, and can serve for welding other diisimilar metals.
引文
[1] Jitai Niu, Longxiu Pan, Muzhen Wang, et al. Research on laser welding of aluminum matrix composite SiCw/6061[J]. Surface Engineering, Surface Instrumentation & Vacuum Technology, 2006, 80:1396-1399.
    [2]盛晓敏,邓朝晖.先进制造技术[M].北京:机械工业出版社,2002:119-198.
    [3]张国顺.现代激光制造技术[M].北京:化学工业出版社,2006:23-134.
    [4]陆斌锋,芦凤桂,唐新华等.激光焊接工艺的现状与进展[J],焊接,2008,(4): 53-57.
    [5]中国电子学会生产技术学会分会丛书编委会.微电子封装技术[M].合肥:中国科学技术出版社,2003:1-5.
    [6] Seeling K, Suraski D. Advanced materials considerations for lead-free electronics assembly [J]. Journal of Microcircuits Electron Package, 2001, 24(4): 366-378.
    [7]姚立华.半导体激光软钎焊技术研究[D].南京:南京航空航天大学硕士学位论文,2006.
    [8]李志远,钱乙余,张九海.先进连接技术[M].北京:机械工业出版社,2000: 231-240.
    [9] Haus H. A; Tamura K; Nelson L. E, et al.Stretched-paulse mode-locking in fiber ring laser: theory and experiment [J].IEEE Journal of Quantum Electrnoics,1995, 31(3):591-598.
    [10]习聪玲,乔学光,贾振安.光纤激光器的研究与发展前景[J].光通信技术,2006,(1):52-54.
    [11]陈晓燕.光纤激光器的发展与应用[J].电子元器件应用,2004,6(11):1-3.
    [12]杨青,俞本立,甄胜来等.光纤激光器的发展现状[J].光电子技术与信息, 2002,15(5):13-18.
    [13] Dominic.V,Mac Cormack S,Waarts R et al. 110W fiber laser[J].Electronics Letters,1999,35(14):1158-1160.
    [14] Offerhaus H L,Alvarez-Chavez J A,Nilsson J et al.Multi-mJ,multi-W Q-switched fiber laser[J].Optics Letters, 2000,25:37-39.
    [15] http://www.sz-keyi.net/.深圳市科艺实业有限公司.
    [16]张冬云.激光制造工艺[M].北京:清华大学出版社,2008:113-229.
    [17]徐炜,李章.大功率激光焊接技术及其工业应用[J].机械工人,2005 (3): 32-36.
    [18]张文毓,激光焊接技术的研究现状与应用[J].新技术新工艺,2009, (1):48-50.
    [19]王玉英.高功率单模光纤激光器在微焊接和微机械加工中的应用[ J ].光机电信息,2006,(4):28-32.
    [20]陈军伟.日本的激光精密微加工[J] .光机电信息,2001,(11):8-14.
    [21]彭云,王成,陈武柱等.两种规格超细晶粒钢的激光焊接[J].焊接学报, 2001, 22(1):31-35.
    [22]于洋,史耀武,夏志东等. BGA焊点剪切性能的评价[J].稀有金属材料与工程, 2009, 38(3):468-472.
    [23]潘茹,李明娟,吴坚等.半导体器件芯片焊接方法及控制[J]. 2006,31(4):272- 275.
    [24]胡永芳,薛松柏,史益平等.无铅钎料对不同引脚数QFP微焊点抗拉强度的影响[J] .焊接学报,2005,26(10):72-74.
    [25] T. Sibillano, A. Ancona, V. Berardi, et al. Optical detection of conduction/ keyhole mode transition in laser welding [J]. Journal of Materials Processing Technology,2007,191:364-367.
    [26]周炳琨,高以智,陈倜嵘等.激光原理[M].北京:国防工业出版社,2000.
    [27]赵熹华.焊接方法与机电一体化[M],机械工业出版社,2001.
    [28]王家淳,激光焊接技术的发展与展望[J].激光技术,2001,25(1):48-54.
    [29] F.Malek Ghaini, M.J.Hamedi, M.J.Torkamany, et al. Weld metal microstructural characteristics in pulsed Nd:YAG laser welding[J].Scripta Materialia 56(2007): 955-958.
    [30]邹春红.异质钢激光焊接技术研究[D].长春:长春理工大学硕士学位论文,2007.
    [31]韩宁,张寰臻,肖荣诗.激光深熔焊接阈值表征及特性[J] .中国激光,2008,35(2):311-315.
    [32]宁喜发,姚建铨,陆颖等.开关型连续YAG激光电源的改进[J].天津理工学院学报. 2001,17(3):59-61.
    [33]章佶.超短脉冲与透明介质相互作用研究[D].上海:华东师范大学2005届研究生硕士学位论文. 2005.
    [34]陈虹,吴世凯,张正伟等.高功率激光光束特性对激光加工的影响[J].光学技术,2006,32(6):834-837.
    [35]杨世铭,陶文铨.传热学[M].北京:高等教育出版社. 1998:1-11.
    [36]陈彦宾.现代激光焊接技术[M].北京:科学出版社,2005:40-138.
    [37]李俊昌.激光的衍射及热作用计算[M].北京:科学出版社,2002:9-245.
    [38] T. Sibillano, A. Ancona, V. Berardi, et al. Real-time monitoring of laser welding by correlation analysis:The case of AA5083[J]. Optics and Lasers in Engineering,2007,45:1005-1009.
    [39] Chengwu Yao, BinshiXu, XianchengZhang, et al. Interface microstructure and mechanical properties of laser welding copper–steel dissimilar joint[J]. Optics and Lasers in Engineering,2009,47:807-814.
    [40]刘其斌.激光加工技术及其应用[M].北京:冶金工业出版社,2007:187-207
    [41] Alexander F.H. Kaplan. Model of the absorption variation during pulsed laser heating applied to welding of electronic Au/Ni-coated Cu-leadframes [J]. Applied Surface Science,2005,241:362–370.
    [42]中国焊接网:http://www.chinaweld.com.cn/onews.asp?id=505.
    [43] Y.J. Quan, Z.H. Chen, X.S. Gong, et al. Effects of heat input on microstructure and tensile properties of laser welded magnesium alloy AZ31[J]. M aterials Characterization, 2008,59:1491-1497.
    [44]李建强,韩国明,何雨.激光焊接的模拟仿真研究[J].电焊机,2003,33(9):10-14.
    [45] T. Sibillano, A. Ancona, V. Berardi, et al. Correlation spectroscopy as a tool for detecting losses of ligand elements in laser welding of aluminium alloys [J]. Optics and Lasers in Engineering.2006, 44:1324-1335.
    [46]卢亚雄,杨亚培,陈淑芬.激光束传输与变换技术[M].成都:电子科技大学出版社,1997.
    [47]庞铭,虞钢,刘兆等. K418与42CrMo异种金属的激光穿透焊接[J].中国激光,2006,33(8):1122-1126.
    [48]吴圣川.铝合金激光—电弧复合焊研究及其温度场的数值模拟[D].华中科技大学硕士学位论文,2005.
    [49] Yi Zhang, Genyu Chen, Haiying Wei, et al. A novel‘‘sandwich’’method for observation of the keyhole in deep penetration laser welding[J]. Optics and Lasers in Engineering,2008,46:133-139.
    [50] J. Montalvo-Urquizo, Z. Akbay, A. Schmidt. Adaptive finite element models applied to the laser welding problem [J]. Computational Materials Science, 2009,46:245-254.
    [51]左铁钏. 21世纪的先进制造-激光技术与工程[M].北京:科学出版社,2007: 512-523.
    [52]毛宇飞,郭烈锦.超临界水活塞效应传热现象的数值模拟[J].自然科学进展,2006,16(4).
    [53] Hanbin Du , Lunji Hu, Jianhua Liu,et al.A study on the metal flow in full penetration laser beam welding for titanium alloy [J]Computational Materials Science,2004,29:419–427.
    [54]科艺仪器有限公司. SPI光纤激光器焊接电池[R],2006.
    [55]师文庆,杨永强,黄延禄等.选区激光熔化快速成型过程温度场数值模拟[J].激光技术,2008,32(4):410-412.
    [56]沈显峰.多组元金属粉末直接激光烧结过程数值模拟及烧结区域预测[D].成都:四川大学博士学位论文,2005.
    [57]Song Linsen, Shi Guoquan, Li Zhanguo. Simulation of Laser Drilling Temperature Field by Using ANSYS [J]. Acta Armamentarii, Vol.27, Sep., 2006(5): 879-882,in Chinese.
    [58]张朝晖. ANSYS8.0热分析教程与实例解析[M].北京:中国铁道出版社, 2005.
    [59]Han Guoming, Zhao Jian, Li Jiaoqang. Dynamic simulation of the temperature field of stainless steel laser welding[J]. Materials & Design, 2007(28):240- 245.
    [60] H. Al-Kazzaz, M. Medraj, X. Cao, et al. Nd:YAG laser welding of aerospace grade ZE41A magnesium alloy:Modeling and experimental investigations[J] Materials Chemistry and Physics,2008,109:61–76.
    [61]王宏,史耀武,巩水利.大功率激光作用下小孔形成数值模拟[J].中国激光,2007,34(4):564-568.
    [62]张剑峰,沈以赴,赵剑峰等. Ni基金属粉末激光快速制造的研究[J].航空学报,2002,23(3):221-225.
    [63]熊智军.铝合金激光深熔焊热过程数值模拟研究[D],硕士学位论文.
    [64] Kamel Abderrazak, Sana Bannour, Hatem Mhiri, et al.Numerical and experimental study of molten pool formation during continuous laser welding of AZ91 magnesium alloy [J]. Computational Materials Science.2009, 44:858-866.
    [65] X.F. Peng, X.P. Lin, D.J. Lee, et al. Effects of initial molten pool and Marangoni flow on solid melting [J]. International Journal of Heat and Mass Transfer,2001, 44:457-470.
    [66] Giovanni Tani, Luca Tomesani, Giampaolo Campana et al. Evaluation of molten pool geometry with induced plasma plume absorption in laser-material interaction zone[J]. International Journal of Machine Tools & Manufacture, 2007, 47(6): 971–977.
    [67] Ollier B, pirch N, Kreutz E W. A Nemerical Model of The One-Step Laser Cladding Process[J]. Laser and Photons,1996,1(1):3-13.
    [68] Y.P.Lei, Hidekazu Murakawa, Y.W.Shi, et al.Numerical analysis of the competitive influence of Marangoni flow and evaporation on heat surface temperature and molten pool shape in laser surface remelting [J]. Computational Materials Science.2001, 21:276-290.
    [69] Xiangzhong Jin. A three-dimensional model of multiple reflections for high-speed deep penetration laser welding based on an actual keyhole [J]. Optics and Lasers in Engineering.2008, 46:83-93.
    [70] W.H. Kim, S.J. Na. Heat and fluid flow in pulsed current GTA weld pool[J]. International Journal of Heat and Mass Transfer,1998,41:3213-3227.
    [71] Necati ?zisik M.Heat Transfer, A Basic Approach [M]. McGraw-Hill Inc, 1985.
    [72] Nilanjan Chakraborty. The effects of turbulence on molten pool transport during melting and solidification processes in continuous conduction mode laser welding of copper–nickel dissimilar couple[J]. Applied Thermal Engineering, 2009,29:3618-3631.
    [73]陈静,谭华,杨海欧等.激光快速成形过程中熔池形态的演化[J].中国激光, 2007,34(4):442-446
    [74] Hong Wang, Yaowu Shi, Shuili Gong.Effect of pressure gradient driven convection in the molten pool during the deep penetration laser welding [J]. Journal of Materials Processing Technology.2007, 184:386-392.
    [75] http://www.uwlaser.com/newEbiz1/EbizPortalFG/portal/html/home.html.
    [76] Hwang H.C, Chung C.C, Lee,S.-H.Design of a multi-rate controller and its application to galvanometer servo systems[J].Computer-Aided Control System Design,2001,1:564-569.
    [77]朱林泉,白培康,朱江淼.快速成型于快速制造技术[M].北京:国防工业出版社,2003.
    [78]彭雪峰.二维振镜式扫描系统及其在SLS中的应用[D].武汉:华中科技大学2005届研究生硕士学位论文. 2005.
    [79]万志,杜温锡.振镜二维扫描的图形畸变校正和曝光量补偿[J].光学精密工程,2000,8(2):115-119.
    [80]陈忠,刘晓东.激光振镜扫描系统的快速软件校正算法研究[J].华中科技大学学报(自然科学版),2003,31(5):68-70.
    [81]江卫华.基于双振镜扫描的三维激光加工系统[J].自动化与仪器仪表, 2006,(1):29-31.
    [82]朱林泉.双振镜二维扫描系统的误差分析和校正技术[J].应用激光,2001, 21(5):325-327.
    [83]吴伟辉.选区激光熔化快速成型系统设计及工艺研究[D].广州:华南理工大学大学博士学位论文,2007.
    [84]师文庆,封余军.激光加工中高斯光束的特性与传输变换[J].广东教育学院学报. 2007,27(3):49-52.
    [85]师文庆,杨永强.选区激光熔化中激光束的传输变换及聚焦特性[J].激光技术,2008,32(3):308-311.
    [86]吕百达,季小玲,罗时荣等.激光的参数描述和光束质量[J].红外与激光工程.2004,33(1):14-17.
    [87]季小玲,吕百达.高斯光束通过多光阑B=0成像系统传输的解析公式研究[J].物理学报,2003,52(9):2149-2154.
    [88] Wu Weihui, Yang Yongqiang, Huang Yanlu. Direct manufacturing of Cu-based alloy parts by selective laser melting[J]. Chinese Optics Letters, 2007,5(1):37-40.
    [89] Avanish Kumar Dubey, Vinod Yadava. Laser beam machining - A review [J]. International Journal of Machine Tools & Manufacture, 2008,48:609-628.
    [90] C.B. Reed, K. Natesan, Z. Xu, et al. The effect of laser welding process parameters on the mechanical and microstructural properties of V-4Cr-4Ti structural materials [J]. Journal of Nuclear Materials,2000, 283-287:1206-1209.
    [91]韩继成.浅谈微电子产品焊接的特点[J].现代焊接,2004,29(5):54.
    [92] Douglas Freitag, Terry Wohlers, Therese Philippi, et al. Rapid Prototyping: State of the Art [M]. Chicago:Manufacturing Technology Information Analysis Center, 2003.
    [93] Steen W. M. Laser Material Processing [M]. London: Springer-Verlay London Limited, 2003.
    [94] Xiu-Bo Liu, Ming Pang, Zhen-Guo Zhang, et al. Characteristics of deep penetration laser welding of dissimilar metal Ni-based cast superalloy K418 and alloy steel 42CrMo[J]. Optics and Lasers in Engineering,2007,45:929-934.
    [95]师文庆,杨永强,王迪等.脉冲激光焊接H62黄铜的研究[J].焊接学报,2010.
    [96] T.Y. Kuo, H.C. Lin. Effects of pulse level of Nd-YAG laser on tensile properties and formability of laser weldments in automotive aluminum alloys [J]. Materials Science and Engineering A,2006,416:281-289.
    [97] Giovanni Tani, Giampaolo Campana, Alessandro Fortunato, et al. The influence of shielding gas in hybrid LASER–MIG welding[J]. Applied Surface Science,2007,253: 8050–8053.
    [98] Hong Wang, Yaowu Shi, Shuili Gong, et al. Effect of assist gas flow on the gas shielding during laser deep penetration welding[J]. Journal of Materials Processing Technology,2007,184:379-385.
    [99]关振中.激光加工工艺手册[M].北京:中国计量出版社,1998.
    [100] Dominique Grevey, Pierre Sallamand, Eugen Cicala, et al. Gas protectionoptimization during Nd:YAG laser welding[J]. Optics & Laser Technology, 2005, 37:647–651.
    [101]黄翔,薛松柏,韩宗杰.激光软钎焊的研究现状及发展趋势[J].焊接, 2006,(8):13-17.
    [102] Shi Wenqing,Yang Yongqiang,Huang Yanlu et al. Preparation of solder pads by selective laser scanning [J]. Chinese Optics Letters, 2009, 7(3):217-219.
    [103]李明雨,王青春,孔令超等.激光加热控制维细焊点钎料熔融方法研究[J].机械工程学报,2004,40(10):170-174.
    [104] Zhao FangGeng, Sun JiangSheng, Li SuJian, et al. A hybrid genetic algorithm for the traveling salesman problem with pickup and delivery [J]. Journal of Automation and Computing, 2009, 6(1):97-102.
    [105] Zhou Tao. The Study of TSP Based on Improved Genetic Algorithm[J]. Microelectronics & Computer, 2006, 23(10):104-106.
    [106] Gao Hai-Bing, Zhou Chi, Gao Liang. General Particle Swarm Optimization Model[J]. Chinese Journal of Computers, 2005,28(12): 1980-1983.
    [107]王小平,曹立明.遗传算法—理论应用与软件实现[M].西安:西安交通大学出版社,2002.
    [108] Yousuke Kawahito, Takeshi Terajima, Hisamich Kimura, et al. High-power fiber laser welding and its application to metallic glass Zr55Al10Ni5Cu30[J]. Materials Science and Engineering B, 2008, 48(1-3):105-109.
    [109]王潮,宣国荣.人工神经网络求解TSP问题新方法[J].计算机应用与软件,2001,(4):59-65
    [110]仲盛,周笑波,谢立.一个改进的较佳路径求解算法[J].计算机应用与软件,2001,(1): 57-61.
    [111]师文庆.振镜扫描式激光点焊技术中扫描路径的优化[J].应用激光, 2008,28(4):332-335.
    [112]深圳市联赢激光设备有限公司,客户培训手册CHWLW-300A,2007,10.
    [113]徐强.半导体激光器光束传输特性研究[D].西安电子科技大学博士学位论文,2008.
    [114] Andrei Boglea, Alexander Olowinsky, et al. Fibre laser welding for packagingof disposable polymeric microfluidic-biochips[J]. Applied Surface Science, 2007,254 :1174-1178.
    [115]谢树森,雷仕湛.光子技术[M].北京:科学出版社,2004:668-672.
    [116]陈继民,徐向阳,肖荣诗.激光现代制造技术[M].北京:国防工业出版社, 2007:275-279.
    [117]张启运,庄鸿寿.钎焊手册[M].北京:机械工业出版社, 1999. 2-4.
    [118] Harris L Marcus, David L Bourell. Solid Freeform Fabrication Finds New Applications [J]. Advanced Materials & Processes,1993, 144:28-31.
    [119] Kruth J P, Leu M C, Nakagawa T. Progress in Additive Manufacturing and Rapid Prototyping[J]. Annals of the CIPP, 1998, 47(2):525-540.
    [120]赵毅,卢秉恒.振镜扫描系统的枕形畸变校正算法[J].中国激光,2003, 30(3):216-218.
    [121]廖洪海.基于USB接口的激光打标控制器设计[D].武汉:华中科技大学硕士学位论文,2005.
    [122]王青岗,颜永年.光固化向量扫描过程中的能量控制[J].清华大学学报(自然科学版),2005,45(11):1456-1459.
    [123]科艺仪器有限公司. OEM固体激光器[R],2006.
    [124]王晶,夏链,戴文明等. BGA植球机三维计算机辅助模块化设计[J].现代制造工程,2006,(3):43-45.
    [125]肖力:我国微电子封装研发能力现状[J].电子与封装,2007,7(4):1-6.
    [126]郭建强,韩江,夏链,等. BGA全自动植球机视觉检测技术及应用[J].制造业自动化,2006,28(6):33-36.
    [127]田昊,陆军.芯片上Sn/Pb凸点的制作工艺[J].集成电路通讯,2006, 24(1):39-43.
    [128]李福泉,王青春,张晓东.倒装芯片凸点制作方法[J].电子工艺技术, 2003,24(2):62-66.
    [129] Li Lin. Advances and Characteristic of High-power Diode Laser Materials Processing [J]. Optics and Lasers in Engineering, 2000, 34(4-6): 231-253.
    [130] Beckett P M, Fleming A R, Foster R J. The use of Lasers for the Soldering of High Density Interconnectors[R]. London: IEEE Colluquium on InterconnectionTechnology, 1994.
    [131] Beckett P M, Fleming A R, Foster R J. An Automated Pick-place Laser Soldering Process for Electronics Assembly[R].Washington, DC: Proc.44th IEEE Electronic Components and Technology Conference, 1994.
    [132] Ismail Fidan. CAPP for Electronics Manufacturing Case study: Fine Pitch SMT Laser Soldering[J]. Journal of Electronic Packaging, 2004, 126:173-176
    [133]邹欣珏,熊振华,王禹林等.基于机器视觉的激光植球系统标定[J].中国机械工程,2007,18(19):2340-2345.
    [134]赵健.对球栅阵列封装的集成电路的重新植球方法[P].中国: CN200410015726.9,2005.7.20.
    [135]习炳涛,张寿开,秦振凯等.电路板植球的方法[P].中国: CN200610087137.0,2007.6.13.
    [136]王青春,李福泉.激光直接钎料凸点制作方法[P].中国: CN03111157.2,2003.9.3.
    [137]卫国强,杨永强,温增璟.无钎剂激光喷射植球工艺的研究[J].激光技术, 2007,31(6):575-577.
    [138]邹欣珏.基于BGA芯片的激光植球系统的设计与研究[D],上海交通大学硕士学位论文,2007.
    [139] Kordas. K., Pap. A.E., Toth. G.,et al. Laser soldering of flip-chips[J]. Optics and Lasers in Engineering, 2006, 44(2):112-121.
    [140]韩宗杰,薛松柏,王俭辛等. QFP器件半导体激光钎焊焊点力学性能和显微组织[J].焊接学报,2006,27(10):41-44.
    [141] Stauffera L, Urscha A W, Achtera B G, et al. A surface-mounted device assembly technique for small optics based on laser reflow soldering[J]. Optics and Lasers in Engineering,2005, 43: 365-372.
    [142]姚立华,薛松柏,王鹏等.半导体激光软钎焊工艺参数对QFP器件微焊点强度的影响[J].焊接学报,2005,26(10):90-92.
    [143] Huang Ruisheng,Liu Liming,Zhang Fan. Influenees of laser in low Power YAG laser-MAG hybrid welding process[J]. Chinese optics letters,2008,6(1):47-50.
    [144]师文庆,杨永强,郭炜等.脉冲频率及扫描方式对光纤激光软钎焊的影响[J].中国激光,2009,36(2):494-497.
    [145]田艳红,王春青.微电子封装与组装中的再流焊技术研究进展[J].焊接,2002,(6):5-9.
    [146] Sung-Hoon Baika, Seung-Kyu Parka, Cheol-Jung Kima, et al. Holographic visualization of laser-induced plume in pulsed laser welding [J]. Optics & Laser Technology.2001, 33:67-70.
    [147]赵术娟,钟宏,曹占芳.聚醋漆包线漆的研究进展[J].铜业工程,2007, (4):33-36.
    [148]曹亚成,朱东.自粘性漆包线漆发展概况[J].涂料技术与文摘,2009, (1)::13-15.
    [149]刘士臣.细漆包线的巧妙连接[J].家用电器,1996,(3):22-22.
    [150]陶利权.微点焊技术在薄膜基板焊接中的应用[J] .电子工业专用设备,2004,(7):69-73.
    [151]安志斌.异种金属材料的激光焊接研究[D].西安:西北大学硕士学位论文,2008.
    [152]王军,贺占蜀,陆龙生等.铝片-铜管太阳能集热板超声波焊接显微试验[J].焊接技术,2009,38(3):9-12.
    [153] B. Hu, I.M. Richardson. Mechanism and possible solution for transverse solidification cracking in laser welding of high strength aluminium alloys[J]. Materials Science and Engineering A,2006,429:287-294.
    [154]王刚.铝合金剪裁拼焊板激光焊接工艺研究[D].兰州:兰州理工大学硕士学位论文,2005.
    [155] Jun Zhou, Hai-Lung Tsai. Effects of electromagnetic force on melt flow and porosity prevention in pulsed laser keyhole welding [J]. International Journal of Heat and Mass Transfer.2007, 50:2217-2235.
    [156] A. Haboudou, P. Peyrea, A.B. Vannes, et al. Reduction of porosity content generated during Nd:YAG laser welding of A356 and AA5083 aluminium alloys [J]. Materials Science and Engineering,2003,A363:40–52.
    [157] T.A. Mai, A.C. Spowage. Characterisation of dissimilar joints in laser welding of steel–kovar, copper–steel and copper–aluminium [J]. Materials Science and Engineering A, 2004,374:224-233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700