用户名: 密码: 验证码:
中空纤维陶瓷膜制备过程与性能表征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中空纤维陶瓷膜不但具有陶瓷材料优良的热稳定性、化学稳定性和持久性,适用于强酸、强碱和高温等苛刻环境下的分离体系;而且比表面积大、单位体积装填密度高,在商业用地费用较高的今天,可极大节约运行成本,具有重要实际应用价值。本文分别以α-Al2O3、SiO2、TiO2、高岭土为无机主体,采用相转化法与高温烧结耦合过程制备一系列中空纤维陶瓷膜,随后分别以勃母石溶胶、Si02溶胶、Ti02溶胶、α-Al2O3-水分散液、铝粉-水分散液、聚酰胺酸(PA)及其与Al2O3和SiO2复合材料为涂膜液,采用不同工艺过程制备α-Al2O3中空纤维复合膜,并运用铸膜液黏度、SEM、XRD、FTIR、TGA、机械性能、水接触角、孔隙率、膜密度、孔径分布分析、纯水通量和气体分离性能等手段进行表征,主要结果如下:
     首先以α-Al2O3颗粒在聚醚砜(PES)/1-甲基-2-吡咯烷酮(NMP)溶液中的分散体系为铸膜液,采用湿法纺丝工艺制备中空纤维坯体膜,经过高温烧结制备了Al2O3中空纤维膜。铸膜液体系中固含量和聚合物含量均会直接影响铸膜液黏度,铸膜液黏度越大,假塑性流体特征越明显;Al2O3颗粒的存在使得坯体膜壁上未形成常见的指状孔结构,取而代之的是大量不规则孔结构;随着PES含量的增加,中空纤维坯体膜表面聚合物层逐渐致密化;聚合物在烧结过程中完全受热分解,烧结前后及不同的烧结温度下,α-Al2O3晶型均无发生变化;当Al2O3含量为55wt.%时,膜平均孔径为1μm左右,抗弯强度为49.5 MPa;当固含量为50wt.%时,PES含量存在一个最优值,即8~9wt.%,其微观形貌、抗弯强度、平均孔径及其分布等各方面参数均比较突出。实验结果表明,适当降低PES含量,同时增加体系固含量有利于改进膜性能。
     其次以优选的Al2O3中空纤维膜(PES含量为8wt.%)为基膜,分别制备勃母石溶胶和钛溶胶,在基膜上进行涂覆与烧结,制备具有大孔修复功能的分离层。通过考察涂膜次数、涂膜方式等工艺条件以及溶剂量等溶胶条件对膜层成膜性能的影响,发现颗粒型Al2O3溶胶成膜效果更好,随涂膜次数增加,膜最大孔径和平均孔径均逐渐变小,截留率逐渐增加,涂膜四次后可在基膜表面形成10μm左右的膜层;A1颗粒分散液熔点较低,更易于在载体膜表面负载分离层,抽滤形成的滤饼与浸涂形成的吸附层之间的差异主要表现在厚度及与膜表面的结合力方面,这种差异造成的结果对于Al2O3颗粒分散液更加明显;以一缩二乙二醇(DegOH)为溶剂、钛酸四正丁酯(TBT)为前躯体制备的聚合型TiO2溶胶成膜效果受溶剂添加量影响较大,当nDegOH: nTBT在8.0左右时,经四次涂膜后最大孔径和平均孔径达到最小值,分别为1.1μm和0.7μm;烧结温度的提高有利于颗粒生成,但不利于形成膜层;采用溶胶-凝胶法制备复合膜涂层时,需要严格控制溶胶性质、涂膜方式、晾干与烧结环境参数,以及烧结过程中的升温速率和空氛。
     随后以聚酰胺酸(PA)、Al2O3颗粒、SiO2颗粒、铝溶胶和硅溶胶为原料,N,N-二甲基乙酰胺(DMAc)为溶剂,配制5种不同的涂膜液,对载体膜进行涂覆,经300℃真空煅烧完成热亚胺化,再经800℃真空炭化,制得聚酰亚胺基碳膜。PA原料液经DMAc稀释后,液体黏度降低,表面张力趋于稳定化。在空气中自然晾干比起水浴凝胶和加热干燥更加便于操作,成本更低;添加无机成分后,涂膜液黏度降至100 cP以下,有利于涂层吸附,无机成分可改善膜表面孔结构,提高亲水性,降低气体通量,但其仍保持在通量较高的水平(0~600 GPU), O2/N2选择性总体上有明显提高,其中溶胶法所形成的表面孔比直接添加无机粒子更为均匀。
     同时依据Al2O3-SiO2和Al2O3-高岭土体系在高温下的反应,利用相转化法和原位反应烧结法制备含有莫来石的SiO2/高岭土-Al2O3中空纤维膜。通过添加不同大小的颗粒可控制分散体系内颗粒间相互作用,减少团聚与絮凝现象,强化铸膜液体系的稳定性和可用性;烧结过程中,部分α-Al2O3在与SiO2/高岭土的反应过程中消耗,其余仍保持α-Al2O3形态,鳞石英型SiO2在烧结过程中先转变为方石英,再与α-Al2O3反应,生成莫来石相(3Al2O3-2SiO2);该反应在1450℃时,以固相反应为主,1600℃时以液-固相反应为主,液相的产生极大地强化反应进行的程度。高岭土中有效反应成分有限,Al2O3-高岭土体系随烧结温度的变化情况受反应影响不大,总趋势与Al2O3中空纤维膜制备过程中现象一致,但同样可改善膜形态与结构参数。SiO2-Al2O3体系在较低的烧结温度(1450℃)下制备得到的膜性能可以与较高温度(1600℃)下制备的Al2O3中空纤维膜相匹敌;而当Al2O3与高岭土的质量比为1:1时,经1600℃烧结得到的中空纤维膜平均孔径可降至0.5μm左右。制备含有莫来石的SiO2/高岭土-Al2O3中空纤维膜,在保证膜性能的同时,不仅可降低制膜材料成本,更能节约烧结过程能耗成本。但是如何保持烧结温度与反应体系的材料配比的匹配性是关键。
     最后采用相同的工艺制备四种不同组分与含量的TiO2中空纤维膜,分别在1000℃、1200℃、1450℃及1600℃下进行烧结,得到Ti02中空纤维气体渗透膜。与A12O3中空纤维膜不同,随着烧结温度的提高,TiO2膜性能呈现先上升后下降的趋势,这是因为Ti02熔点(1858℃)低于A1203熔点(2050℃)。由N2通量随压力的变化曲线确定了气体通过TiO2中空纤维膜的渗透机理为Knudsen扩散;金红石相的TiO2在烧结前后以及不同的烧结温度下,晶型保持稳定,颗粒受热膨胀现象十分显著。添加铝粉在膜制备过程中发挥了显著的开孔作用,使得膜孔隙率和N2通量显著增加,但是同时损失了很大的力学性能。当烧结温度为1200℃时,固含量为60wt.%的TiO2中空纤维膜性能最佳。
Hollow fiber ceramic membranes not only possess the advantages of ceramic materials such as high thermal and chemical stability and long-term durability, allowing them applicable in harsh environment with strong acid, strong alkali and high temperature, the high specific area and bulking density of hollow fibers reduce the space requirement, which is significant to practical application due to the expensive commercial place. In this paper, usingα-Al2O3, SiO2, TiO2 and kaolin as main body, a series of hollow fiber ceramic membranes were prepared via phase inversion method combined with high-temperature sintering process. Thenα-Al2O3 hollow fiber composite membranes were prepared by coating boehmite sol, silica sol, titanium sol, a-Al2O3-H2O dispersion, Al powder-H2O dispersion, PA solution and its mixture with the inorganic particles through different technologies and processes. These membranes were characterized by means of dope solution viscosity, SEM, XRD, FTIR, TGA, mechanical properties, water contact angle, porosity, density, pore size and pore size distribution, pure water flux and gas separation performance. The main results are listed as follows:
     Firstly, the system withα-Al2O3 particles dispersed in poly(ether sulfone) (PES)/ 1-methyl-2-pyrrolidone (NMP) solution was used as dope solution, Al2O3 hollow fiber membranes were prepared with the solution through wet-spinning technology and sintering process. Solid and polymer content directly affected the dope solution viscosity. Higher solid and polymer content brought higher viscosity and more obvious characteristics of the pseudoplastic fluid. The existence of Al2O3 particles prevented the formation of common finger-like pore structure, replaced by a large quantity of irregular macroporous structure. The polymer layer on membrane surface was densified with PES content increasing. Polymer chains completed thermal decomposition during sintering process.α-Al2O3 presented no crystal change before and after sintering process with different aimed sintering temperatures. With Al2O3 content of 55 wt.%, the membrane mean pore size was about 1μm and the bending strength was 49.5 MPa. There was an optimal value of PES content, viz.8~9 wt.%, that the microstructure, flexural strength, average pore size and distribution of various parameters were more prominent. Through the experiment process, applicably lower PES content and higher solid content would help improve membrane performance.
     Secondly, the previous preferred Al2O3 hollow fiber membrane (with PES content of 8 wt.%) was used as substrate, coated by boehmite sol and titanium sol. After sintering process, separation layers were obtained with macro-pore modification function. The effect of coating times, coating technology and the amount of solvent on membrane formation process were examined, and the results indicated that particle-type Al2O3 sol possessed better properties, and with more coating times, maximum pore size and mean pore size decreased and rejection increased gradually. After coated by 4 times, separation layer of about 10μm was formed on the substrate surface. Aluminium was much easier to load on the substrate after sintering because of its lower melting point. The main difference between leaching cake by filtration and the adsorption layer of coating solution was in the thickness and surface binding interaction, which was more obvious for Al2O3 particle dispersion. Membrane formation property of polymer-TiO2 sol was largely influenced by the amount of solvent addition if DegOH was used as solvent. When nDegOH:nTBT was at 8.0 or so, the membrane maximum and mean pore size reached a minimum value after 4 times coating viz.1.1μm and 0.8μm respectively. Higher sintering temperature helped grain production, but was not conducive to membrane layer formation. When sol-gel method was used to prepare composite membrane, the sol property, coating methods, drying and sintering environment parameters, heating rate and air atmosphere during the sintering process were all required to be controlled.
     Then using polyamic acid (PA), Al2O3 particles, SiO2 particles, aluminum and silica sol as raw materials, DMAc as the solvent, five different coating solution were prepared and coated on the substrate surface. After thermal imidization at 300℃vacuum calcination and then carbonized at 800℃vacuum, polyimide (PI)-derived carbon membranes were obtained. After diluted by DMAc, the viscosity of PA solution decreased and surface tension tended to stabilize. Natural drying in air was adopted, with more easier operation and lower cost than water bath and heating process. After adding inorganic material, coating solution viscosity reduced to 100 cP or less, which was good for coating layer absorption. Inorganic components were conducive to improve membrane surface pore structure and hydrophilicity, restraining gas permeation which still remained at a high flux level (0~600 GPU). The overall selectivity of O2/N2 significantly improved. The surface pore structure formed by sol-gel method was more uniform than that of direct adding particles.
     Meanwhile, the reaction in Al2O3-SiO2 and Al2O3-kaolin system at a high temperature was introduced to the phase inversion method and the in situ reaction sintering process to prepare SiO2/Kaolin-Al2O3 hollow fiber membranes containing mullite. By adding different sized particles into the dispersion system, particle interaction could be controlled, with less aggregation and flocculation and more system stability and availability. During the sintering process, some amount ofα-Al2O3 was consumed in the reaction with SiO2/kaolin, and the residual still remained asα-Al2O3. Tridymite type of SiO2 first transformed into cristobalite and then reacted withα-Al2O3 to produce mullite (3Al2O3·2SiO2). The reaction was in solid-state at 1450℃, and majorly in liquid-solid reaction at 1600℃. The presence of liquid phase greatly enhanced the reaction. Since the effective component of reaction was limited in kaolin, Al2O3-kaolin system did not change much with the sintering temperature, consistent with Al2O3 hollow fiber membrane preparation process, but could also improve membrane morphology and structure. Properties of membranes prepared by SiO2-Al2O3 system at a lower sintering temperature (1450℃) even could compete with Al2O3 membrane with higher temperature (1600℃). When the mass ratio of Al2O3 and kaolin was 1:1, the mean pore size of obtained hollow fiber membrane sintered at 1600℃could be reduced to about 0.5μm. To achieve required membrane performance, the preparation of SiO2/kaolin-Al2O3 hollow fiber membrane containing mullite could not only reduce the manufacturing cost of membrane materials, but also lead to more savings in energy costs during the sintering process. But how to maintain the sintering temperature and the reaction ratio of the materials is the key.
     Finally, using the same process with the previous work, four different TiO2 hollow fiber gas permeable membranes was obtained after sintered at 1000℃,1200℃,1450℃and 1600℃. Different with Al2O3 hollow fiber membranes, as sintering temperature increased, membrane properties were first improved then deteriorated, caused by lower melting point of TiO2 (1858℃) than that of Al2O3 (2050℃). Based on the N2 flux curves under different pressures, the gas permeation mechanism of TiO2 hollow fiber membrane was considered to be Knudsen diffusion. Rutile phase of TiO2 remained stable before and after sintering at different temperatures and the phenomenon of thermal expansion of particles was very significant. The addition of aluminum powder in the membrane preparation process played a significant role in the pore structure formation, resulted in the increment of membrane porosity and N2 flux. When the sintering temperature was 1200℃, TiO2 hollow fiber membrane with solid content of 60 wt.% presented the optimum performance.
引文
[1]Agoudjil N, Benmouhoub N, Larbot A. Synthesis and characterization of inorganic membranes and applications[J]. Desalination.2005,184:65-69
    [2]Choi H, Stathatos E, Dionysiou D. Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications[J]. Applied Catalysis B:Environmental.2006,63:60-67
    [3]Krajewski S R, Kujawski W, Bukowska M, Picard C, Larbot A. Application of fluoroalkylsilanes(FAS) grafted ceramic membranes in membrane distillation process of NaCI solutions[J]. Journal of Membrane Science.2006,281:253-259
    [4]苏毅,胡亮,刘谋盛.无机膜的特性、制造及应用[J].化学世界.2001,11:604-607
    [5]徐南平.无机膜的发展现状与展望[J].化工进展.2000,4:5-9
    [6]韩春芬,雷新荣.多孔无机膜的制备和应用[J].化工新型材料.2004,32(8):5-8
    [7]李宏,熊德华.无机膜材料研究应用现状及展望[J].国外建材科技.2007,28(4):7-11
    [8]徐南平,邢卫红,赵宜江.无机膜分离技术与应用[M].北京:化学工业出版社,2003
    [9]张文龙,严进,蒋柏泉,郑典模,王敏炜.管状多孔陶瓷膜载体的研制[J].南昌大学学报(工科版).1998,20(1):64-68
    [10]王焕章,吴立群,徐南平,时均.致密超簿钯膜的制备及其性能研究[J].南京化工大学学报.2000,22(5):5-10
    [11]沈永德,漆虹,林晓,徐南平.NaY型分子筛膜的合成及表征[J].南京工业大学学报.2006,28(4):22-25
    [12]何敬昌,彭乔,林贞军,戴丽平.无机分离膜的表征与应用[J].辽宁化工.2008,37(1):47-50
    [13]廖传华,徐南平,时钧.气体分离无机膜的应用及研究进展[J].中国陶瓷.2003,39(2):15-17
    [14]石跃红,杨炯,马桂萍.无机膜制备技术的进[J].山西化工.1999,19(4):14-16
    [15]时钧,袁权.膜技术手册[M].北京:化学工业出版社,2001
    [16]王学松.膜分离技术及应用[M].北京:科学出版社,1994
    [17]刘茉娥.膜分离技术应用手册[M].北京:化学工业出版社,2001
    [18]Li J S, Wang L J, Hao Y X, Liu X D, Sun X Y. Preparation and characterization of Al2O3 hollow fiber membranes[J]. Journal of Membrane Science.2005,256:1-6
    [19]Liu S M, Li K, Hughes R. Preparation of porous aluminium oxide (Al2O3) hollow fibre membranes by a combined phase-inversion and sintering method[J]. Ceramics International.2003,29:875-881
    [20]Lu Y, Yu S L, Chai B X, Shun X. Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance [J]. Journal of Membrane Science.2006,276: 162-167
    [21]Liu S M, Li K. Preparation TiO2/Al2O3 composite hollow fibre membranes[J]. Journal of Membrane Science.2003,218:269-277
    [22]Essawy A A, Ali A E H, Mottaleb M S A. Application of novel copolymer-TiO2 membranes for some textile dyes adsorptive removal from aqueous solution and photocatalytic decolorization[J]. Journal of Hazardous Materials.2008,157:547-552
    [23]Zhan M J, Li G, Wei Q, Cui H L, Lin L. Preparation of porous TiO2/Ti composite membrane for immunoisolation[J]. Applied Surface Science.2008,255(5):2256-2558
    [24]Bae TH, Kim I C, Tak T M. Preparation and characterization of fouling-resistant TiO2 self-assembled nanocomposite membranes[J]. Journal of Membrane Science.2006,275: 1-5
    [25]Ohta Y, Akamatsua K, Sugawara T, Nakao A, Miyoshi A, Nakao S I. Development of pore size-controlled silica membranes for gas separation by chemical vapor deposition[J]. Journal of Membrane Science.2008,315:93-99
    [26]Zhu J, Tang H L, Pan M. Fabrication and characterization of self-assembled Nafion-SiO2-ePTFE composite membrane of PEM fuel cell[J]. Journal of Membrane Science.2008,312:41-47
    [27]Prado L A, Karthikeyan C S, Schulte K, Nunes S P, Torriani I L. Organic modification of layered silicates:structural and thermal characterizations[J]. Journal of Non-Crystalline Solids.2005,351:970-975
    [28]Song X L, Jiang N, Li Y K, Xu D Y, Qiu G Z. Synthesis of CeO2-coated SiO2 nanoparticle and dispersion stability of its suspension[J]. Materials Chemistry and Physics.2008,110:128-135
    [29]Li J S, Zhang Y, Hao Y T, Zhao J Y, Sun X Y, Wang L J. Synthesis of ordered mesoporous silica membrane on inorganic hollow fiber[J]. Journal of Colloid and Interface Science.2008,326:439-444
    [30]Erhan M, Dundar M, Ozcan M, Gungor M A, Gokce B, Artunc C. Evaluation of bond strength of various margin ceramics to a zirconia ceramic[J]. Journal of Dentisitry. 2008,36:822-827
    [31]Liu Y, Chen O Y, Wei C C, Li K. Preparation of yttria-stabilised zirconia (YSZ) hollow fibre membranes[J]. Desalination.2006,199:360-362
    [32]Gestel T V, Sebold D, Meulenberg W A, Bram M, Buchkremer H P. Manufacturing of new nano-structured ceramic-metallic composite microporous membranes consisting of ZrO2, A12O3, TiO2 and stainless steel[J]. Solid State Ionics.2008,179:1360-1366
    [33]Sundh A, Molin M, Sjogren G. Fracture resistance of yttrium oxide partially-stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing[J]. Dental Materials.2005,21:476-482
    [34]Gabitto J, Tsouris C. Hydrogen transport in composite inorganic membranes[J]. Journal of Membrane Science.2008,312:132-142
    [35]Tong J H, Matsumura Y. Thin Pd membrane prepared on macroporous stainless steel tube filter by an in-situ multi-dimensional plating mechanism [J]. Inorganic Chemistry Communications.2004,21:2460-2461
    [36]Jong J D, Benes N E, Koops, G H, Wessling M. Towards single step production of multi-layer inorganic hollow fibers[J]. Journal of Membrane Science.2004,239: 265-269
    [37]Zhang L X, Chen X H, Zeng C F, Xu N P. Preparation and gas separation of nano-sized nickel particle-filled carbon membranes[J]. Journal of Membrane Science.2006,281: 429-434
    [38]Lee S M, Choi I H, Myung S W, Park J, Kim I C, Kim W N, Lee K H. Preparation and characterization of nickel hollow fiber membrane[J]. Desalination.2008,233:32-39
    [39]Lu X F, Chao D M, Chen J Y, Zhang W J, Wei Y. Preparation and characterization of inorganic/organic hybrid nanocomposites based on Au nanoparticles and polypyrrole[J]. Materials Letters.2006,60:2851-2854
    [40]Tong J H, Su L L, Haraya K, Suda H. Thin Pd membrane on α-Al2O3 hollow fiber substrate without any interlayer by electroless plating combined with embedding Pd catalyst in polymer template[J]. Journal of Membrane Science.2008,310:93-101
    [41]Wei C C, Chen O Y, Liu Y, Li K. Ceramic asymmetric hollow fibre membranes-One step fabrication process[J]. Journal of Membrane Science.2008,320:191-197
    [42]Zhao L L, Wang R S. γ-MnO2 nano-sieve membrane:preparation, characterization and reaction studies[J]. Applied Surface Science.2004,236:217-222
    [43]Pan X L, Stroh N, Brunner h, Xiong G X, Sheng S S. Pd/ceramic hollow fibers for H2 separation[J]. Separation and Purification Technology.2003,32:265-270
    [44]Qi H, Han J, Xu N P. Effect of calcination temperature on carbon dioxide separation properties of a novel microporous hybrid silica membrane[J]. Journal of Membrane Science.2011,382:231-237
    [45]Cui Z L, Xing W H, Fan Y Q, Xu N P. Pilot study on the ceramic membrane pre-treatment for seawater desalination with reverse osmosis in Tianjin Bohai Bay[J]. Desalination.2011,279:190-194
    [46]Elzo D, Huisman I, Middelink E, Gekas V. Charge effects on inorganic membrane performance in a cross-flow micmfiltration process[J]. Colloids and Surfaces A.1998, 138:145-159
    [47]Bhave R R. Inorganic membranes synthesis, characteristics and application[M]. Van Nostrand Reinhold. New York,1991
    [48]Niina L E, Luonsi A. Modified and unmodified alumina membranes in ultrafiltration of board mill wastewater fractions[J]. Desalination.1998,115:3-70
    [49]Pouet M F, Grasmick A. Elect rocogulation and floration:applications in crossflow microfiltration[J]. Filtration and Separation.1994,31:269-272
    [50]Ahn K H, Song J H, Cha H Y. Application of tubular ceramic membranes for reuse of wastewater from building[J]. Water Science and Technology.1998,38(4-5):373-382
    [51]赵宜江,邢卫红.陶瓷微滤膜澄清中药提取液的研究[J].水处理技术.1999,25(4):199-203
    [52]Zhong X X, Li W X, Xing W H, Xu N P. Crossflow filtration of nanosized catalysts suspension using ceramic membranes[J]. Separation and Purification Technology.2011, 76:223-230
    [53]Tan X Y, Li K. Inorganic hollow fibre membranes in catalytic processing[J]. Current Opinion in Chemical Engineering.2011,1:69-76
    [54]Hatim M D I, Tan X Y, Wu Z T, Li K. Pd/Al2O3 composite hollow fibre membranes: Effect of substrate resistances on H2 permeation properties[J]. Chemical Engineering Science.2011,66:1150-1158
    [55]Zhang D Q, Zhou SY, Fan Y Q, Xu N P, He Y H. Preparation of dense Pd composite membranes on porous Ti-Al alloy supports by electroless plating[J]. Journal of Membrane Science.2012,387-388:24-29
    [56]Koonaphapdeelert S, Wu Z T, Li K. Carbon dioxide stripping in ceramic hollow fibre membrane contactors[J]. Chemical Engineering Science. doi:10.1016/j.ces.2008.09.010
    [57]Thursfield A, Metcalfe I S. Air separation using a catalytically modified mixed conducting ceramic hollow fiber membrane module[J]. Journal of Membrane Science. 2007,288:175-187
    [58]Xu L, Lee H K. Zirconia Hollow Fiber:Preparation, Characterization, and Microextraction Application[J]. Analytical Chemistry.2007,79(14):5241-5248
    [59]Maneeratana V, Sigmund W M. Continuous hollow alumina gel fibers by direct electrospinning of ail alkoxide-based precursor[J]. Chemical Engineering Journal.2008, 137:137-143
    [60]Suzuki T, Fujishiro Y, Awano M. Fabrication and characterization of microtubular SOFCs for operation in the intermediate temperature[J]. Journal Of Power Sources. 2006,160:73-77
    [61]Loeb S, Sourirajan S. Sea water demineralization by means of an osmotic membrane [J]. Adv. Chem. Ser.1962,38:117-132
    [62]Kesting R E. Synthetic polymeric membranes:A structural perspective[M].2th Ed. Wiley. New York,1985
    [63]Yoshida K. Structure feature and membrane property of microporous hollow fibers[J]. Kobunshi.1988,37:142
    [64]Ying K L, Hsieh T E, Hsieh Y F. Colloidal dispersion of nano-scale ZnO powders using amphibious and anionic polyelectrolytes[J]. Ceramics International.2008, doi: 10.1016/j.ceramint.2008.05.014
    [65]N. Widjojo, T.S. Chung, W.B. Krantz. A morphological and structural study of Ultem/P84 copolyimide dual-layer hollow fiber membranes with delamination-free morphology [J]. Journal of Membrane Science.2007,294:132-146
    [66]Widjojo N, Zhang S D, Chung T S, Liu Y. Enhanced gas separation performance of dual-layer hollow fiber membranes via substructure resistance reduction using mixed matrix materials[J]. Journal of Membrane Science.2007,306:147-158
    [67]Lu K. Theoretical analysis of colloidal interaction energy in nanoparticle suspensions[J]. Ceramics International.2008,34:1353-1360
    [68]任俊,卢寿慈.亲水性及疏水性颗粒在水中的分散行为研究[J].中国粉体技术.1999,5(2):65-69
    [69]任俊,卢寿慈.在水介质中分散剂对微细颗粒分散作用的影响[J].北京科技大学学报.1998,20(1):7-10
    [70]任俊,卢寿慈.固体颗粒在液相中的分散[J].北京科技大学学报.1998,20(1):1-6
    [71]王瑞刚,吴厚政,陈玉如.陶瓷浆料稳定分散进展[J].陶瓷学报.1999,20(1):35-40
    [72]Tadros T F. Steric stabilization and flocculation by polymer [J]. Polymer.1991,23(5): 683-696
    [73]Ottewill R H. Stability and instability in disperse systems [J]. Journal of Colloid and Interface Science.1977,58(2):357-373
    [74]Napper D H. Steric Stabilization [J]. Journal of Colloid and Interface Science.1977, 58(2):390-407
    [75]李健生,王连军,梁祎.纳米氧化物粒子对PVDF中空纤维膜结构与性能的影响[J].环境科学.2005,26(3):126-129
    [76]徐国强,李先锋,吕晓龙.碳酸钙对热致相分离制备聚偏氟乙烯多孔膜结构的影响[J].高分子材料科学与工程.2007,23(5):234-237
    [77]曲云.耐污染性纳米SiO2/PVDF复合膜的研究[D].天津大学学位论文,2006
    [78]李健生,梁祎,王慧雅.TiO2/PVDF复合中空纤维膜的制备和表征[J].高分子学报.2004,5:709-712
    [79]丁祥金,张继周,桂子清.粉料形貌对多孔Al2O3支撑体的影响[J].膜科学与技术.2001,21(2):17-20
    [80]Piatkiewicz S, Rosinski S. Determination of pore size distribution in hollow fiber membranes[J]. Journal of Membrane Science.1999,153(1):91-102
    [81]Wang L M, Tian B Z, Fan J, Liu X Y, Yang H F, Yu C Z, Tu B, Zhao D Y. Block copolymer templating syntheses of ordered large-pore stable mesoporous aluminophosphates and Fe-aluminophosphate based on an "acid-base pair" route[J]. Microporous and Mesoporous Materials.2004,67:123-133
    [82]陈立新,沈新元.相转化法的湿法成膜机理[J].膜科学与技术.1997,17(3):1-18
    [83]Wijmans J G, Kant J, Mulder M H V. Phase separation phenomena in solutions of polysulfone in mixtures of solvent and a nonsolvent:relation with membrane formation [J]. Polymer.1985,26:1539-1545
    [84]Witte P, Dijkstra P J, Berg J W A, Feijen J. Phase separation processes in polymer solutions in relation to membrane formation [J]. Journal of Membrane Science.1996, 117(1):1-31
    [85]Young T H, Cheng L P, Lin D J. Mechanisms of PVDF membrane formation by immersion-precipitation in soft(1-octanol) and harsh(water) nonsolvents [J]. Polymer. 1999,40:5313-5323
    [86]Karode S K, Kumar A. Formation of polymeric membranes by immersion precipitation: an improved algorithm for mass transfer calculations [J]. Journal of Membrane Science. 2001,187(2):287-296
    [87]Stropnik C, Musil V, Brumen M. Polymeric membrane formation by wet-phase separation:turbidity and shrinkage phenomena as evidence for the elemetray processes[J]. Polymer.2000,41:9227-9237
    [88]Zhang H, Lau W Y, Sourirajian S. Factors influencing the production of PES micro filtration membrane by immersion phase inversion process [J]. Separation Science and Technology.1995,30(1):33-52
    [89]Reuvers A J, Berg J W A, Smolders C A. Formation of membranes by means of immersion precipitation. Part I. A model to describe mass transfer during immersion precipitation [J]. Journal of Membrane Science.1987,34(1):45-65
    [90]Reuvers A J, Smolders C A. Formation of membranes by means of immersion precipitation. Part Π. The mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water [J]. Journal of Membrane Science.1987,34(1): 67-86
    [91]Koonaphapdeelert S, Li K. Preparation and characterization of hydrophobic ceramic hollow fiber membrane[J]. Journal of Membrane Science.2007,291:70-76
    [92]Liu Y T, Li K. Preparation of SrCe0.95Yb0.05O3-α hollow fibre membranes:Study on sintering processes[J]. Journal of Membrane Science.2005,259:47-54
    [93]黄肖容,吕扬效,黄仲涛.焙烧温度对氧化铝膜孔性能的影响[J].无机材料学报.1999,14(5):751-756
    [94]孙华叶,吕彤.无机膜陶瓷支撑体研究进展[J].辽宁化工.2004,33(3):156-158
    [95]黄酉腊.氧化铝填充聚偏氟乙烯(PVDF)中空纤维膜的结构控制与应用[D].南京理工大学硕士学位论文.2006,6
    [96]Abidi N, Sivade A, Bourret D, Larbot A, Boutevin B, Pietrasanta F G, Ratsimihety A. Surface modification of mesoporous membranes by fluoro-silane coupling reagent for CO2 separation[J]. Journal of Membrane Science.2006,270:101-107
    [97]Li D, Seok D R, Hwang S T. Gas permeability of high-temperature-resistance silicone polymer-vycor glass membrane[J]. Journal of Membrane Science.1988,37:267-273
    [98]Li D, Huang S T, Gas separation by silicon based inorganic membrane at high temperature[J]. Journal of Membrane Science.1992,66:119-126
    [99]Krajewski S R, Kujawski W, Dijoux F, Picard C, Larbot A. Grafting of ZrO2 powder and ZrO2 membrane by fluoroalkylsilanes[J]. Colloids and Surfaces A.2004,243(1-3): 43-47
    [100]Younssi S A, Iraqi A, Rafiq M, Persin M, Larbot A, Sarrazin J. γ-Alumina membranes grafting by organosilanes and its application to the separation of solvent mixtures by pervaporation[J]. Separation and Purification Technology.2003,32(1-3):175-179
    [101]Getel T V, Bruggen B V, Buekenhoudt A, Dotremont C, Luyten J, Vandecasteele C, Maes G. Surface modification of γ-Al2O3/TiO2 multi-layer membranes for applications in non-polar organic solvents[J]. Journal of Membrane Science.2003,224 (1-2):3-10
    [102]Larbot A, Gazagnes L, Krajewski S, Bukowska M, Kujawski W. Water desalination using ceramic membrane distillation[J]. Desalination.2004,168:367-372
    [103]Ismail A F, Kusworo T D, Mustafa A. Enhanced gas permeation performance of polyethersulfone mixed matrix hollow fiber membranes using novel Dynasylan Ameo silane agent[J]. Journal of Membrane Science.2008,319:306-312
    [104]赵泽浩.Al2O3陶瓷和Al2O3微粉[J].真空电子技术.2003,45(4):43-47
    [105]Lee K H, Kim Y M. Asymmetric hollow inorganic membranes[J]. Key Engineering Material.1992,61-62:17-22
    [106]Wang B, Livingston Z W G, Li K. A novel phase transition technique for fabrication of mesopore sized ceramic membranes[J]. Journal of Membrane Science.2009,339:5-9
    [107]Chen Y F, Wang M C, Hong M H, Pore structure and permeation properties of kaolin-silica-alumina ceramics[J]. Journal of Ceramic Society Japan.2003,111: 537-543
    [108]Chen G L, Qi H, Xing W H. Direct preparation of macroporous mullite supports for membranes by in situ reaction sintering[J]. Journal of Membrane Science.2008,318: 38-44
    [109]Everett D H. Basic Principles of Colloid Science, RSC, UK,1992.
    [110]Elkamel A, Noble R D. A statistical mechanics approach to the separation of methane and nitrogen using capillary condensation in a micmpomus membrane[J]. Journal of Membrane Science.1992,65:163-172
    [111]Li J F, Xu Z L, Yang H. Hydrophilic microporous PES membranes prepared by PES/PEG/DMAc casting solutions[J]. Journal of Applied Polymer Science.2008,107: 4100-4108
    [112]Li J F, Xu Z L, Yang H. Microporous polyethersulfone membranes prepared under the combined precipitation conditions with non-solvent additives [J]. Polymmer Advanced Technology.2008,19:251-257
    [113]李井峰.相转化法制备聚醚砜微孔膜及其结构控制的研究[D].华东理工大学博士学位论文.2008,3
    [114]Kingsbury B F K, Li K, A morphological study of ceramic hollow fibre membranes [J]. Journal of Membrane Science.2009,328:134-140
    [115]Zhang R. Ceramic technology[M], Chemical Industry Press, China,2007
    [116]Yu L Y, Xu Z L, Shen H M. Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method[J]. Journal of Membrane Science.2009, 337(1-2):257-265
    [117]Dinger D R. Rheology for Ceramists, Dinger Ceramic Consulting Services, Clemson, United States,2002
    [118]丁子上,翁文利.溶胶-凝胶工艺制备材料的进展[J].硅酸盐学报,1993,21(5):443-450
    [119]邱国民,王兴利,张克铮.溶胶-凝胶法制备Si02无机膜的影响因素[J].辽宁石油化工大学学报.2006,26(2):19-22
    [120]邱春阳,张克铮.溶胶-凝胶法制备二氧化硅无机膜的实验研究[J].玻璃与搪瓷.2006,34(2):5-8
    [121]刘月明,吴海虹,吴鹏,赵东元,何鸣元.具有锐钛矿骨架结构TiO2介孔分子筛的合成[J].化学学报.2005,63(24):2241-2244
    [122]Unlhorn F J R., Huis I, Veld M H B. Supported y-Al2O3 Membranes Without Defects[J]. Journal of Material Science Letter.1992,27:527-537
    [123]Zhang C, Hong Z, Chen J X, Gu X H, Jin W Q, Xu N P. Catalytic MFI zeolite membranes supported on γ-Al2O3 substrates for m-xylene isomerization[J]. Journal of Membrane Science.2011, doi:10.1016/j.memsci.2011.11.013
    [124]Qiu M H, Fan S, Cai Y Y, Fan Y Q, Xu N P. Co-sintering synthesis of bi-layer titania ultrafiltration membranes with intermediate layer of sol-coated nanofibers[J]. Journal of Membrane Science.2010,365:225-231
    [125]陈邵湘,张歆.聚酰亚胺多孔碳膜的制备及其表征和应用[J].化学研究,2010,21(1):86-90
    [126]殷静.PA/PES共混中空纤维碳分子筛膜制备及其应用的研究[D].华东理工大学硕士毕业论文,2005.01
    [127]王同华,呼立红,刘庆岭,刘诗丽,王震,丁孟贤.预氧化处理对聚醚酰亚胺基炭膜结构与气体分离性能的影响[J].新型炭材料.2008,23(3):264-268
    [128]Zhong J, Liang S Q, Xu C, Wang H T, Cheng Y B. Meso/micro-porosity and phase separation in TiO2/SiO2/C nanocomposites[J]. Microporous and Mesoporous Materials. 2012,150:25-31
    [129]亓淑英.以聚酰亚胺薄膜为原料制备碳膜的结构与性能的研究[D].北京化工大学硕士学位论文,2006.6
    [130]黄剑锋.溶胶-凝胶原理与技术[M].北京:化学工业出版社,2009.5
    [131]俞丽芸.聚偏氟乙烯-纳米无机粒子中空纤维复合超滤膜制备及其表征[D].华东理工大学博士毕业论文,2009.6
    [132]苏克曼,潘铁英,张玉兰.波谱解析法[M].上海:华东理工大学出版社,2002.8
    [133]周健儿,张小珍,汪永清,蔡细鄂.铝质原料对多孔针状莫来石合成的影响[J].陶瓷学报.2010,31(1):46-49
    [134]Chen Y F, Wang M C, Hong M H, Pore structure and permeation properties of kaolin-silica-alumina ceramics[J]. Journal of Cerammic Society Japan.2003,111: 537-543.
    [135]Chen G L, Qi H, Xing W H. Direct preparation of macroporous mullite supports for membranes by in situ reaction sintering[J]. Journal of Membrane Science.2008,318: 38-44
    [136]Aksay I A, Pask J A. Stable and metastable equilibria in the system SiO2-Al2O3[J], Journal of America Ceramic Society.1975,58(11-12):507-512
    [137]Maximous N, Nakhla G, Wan W. Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration[J]. Journal of Membrane Science.2009, 341:67-75
    [138]Everett D H. Basic Principles of Colloid Science[M]. RSC, UK,1992
    [139]Napper D. Polymeric Stabilization of Colloidal Dispersions[M]. Academic Press, UK, 1983
    [140]Sigmund W M, Bell N S, Bergstrom L. Novel powder-processing methods for advanced ceramics[J]. Journal of America Ceramic Society.2000,83(7):1557-1574
    [141]Ogden A L, Lewis J A. Effect of nonadsorbed polymer on the stability of weakly flocculated suspensions[J]. Langmuir.1996,12(14):3413-3424
    [142]Li Q, Lewis J A. Nanoparticle inks for directed assembly of three-dimensional periodic structures[J]. Advanced Material.2003,15(19):1639-1643
    [143]张旭东.莫来石晶须的生长机理研究[J].陶瓷学报.1998,19(2):76-78
    [144]Ulrike D. The surface science of titanium dioxide [J]. Surf. Sci. Rep.2003,48(5-8): 53-229
    [145]Lu G Q, Diniz J C, Duke M, Giessler S, Socolow R, Williams R H, Kreutz T. Inorganic membranes for hydrogen production and purification:A critical review and perspective[J]. Journal of Colloid and Interface Science.2007,314:589-603

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700