用户名: 密码: 验证码:
黑曲霉产单宁酶的研究和有机相中固定化黑曲霉细胞生物合成没食子酸丙酯的初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以产单宁酶黑曲霉菌株为出发菌,通过诱变选育和产酶发酵工艺优化来提高菌种产酶能力,然后对其进行细胞固定化,应用于有机相生物合成抗氧化剂没食子酸丙酯(propyl gallate,PG)的研究。固定化细胞有机相生物合成PG的研究在国内外尚属首次,故本研究在学术上和实际应用中均具有重要意义。
     在前人研究的基础上,构建出单宁酶酶活力测定方法:以PG为底物,紫外光区270nm为测定波长,通过没食子酸丙酯的浓度与吸光值之间的线性关系计算出底物的减少量,从而测得单宁酶酶活力。该方法快速简便、灵敏可靠,重复性好、可信度高,适用于胞内单宁酶酶活力的测定。
     通过微波诱变与化学诱变相结合的复合选育,最终获得高产单宁酶的黑曲霉L_(21)菌株,产酶可达130.6U/ml。在摇瓶发酵条件下对该菌株的产酶工艺参数包括单宁酸浓度、碳源、氮源、碳氮比、初始pH值、转速和培养温度等因素进行研究,而后采用L_(27)(3~(13))正交试验对上述7个主要因素进行优化。在最优发酵条件下,黑曲霉L_(21)菌株可获得单宁酶酶活力225.8U/ml。
     通过6种黑曲霉细胞固定化方法的综合对比,最终选用海藻酸钙包埋法。鉴于固定化细胞在菌丝生长和产酶方面均表现出滞后效应,因此对黑曲霉L_(21)固定化细胞产酶发酵条件中海藻酸钠浓度、CaCl_2浓度、凝胶中孢子浓度、胶珠接种量、单宁酸浓度和装液量这6个因素进行研究,并采用L_(18)(3~7)正交试验进行优化。优化后,黑曲霉L_(21)固定化细胞不仅具有与游离细胞相似的前期产酶过程和产酶峰值,而且还表现出比游离细胞更长的平衡期。
     最后,将固定化黑曲霉L_(21)细胞应用于有机相生物催化合成PG。通过对反应体系的选择以及合成工艺参数的初步优化,可获得20%左右的PG产率。
This research thesis reported that a producing tannase strain, Aspergillus niger TA was improved by mutation screening and optimization of its fermentation conditions; Then after cell immobilization, Aspergillus niger cells were applied to biosynthesize antioxidant propyl gallate (PG) in organic media. Since study on PG biosynthesis by immobilized cell in organic media was first reported home and abroad, this research work was meaningful both in science and application.
    A new method to determine tannase activity was established, in which PG was selected as substrate and 270nm as measure wavelength. According to the linear relationship between the concentration of PG and the corresponding absorption values, tannase activity was determined from the decreasing amount of substrate. The method exhibited not only simplicity and sensitivity, but also repeatability and accuracy. It was only used to determine the activity of intracellular tannase.
    A high-yielding tannase mutant strain, Aspergillus niger L2i was screened from its parent strain by combining microwave irradiation with chemical inducing, and its final tannase activity was 130.6 U/ml. Its fermentation parameters in shaking flasks were studied, including concentration of tannic acid, carbon source and nitrogen source with their proportion, initial pH value, agitation speed and incubation temperature, etc. Above seven factors were optimized with L2?(313) orthogonal experiment. Under the optimum conditions, the activity of tannase from Aspergillus niger L2i was 225.8 U/ml.
    After compare with five kinds of cell immobilization methods, calcium alginate entrapment was adopted to immobilize Aspergillus niger L2i cells. For improving hysteresis effect in mycelium growth and tannase producing, the fermentation parameters about Aspergillus niger L2i immobilization cells were studied, including concentration of sodium alginate, CaCl2 and spores, inoculation amount of gel beads, concentration of tannic acid and medium volume in shaking flasks, etc. Above six factors were further optimized by LIg(37) orthogonal experiment. Under these optimum conditions, immobilized Aspergillus niger L2i cells exhibited not only enzyme-producing earlier and enzyme peak value similar to that of free cells, but also stationary phase longer than that of free cells.
    At last, immobilized Aspergillus niger L21 cells were applied to biosynthesize PG in organic phase. After reaction system was selected and synthesis parameters preliminary was optimized, about 20% production percent of PG was obtained in the organic media.
引文
[1] 刘胜祥.植物资源学.武汉:武汉出版社,1994.8
    [2] 张跃平.工业单宁酸生产技术.企业技术开发,1991,12:10~11.
    [3] Yamada H., Adachi O., Watanabe M. Studies on fungal tannase Part Ⅰ. Formation, Purification and catalytic properties of tannase of Aspergillus flavus. Agl. Biol. Chem., 1968, 32(9): 1070~1078.
    [4] Yamada H., Adachi O., Watanabe M. et al. Tannase: a typical serine esterase. Agl. Biol. Chem., 1968, 32: 257~258.
    [5] Adachi O., Watanabe M., Yamada H. Studies on fungal tannase Part Ⅱ. Physicochemical properties of tannase of Aspergillus flavus. Agl. Biol. Chem.,1968, 32(9): 1079~1085.
    [6] Iibuchi S., Minoda Y., Yamada K. Studies on tannin acyl hydrolase of microorganisms Part Ⅲ. Purification of the enzyme and some properties of it. Agl. Biol. Chem., 1968, 32(7): 803~809.
    [7] Chae Soo-Kyu, Yu Tai-Jong. Purification of acorn tannin-hydrolyzing enzyme of Aspergillus sp. AN-11 and its physicochemical properities. Han' guk Sikp' um Kwahakhoe Chi, 1983, 15(4): 333~341.
    [8] Aoki K., Shinke R., Nishira H. Purification and some properties of yeast tannase. Agr. Biol. Chem., 1976, 40(1): 79~85.
    [9] Barthomeuf C., Regerat F., Pourrat H. Production, purification and characterization of a tannase from Aspergillus niger LCF 8. Journal of Fermentation and Bioengineering, 1994, 77(3): 320~323.
    [10] Beverini M., Metche M. Identification, purification and physicochemical properties of tannase of Aspergillus orizae. Sciences des Aliments, 1990, 10(4): 807~816.
    [11] Farias G. M., Gorbea C., Elkins J. R. Purification, characterization, and substrate relationships of the tannase from Cryphonectria parasitica. Physiological and Molecular Plant Pathology, 1994, 44(1): 51~63.
    [12] Hatamoto O., Watarai T., Kikuchi M. et al. Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene, 1996, 175: 215~221.
    [13] Niehaus J. U., Gross G. G. A gallotannin degrading esterase from leaves of pedunculate oak. Phytochemistry, 1997, 45(8): 1555~1560.
    [14] 郭鲁宏,杨顺楷,曾仲奎.黑曲霉单宁酶的纯化及部分性质研究.四川大学学报(自然科学版),1999,36(3):578~582.
    [15] 王征,谢达平,谭周进等.黑曲霉单宁酶提纯及其性质的研究.湖南农业大学学报(自然科学版),2001,27(1):60~62.
    
    
    [16] Aoki'K. , Shinke R. , Nishira H. Chemical composition and molecular weight of yeast tannase. Agr. Biol. Chem. , 1976, 40 (2) : 297-302.
    [17] Parthasarathy N. , Bose S. M. Glycoprotein nature of tannase in Aspergillus niger. Acta Biochem. Pol , 1976, 23 (40) : 293-298.
    [18] Rajakumar G. S. , Nandy S. C. Isolation, purification, and some properties of Penicillium chrysogenum tannase. Applied and environmental microbiology, 1983, 46 (2) : 525-527.
    [19] Farias G. M. , Elkins J. R. , Griffin G. J. Tannase activity associated with growth of Cryphonectria parasitica on American and Chinese chestnut extracts and properties of the enzyme. European Journal of Forest Pathology,1992, 22 (6-7) : 392-402.
    [20] Sharma Shweta. , Bhat T. K. , Dawra R. K. Isolation, purification and properties of tannase from Aspergillus niger van Tieghem. World Journal of Microbiology & Biotechnology, 1999, 15 (6) : 673-677.
    [21] 刘如石,邱义兰,谢达平等. Asp. Niger No.3 单宁酶纯化及性质的研究,食品与机械,2000, 4: 15-16.
    [22] Mondal K. C. , Pati B. R. Studies on the extracellular tannase from newly isolated Bacillus licheniformis KBR 6. Journal of Basic Microbiology, 2000, 40 (4) : 223-232.
    [23] Mondal K. C. , Saptadip S. , Subrata G. et al. Distribution of tannic acid degrading microorganisms in the soil and comparative study of tannase from two fungal strains. Acta Microbiologica Polonica, 2001, 50: 1, 75-82.
    [24] Chae Soo-Kyu, Yu Tai-Jong. Purification of acorn tannin-hydrolyzing enzyme of Aspergillus sp. AN-11 and its physicochemical properities. Han' guk Sikp' um Kwahakhoe Chi, 1983, 15 (4) : 333-341.
    [25] Doi S. , Shinmyo A. Growth-associated production of tannase by a strain of Aspergillus oryzae. Hakko Kogaku Zasshi, 1973, 51 (11) : 768-774.
    [26] Iibuchi S. , Minoda Y. , Yamada K. Hydrolyzing pathway, substrate specificity and inhibition of tannin acyl hydrolase of Asp. oryzae No. 7. Agr. Biol. Chem. , 1972,36(9) : 1553-1562.
    [27] libuchi S. , Minoda Y. , Yamada K. Studies on tannin acyl hydrolase of microorganisms Part II. A new method determining the enzyme activity using the change of ultra violet absorption. Agl. BioL Chem. , 1967, 31 (5) : 513-518.
    [28] 王征,谢达平,黑曲霉产单宁酶发酵条件的研究,湖南农业大学学报,1998, 24 (5) : 380-383.
    [29] Iacazio G. , Perissol C. , Faure B. A new tannase substrate for spectro-photometric assay. Journal of Microbiological Methods, 2000, 42: 209-214.
    [30] Sharma Shweta. , Bhat T. K. Dawra R. K. A spectrophotometric method for assay of tannase using rhodanine. Analytical Biochemistry, 2000, 279 (1) :
    
    85-89.
    [31] Osawa R. , Walsh T. P. Visual reading method for detection of bacterial tannase. Applied and Environmental Microbiology, 1993, 59 (4) : 1251-1252.
    [32] Barthomeuf C. , Regerat F. , Pourrat H. Improvement in tannase recovery using enzymatic disruption of mycelium in combination with reverse micellar enzyme extraction. Biotechnology Techniques, 1994, 8 (2) : 137-142.
    [33] Abdel-Naby M. A. , Sherif A. A. , El-Tanash A. B. et al. Immobilization of Aspergillus oryzae tannase and properties of the immobilized enzyme. Journal of Applied Microbiology, 1999,87: 106-114.
    [34] Lekha P. K. , Lonsane B. K. Comparative titres, location and properties of tannin acyl hydrolase produced by Aspergillus niger PKL 104 in solid-state, liquid surface and submerged fermentations. Process Biochemistry, 1994, 29: 497-503.
    [35] 龚加顺,邓剑盈,刘勤晋,单宁酶的制备及其澄清茶饮料的动力学研究,食品科学, 1998, 19 (9) : 5-8.
    [36] Aguilar C. N. , Augur C. , Favela-Torres E. et al. Induction and repression patterns of fungal tannase in solid-st and submerged cultures. Process Biochemistry, 2001,36: 565-570.
    [37] Seth M., Chand S. Biosynthesis of tannase and hydrolysis of tannins to gallic acid by Aspergillus awamori-optimisation of process parameters. Process Biochemistry, 2000,36: 39-44.
    [38] Lambraki M. , Marakis S. , Roussos S. et al. Effects of initial sugar and mineral concentrations of carob substrates on the growth of Aspergillus carbonarius in solid state fermentation system. Micologia Neotropical Aplicada,1996,9: 1-14.
    [39] Bajpai B., Patil S. Induction of tannin acyl hydrolase (EC 3. 1. 1. 20) activity in some members of fungi imperfecti. Enzyme and Microbial Technology, 1997, 20:612-614.
    [40] Bradoo S. , Gupta R., Saxena R. K. Parametric optimization and biochemical regulation of extracellular tannase from Aspergillus japonicus. Process Biochemistry, 1997,32(2) : 135-139.
    [41] Gupta R., Bradoo S., Saxena R. K. Rapid puridication of extracellular tannase using polyehtylene glycol-tannic acid complex. Letters in Applied Microbiology, 1997,24:253-255.
    [42] Kar B., Banerjee R., Bhattacharyya B. C. Microbial production of gallic acid by modified solid state fermentation. Journal of Industrial Microbiology and Biotechnology, 1999,23(3) : 173-177.
    [43] Reshetnikova I. A. , Uspenskaya G. D. , Buzun G. A. et al. Tannase of some Ascochyta Lib. species. Mikologiya I Fitopatologiya, 1984,18: 6, 483-488.
    
    
    [44] Mondal K. C., Banerjee R., Pati B. R. Tannase production by Bacillus licheniformis. Biotechnology Letters, 2000, 22(9): 767~769.
    [45] Mondal K. C., Pati B. R. Studies on the extracellular tannase from newly isolated Bacillus licheniformis KBR 6. Journal of Basic Microbiology, 2000,40(4): 223~232.
    [46] Alain M. D., Gulten O., Jean-Michel L. Production of tannase and degradation of chestnut tannin by bacteria. J. Ferment. Technol., 1983, 61(1):55~59.
    [47] Ajay K. R., Gunasekaran P., Lakshmanan M. Biodegradation of tannic acid by Citrobacter freundii isolated from a tannery effluent. Journal of Basic Microbiology, 1999, 39(3): 161~168.
    [48] Nemoto K., Osawa R., Hirota K. et al. An investigation of gram-negative tannin-protein complex degrading bacteria in fecal flora of various mammals.Journal of Veterinary Medical Science, 1995, 57: 5, 921~926.
    [49] Osawa Ro, Kuroiso Keiko, Goto Satoshi et al. Isolation of tannin-degrading lactobacilli from humans and fermented foods. Applied & Environmental Microbiology, 2000, 66(7): 3093~3097.
    [50] Hong J. S., Kim M. K., Yoon S. et al. Production and properties of tannase from Lenzites betulina. Korean Journal of Applied Microbiology and Biotechnology, 1990, 18(6): 591~598.
    [51] Osawa R, Fujisawa T, Sly L. I. Streptococcus gallolyticus sp. Nov: gallate degrading organisms formerly assigned to Streptococcus bovis. Systematic and Applied Microbiology, 1995, 18: 1, 74~78.
    [52] Gross G. G., Geibel M., Treutter D. et al. In vitro studies on the biosynthesis of gallotannins and ellagitannins. Acta Horticulturae, 1994, 381: 74~80.
    [53] 郭鲁宏,杨顺楷.单宁酶产生菌的筛选和发酵条件研究。应用与环境生物学报,1998,4(4):386~389.
    [54] 刘如石,李清明,谢达平等.Asp.niger No.3液态发酵生产单宁酶条件的研究.食品科学,2001,22(2):28~32.
    [55] Kadam K.L.Reverse micelles as a bioseparation tool.Microb.Technol.,1986,8(5):266~273.
    [56] Giovenco S.Verheggen F.Purification of intracellular enzymes from whole bacterial cells using reversed micelles.Enzyme Microb.Technol.,1987,9:470~473.
    [57] 田桂玲,邢国文,叶蕴华.在非水介质中进行酶促反应的几个重要问题.有机化学,1998,18:11~19.
    [58] Weetall H.H.,Detar C.C.Immobilized tannase.Biotechnology and Bioengineering,1974,16(8):1095~1102.
    [59] 程琦,程启坤,李名君.单宁酶的固定化及其在酯型儿茶素水解反应中的应用.生物化学杂志,1996,12(4):423~426.
    
    
    [60] 刘如石,谢达平,王革生等,单宁酶的固定化及其性质的研究。湖南农业大学学报(自然科学版),2000,26(5):386~388.
    [61] 郭鲁宏,杨顺楷.利用固定化黑曲霉单宁酶制备没食子酸的研究.生物工程学报,2000,16(5):614~617.
    [62] 谢达平,刘如石,王征等.固定化单宁酶的研究.常德师范学院学报(自然科学版),2000,12(2):16~17.
    [63] Boadi D.K.,Neufeld R.J.Encapsulation of tannase for the hydrolysis of tea tannins.Enzyme and Microbial Technology,2001,28:590~595.
    [64] 严鸿德.茶叶深加工技术.北京:中国轻工业出版社,1998
    [65] 王元凤,王登良,魏新林.酶技术在茶叶深加工中的应用研究.饮料工业,2000,3(6):18~22.
    [66] 王征,谢达平,谭淑宜等.单宁酶的研究与应用.湖南农业大学学报,1998,24(4):331~336.
    [67] Takino Yoshinori. Enzymatic solubilization of tea cream. USP, 3959497, (Cl.426-52; A23F3/00). 1976-05-25.
    [68] Tsai Chee Hway(Procter and Gramble Co). Enzymatic treatment of black tea leaf. Eur Pat Appl EP, 135222, (Cl.A23F3/10). 1985-03-27.
    [69] Thormas R. L., Murtagh K. Characterization of tannase activity on tea extracts. Journal of Food Science, 1985, 50:152~155.
    [70] 方元超,赵晋府.酶技术在茶饮料生产中的应用研究.饮料工业,1999,1:12~15.
    [71] 曾洪涛.单宁酶在茶叶加工中的应用.中国茶叶加工,1990,1:44~45.
    [72] 曾晓雄,罗泽民.酶在茶叶加工中的应用研究展望.食品工业科技,1993,5:24~27.
    [73] 余凌子,赵正惠.酶制剂在茶叶加工中的应用.中国茶叶,1999,4:8~10.
    [74] Nicolas P.,Racetz E.,Sauvageat J.Preparation of a tea extract.European Patent Application,EPO 777972 AI.1997-10-H0248
    [75] 龚加顺,刘勤晋,肖琳等.沸石固定化单宁酶及其在茶饮料澄清中的应用.中国食品工业,1999,12:40~41.
    [76] 程启坤.茶儿茶素快速分析法.中国茶叶,1997,1:27.
    [77] Lauren S. J., Kenlee. Chemical forms of iron, calcium, magnesium and zinc in black, oolong, green and instant black tea. J. Food Sci., 1988, 53(1): 181~184.
    [78] Mai J., Chambers L. J., Mcdonald R. E. Process for inhibiting lipid oxidation in food and composition thereby. United States Patent, US 4925681, US 347484, 1991-08-V0115.
    [79] Chae Soo-Kyu, Yu Tai-Jong. Hydroysis of tannin in foods by fungal tannase I. Han' guk Sikp' um Kwahakhoe Chi, 1973, 5(4): 258~267.
    [80] Chae Soo-Kyu, Yu Tai-Jong. Experimental manufacture of acorn wine by fungal tannase. Han' guk Sikp' um Kwahakhoe Chi, 1983, 15(4): 326~332.
    
    
    [81] Menke K. H., Leinmuller E. Tannins in ruminant feeds. 3. In vivo effects. Ubersichten zur Tierernahrung. 1991, 19: 1, 71~85.
    [82] Viveros A. Brenes A. Elices R. et al. Effect of enzyme addition (protease plus amylase and tannase) on the nutritive value of faba bean hulls in chickens. Proceedings of the Second International Workshop, Netherlands, 1993,523~527.
    [83] 殷仕海.五倍子提取单宁酸及单宁酸制取没食子酸.企业技术开发,1991,9(6):17~18.
    [84] 陈琳,伍琨贤,李敏谊等.棓酸酯类的抗氧化性能研究.广东药学院学报,1998,14(1):4~6.
    [85] 路雪雅,陈文为.没食子酸丙酯对乙醇诱导鼠肝急性损伤的保护作用.药学学报,1987,22(8):586~589.
    [86] 陈瑗,周玫.自由基医学.北京:人民军医出版社,1991.
    [87] 中华人民共和国国家标准.GB2760-81,食品添加剂使用卫生标准.
    [88] 熊国华,张强,郝红等.没食子酸丙酯合成工艺研究.西北大学学报(自然科学版),1994,24(4):353~356.
    [89] 胡素坤,李晓琳,王少君等.赤芍801抗肿瘤作用的实验研究.中国医药学报,1990,5(3):22~26.
    [90] 马耀,张建中,丛建波等.没食子酸及其衍生物抗氧化机制的研究.科学通报,1993,38(15):1411~1414.
    [91] 伍琨贤,李敏谊,陈琳等.没食子酸酯合成方法改进及其抗血小板聚集作用.精细化工,1998,4:9~11.
    [92] Toth G., Hensler D. The enzymatic synthesis of gallic acid derivatives. Acta Chimica, 1952, 2: 209~212.
    [93] Weetal H. H. Enzymatic gallic acid esterification. Biotechnology and Bioengineering,1985, 27: 124~127.
    [94] Weetall H. H. Enzymatic synthesis of gallic acid esters. Eur Pat Appl EP, 0137601(Int. C1. C12P7/62), 1984-07-19.
    [95] Gaathon A., Gross Z., Rozhanski M. Propyl gallate: enzymatic synthesis in a reverse micelle system. Enzyme Microb. Technol., 1989, 11: 604~609.
    [96] 胡忠策,郑晓冬.固定化细胞在有机相中的催化反应.生物技术,1999,9(3):39~41.
    [97] 李永泉,翁醒华,贺筱蓉.微波诱变结合化学诱变选育酸性蛋白酶高产菌.微生物学报,1999,39(2):181~184.
    [98] 张应玖,郭慧云,王红梅等.黑曲霉As 3.3883菌种的诱变及其发酵条件探索.吉林大学自然科学学报,1993,2:94~98.
    [99] 李永泉.发酵工程原理和方法.杭州:杭州大学出版社,1995.9
    
    
    [100] 李永泉,贺筱蓉.微波诱变和激光诱变相结合选育金霉素链霉菌的研究.生物工程学报,1998,14(4):445~448.
    [101] 李永泉.微波诱变选育木聚糖酶高产菌.微波学报,2001,17(1):50~53.
    [102] 章名春.工业微生物诱变育种.北京:科学出版社,1984.7
    [103] 李永泉.羊毛生物整理复合酶L86发酵工艺优化研究.菌物系统,2001,20(3):392~396.
    [104] Scalbert.Antimicrobial properties of tannins.Phytochemistry,1991,30(12):3875~3884.
    [105] 汪家政,范明.蛋白质技术手册.北京:科学出版社,2000
    [106] 酶工程,郭勇主编,北京:中国轻工业出版社,1994.5
    [107] 王洪祚,刘世勇.酶和细胞的固定化.化学通报,1997,2:22~27.
    [108] 韩静淑,赵振英,周礼恺等.生物细胞的固定化技术及其应用.北京:科学出版社,1993.6
    [109] 江波,王璋.固定化黑曲霉增殖细胞生产低聚果糖的研究.无锡轻工业大学学报,1996,15(1):12~18.
    [110] 范秀容,李广武,沈萍.微生物学实验.北京:高等教育出版社,1989.5
    [111] 赵景联.固定化黑曲霉Ax-6分生孢子生产柠檬酸的研究.西安交通大学学报,1999,33(2):74~78.
    [112] 王建龙,周定,柳萍.PVA—H_3BO_3固定化方法的改进及固定化乳酸菌发酵的研究.工业微生物,1993,23(6):7~10.
    [113] 陈九武,赵学慧.固定化细胞合成酯类载体的研究.工业微生物,1997,27(3):27~30.
    [114] 石屹峰,金凤燮,吴怡莹等.利用渗透交联固定化细胞促进生物转化.生物工程学报,1997,12:111~113.
    [115] Maria B.A.,Svetlana B.P.,Ludmila S.S.Comparison of antioxidant enzyme biosynthesis by free and immobilized Aspergillus niger cells.Enzyme and Microbial Technology,2000,26:544~549.
    [116] 朱柱,李和平,郑泽根.固定化细胞技术中的载体材料及其在环境治理中的应用.重庆建筑大学学报,2000,22(5):95~101.
    [117] 孙艳,谭立扬.利用固定化细胞法降解含酚废水的研究.北京工业大学学报,1997,23(1):62~67.
    [118] 李学梅,林建平,岑沛霖.霉菌固定化综述.生物工程进展,1999,19(4):62~66.
    [119] 何汉平,杨立荣,朱自强.有机相酶催化中溶剂工程的进展.生物工程进展,1998,18(1):10~16.
    [120] 杨缤.低水有机介质中的酶催化.生物化学与生物物理进展,1994,21(2):98~104.
    [121] 刘莲芳.食品添加剂分析检验手册.北京:中国轻工业出版社,1999.5
    
    
    [122] 宗敏华,杜伟,林影.有机相中固定化脂肪酶促有机硅烷醇的转酯.工业微生物,1999,29(4):1~4.
    [123] Lanne C.,Boeren S.,Vos K.et al.Rules for optimization of biocatalysis in organic solvents.Biotechnol.Bioeng.,1987,30:81~87.
    [124] Klibanov A.M.Why are enzyme less active in organic solvents than in water.TIBTECH,1997,15:97~101.
    [125] Hailing P.J.Organic liquids and biocatalysis:theory and practice.TIBTECH,1989,7:50~52.
    [126] 姚善径,梅乐和.一种新型生物微胶囊体系及其在生物质固定化过程中的应用.膜科学与技术,1999,19(1):19~23.
    [127] 张惠勇,梅乐和,姚善泾.微胶囊固定化酵母培养的研究.生物工程学报,1999,15(3):297~300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700