用户名: 密码: 验证码:
新型改性膨胀石墨的制备及其催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膨胀石墨(EG)是由鳞片石墨制备成的一种疏松多孔的蠕虫状物质,具有发达的网络状孔隙结构,较大的比表面积,较高的表面活性,是一种具有较高化学稳定性的,环境友好的廉价液相吸附材料。TiO2是一种新型的廉价无毒的高效光催化材料。以膨胀石墨负载TiO2而得到的复合材料不仅具有吸附性能,而且还具有光催化性能,这为环保材料的研究提供了新的思路和热点。
     本文以钛酸正四丁酯为钛源,氯化高铁为铁源,膨胀石墨(EG)为载体,以比较新颖的方法制备出TiO2/EG和TiO2/Fe/EG复合材料,用以对苯酚模拟废水的吸附和光降解研究。主要研究内容包括:
     1、采用化学氧化法制备低硫膨胀石墨,研究了膨胀容积的影响因素。以鳞片石墨899为原料,运用四水平五因素正交实验确定最佳工艺条件。以溶胶-凝胶法制备TiO2溶胶以及负载三价铁离子的TiO2溶胶,分别用两种方法将溶胶负载到膨胀石墨上,制成两种不同的负载TiO2的膨胀石墨(TiO2/EG)。采用量筒法分别对膨胀石墨及其复合材料的膨胀体积进行了对比。采用SEM和XRD分别对膨胀石墨及其复合材料的微观形貌和相结构进行了分析。
     2、研究了不同pH值、不同温度、不同时间下膨胀石墨对苯酚的吸附性能。对EG和两种不同负载方法制备出的TiO2/EG进行了苯酚的吸附和降解性能做了对比和研究。在各种不同条件下,如:降解时间、苯酚初始浓度、膨胀石墨用量、TiO2负载量、不同的光照条件等,对TiO2/EG去除苯酚进行了研究。对TiO2/Fe/EG去除苯酚的能力做了研究,内容有:三价铁离子的掺杂量对苯酚去除的影响、双氧水存在时,以及苯胺存在时对苯酚去除效果的影响。并初步探讨了TiO2/EG和TiO2/Fe/EG对苯酚的吸附和光降解作用的机理。
     结果表明:
     1、制备EG的最佳工艺条件为鳞片石墨:HNO3:H3PO4:KMnO4质量比=1:1.65:1.92:0.18;酸化温度为60℃;酸化时间为40 min,微波膨化时间20秒。这样制备出的EG膨胀体积在250 mL/g左右。用先负载后膨胀的新方法制备出来的TiO2/EG比用先膨胀后负载的方法制备出的TiO2/EG具有更大的膨胀体积,外观维持蓬松的蠕虫状态。负载TiO2的膨胀石墨已经形成,且TiO2呈锐钛型。但由于掺铁量小,图谱上显示不明显。
     2、EG对苯酚的最佳吸附酸碱条件是pH为7,低温有利于苯酚的吸附。先负载后膨胀的TiO2/EG对苯酚的降解效果优于先膨胀后负载的TiO2/EG。在紫外光下TiO2/EG对苯酚的去除效果最好。掺杂Fe3+可使苯酚在可见光下也能较好地降解。负载载量为35%,Fe3+掺杂量为5%的TiO2/Fe/EG对苯酚的去除能力最强,在苯酚浓度为376.98 mg/L时,TiO2/Fe/EG投加量为3 g/L时,苯酚的去除量可达62.12 mg/g。体系中存在双氧水能促进苯酚的降解,存在苯胺则会减弱苯酚的吸附和降解。
     本文选用膨胀石墨作为纳米掺铁二氧化钛催化剂的载体,结合二者的优点,发挥其协同效应,制备出的光催化材料具有成本低,吸附性好,催化活性高等优点。可以作为一种具有良好的吸附降解性能的材料在环境保护中广泛应用。
Expanded graphite(EG) is a worm-like porous material which is produced by natural squama graphite. It has evolutive network-like pore structure, big specific surface area, and high surface-active, it's a kind of cheap environment-friendly liquid phase adsorption with high chemistry stability. TiO2 is a kind of new cheap and non-toxic photochemical catalysis material. The compounds which made by EG and TiO2 not only has the adsorption performance, moreover also has the photochemical catalysis performance, which provided a new idea and a new focus of study on environmental material.
     TiO2/EG and TiO2/Fe/EG were successfully prepared with a new method using exfoliated graphite as support tetrabutyl titanate as titanium source and Iron (III) chloride as Fe3+source. These compounds were used to the study of adsorption and photodegradation of phenol synthetic wastewater. The research including:
     3、Lower-sulfuric expandable graphite was prepared with chemistry oxidation, and the affecting factors on expandable volume of exfoliated graphite were studied.899 flake graphite as raw material, and use the four levels of five factors in orthogonal test to determine the optimum process conditions. TiO2 and TiO2/Fe sol was prepared with sol-gel process, and then the sol was deposited on EG surface u with two different methods, and made two kind of TiO2/EG. The expansion volumes of these adsorbents were contrasted by using graduated container method. The microstructure and phase of these absorbents were studied by using SEM and XRD.
     4、The adsorbability of phenol at different pH, at different times and for different temperatures was studied. The two kinds of TiO2/EG were used to treat phenol synthetic wastewater, and the adsorbability and photodegradation ability were contrasted and studied. The phenol removal effect of TiO2/EG was studied under different conditions, just like:degradation time, phenol initial concentration, the consumption of EG or TiO2/EG, TiO2 inserted amount, different illuminations, and so on. The phenol removal ability of TiO2/Fe/EG was studied, the research including:effects of Fe3+doped amount, the effect of H2O2 and aniline. The adsorption and photodegradation mechanism of TiO2/EG and TiO2/Fe/EG was elementary deduced.
     The results showed that:
     3、expanded graphite having an exfoliation volume of 250mL/g could be produced under the optimum conditions with the weight ratio of natural flake graphite:nitric acid:phosphoric acid:potassium permanganate being 1:1.65:1.92:0.18, reaction time of 40 min, reaction temperature of 60℃, and microwave expanded time of 20 second. The TiO2/EG which inserting TiO2 first has bigger expansion than the TiO2/EG which expand first, and the TiO2/EG which inserting TiO2 first can keep its appearance as worm-like. TiO2 load the expanded graphite has been formed, and was anatase TiO2. Due to the doping of smaller vanadium, it was not obvious in the map display.
     4、The best pH condition of EG adsorption of phenol is 7, low temperature is beneficial to the adsorption of phenol. The TiO2/EG which inserting TiO2 first have more strong capability of adsorption and degradation than the TiO2/EG which expand first. There is good degeneration effect to the phenol by using TiO2/Fe/EG under the ultraviolet ray. Fe3+-dope can made phenol be degeneration well under visible light. It is showed that doped amount is 5%, inserted amount is 35% made TiO2/Fe/EG have the best removal ability of phenol. When phenol concentration is 376.98mg/L时, TiO2/Fe/EG dosage is 3g/L, the removal quantity of phenol is 62.12mg/g. When H2O2 in the system, it can promote the degeneration of phenol. When aniline in the system, it can weaken the adsorption and the degeneration of phenol.
     In this paper, expanded graphite as a selection of Fe3+-doped titanium dioxide nano-catalyst carrier. Combined with the advantages of both, to play its synergy photocatalytic preparation of low cost materials, adsorption, and high catalytic activity. Can be used as a degradation of sound absorption properties of materials widely used in environmental protection.
引文
[1]王厚山.膨胀石墨的化学氧化法制备研究进展[J].中国非金属矿工业导刊,2008,5:18-20.
    [2]赵毅.有害气体控制工程[M].北京:化学工业出版社.2001:568-568.
    [3]熊俊威,曹晓燕.天然石墨及其表面化学修饰的研究进展[J].电池,2005,35(2):150-151.
    [4]传秀云.石墨层间化合物GlCs的形成机理探讨[J].新型碳材料,2000,15(1):52-56.
    [5]曹乃珍,沈万慈.膨胀石墨的吸附作用[J].新型碳材料,1995,4:51-53.
    [6]Weber W J, Morries J C. Proceeding of International conference on water Pollution Symposium[M]. Oxford,1962:231.
    [7]Trivedi H C, Patel V M, Patel R D. Adsorption of cellulose triacetate on calcium silicate[J]. European Polymer Journal,1973,9:525-531.
    [8]施韬,孙伟,王倩楠.膨胀石墨微结构表征及其储能复合材料的制备[J].东南大学学报(自然科学版),2009,39(5):599-601.
    [9]贾志欣.负载TiO2的膨胀石墨的制备与吸附和光催化性能研究,硕士学位论文,2006:4.
    [10]Yoshida A, Hisiyana Y, Inagaki M. Synthesis of nanoporous graphite-derived carbon composites by a mechanochemical intercalation method[J]. Carbon,1991,29(8):990.
    [11]周同先,宗干臣.可膨胀石墨及其制造方法[P].CN Pat,85103917A,1985.
    [12]Wang Z D, Inagaki M. Intercalation of FeCl3 into graphite films in molten salts[J]. Synthetic Metals, 1991,44(2):165-176.
    [13]Dedov A V. Sorption properties of the mally expanded graphite[J]. Chenistry and Technology of Fuels and Oils,2001,37(2):134-135.
    [14]Gorshenev V N, Bikikov S B, Novikov Y N. Conducting materials based on thermally expanded graphite[J]. Russian Journal of applied chemisty,2004,10(76):603-606.
    [15]米国民,涂文懋,曾宪滨.一种制造可膨胀石墨新工艺的研究[J].矿产保护与利用,1994,(2):23-25.
    [16]Yaroshenko A P, Savoskin M V. Synthesis and Properties of the mally expandable residual graphite hydrosulfite obtained in the system HNO3-H2SO4[J]. Russian Journal of Applied Chemistry,2002,75(6): 861-865.
    [17]宋克敏,路文义,武风林,等.制备低硫可膨胀石墨的研究[J].无机材料学报,1994,9(4):455-460.
    [18]Avdeev VV, Monyakina L, Nikolskaya I, et al. The choice of oxidizers for graphite hydrogenousulfate chemical synthesis[J]. Carbon,1992,30(6):819-823.
    [19]门爱华,韩志东,吴泽,等.不同氧化剂制备可膨胀石墨的研究[J].化学工程师,2006,127(4):6-8.
    [20]王慎敏,乔英杰,周群.高锰酸钾与浓硫酸混合氧化法制备低硫可膨胀石墨[J].哈尔滨理工大学学报,1999,4(5):24-27.
    [21]宋克敏,刘金鹏,敦会娟.混酸法制备无硫可膨胀石墨的研究[J].无机材料学报,1997,12(4):633-636.
    [22]陈希陵,宋克敏,李冀辉,等.以冰醋酸为介质制备低硫可膨胀石墨[J].无机材料学报,1996,11(2):381-383.
    [23]黎梅,藏大乔,李北辉.以重铬酸钾作氧化剂制备低硫可膨胀石墨[J].炭素,1997,(4):46-48.
    [24]金为群,权新军,蒋引珊,等.用磷酸酐制备无硫可膨胀石墨的研究[J].非金属矿,2000,23(1):17-18.
    [25]赵正平.混酸系(HNO3-H3PO4)制备无硫可膨胀石墨[J].非金属矿,2002,25(4):26-28
    [26]林雪梅,潘功配HClO4-HNO3混合酸法制备无硫可膨胀石墨[J].非金属矿,2005,(6):24-26.
    [27]赖奇,李玉峰.三元系混酸插层制备细鳞片膨胀石墨.非金属矿,2008,31(4):32-33.
    [28]连锦明,童庆松,郑曦,等.电解氧化法膨胀石墨形成机理研究[J].化学研究,2000,11(6):45-47.
    [29]赵正平.电解法制备无硫可膨胀石墨研究[J].非金属矿,2003,26,(2):18-19.
    [30]Vieira F, Cisneros, Sansiviero MTC, et al. Preparation Processes and Properties of expanded graphite for alkaline batteries[J]. Journal of Physies and Chemistry of Solids,2006,67(5):1208-1212.
    [31]吴雪艳.超大体积可膨胀石墨的制备及其催化性能的研究.硕士学位论文,2005:4.
    [32]蒋丽娜.低温可膨胀石墨的制备研究.硕士学位论文,2008:4.
    [33]杨永清,陈二龙.热膨胀石墨水洗温度与膨胀倍数关系的研究[J].炭素,1998,(2):39-40.
    [34]渠荣遴.可膨胀石墨的洗涤方法与质量控制[J].炭素,1995,(]):17-21.
    [35]张倩,高欣宝,高敏,等.纳米复合材料-石墨层间化合物研究进展.材料导报,2006,(20):193-195.
    [36]沈家骢等.超分子层状结构组装与功能[M].北京:科学出版社,2004:169-172.
    [37]白新桂.可膨胀石墨微波膨化脱硫方法US Pat,96107055.2,1996.
    [38]Jihui Li, Jing Li, Mei Li. Preparation of expandable graphite with ultrasound irradiation[J]. Materials Letters,2007:1-4.
    [39]孟新强.国外雷达隐身和红外隐身技术的发展动向与分析[J].飞航导弹,2005,(6):73-82.
    [40]朱长江,陈作如.膨胀石墨的毫米波二维平面衰减性能研究[J].材料科学与工程,2002,20(4):487-489.
    [41]刘宝钢.外干扰弹干扰性能参数及测试方法[J].红外技术,2006,28(2):648-650.
    [42]任慧,康坛宇,焦清介,等.掺杂磁性铁粒子膨胀石墨的制备及其对毫米波的干扰作用[J].新型炭材料,2006,21(1):24-29.
    [43]杜桂萍,缪云坤,张良,等.膨胀石墨对波衰减性能研究[J].火工品,2005,(1):13-]6.
    [44]李天鹏,高欣宝.膨胀石墨对毫米波和红外干扰技术的研究现状[J].四川兵工学报,2007,6:11-14.
    [45]吴星,尹喜凤,崔建林,等.可膨胀石墨在爆炸分散型发烟剂中的应用[J].火工品,2004,(2):27-30.
    [46]瞿保钧,陈伟,谢荣才,等.低烟无卤阻燃聚烯烃的研究进展和应用前景功能[J].高分子学报,2002,(3):361-364.
    [47]Dhakate S R, Sharma S, Borah M, et al. Expanded graphite-based electrically conductive composites as bipolar plate for PEM fuel cell[J]. International journal of hydrogen energy,2008,33:7146-7152.
    [48]Jan M, Skouro S, Mariusz W. Lithium intercalation into CrO3-GIC and its derivatives[J]. Journal of Solid State Electrochemistry,2004,2(8):23-27.
    [49]Zheng W, Lu X, Wong SC. Electrical and mechanical properties of expanded graphite reinforced high density polyethylene[J]. Jounal of applied Polymer Science,2004,91(5):2781-2788.
    [50]Celzard A, Krzesinska M, Begin D, et al. Preparation, electrical and elastic properties of new anisotropic expanded graphite-based composites[J].Carbon,2002,40:557-566.
    [51]Angela D, Lueking, Ling P, et al. Effect of expanded graphite lattice in exfoliated graphite nanofibers on hydrogen storage[J]. Jouranal of Physcial Chemistry B,2005,109(5):1271-12717.
    [52]Wissler M. Graphite and carbon powders for electrochemical application [J]. Journal of Power Sources, 2006,156:142-150.
    [53]Wang W P, Pan C Y, Wu J S. Electrical properties of expanded graphite/poly (styrene-co-acrylonitrile) composites[J]. Journal of Physics and Chemistry of Solide,2005,66(10):1695-1700.
    [54]Dedov, AV. A complex sorbent for absorption of petroleum products based on a nonwoven material and thermally expanded graphite[J]. Chemistry and Technology of Fuels and Oils,2006,42(1):75-77.
    [55]刘成宝,陈志刚,刘曦.应用膨胀石墨动态吸附处理油田污水[J].水处理技术,2007,33(5):58-60.
    [56]Zhou YY, Wang SW, Kimb KN. Evaluation of expanded graphite as on-line solid-phase extraction sorbent for high performance liquid chromatographic determination of trace levels of DDTs in water samples[J]. sciencedirect,2006:970-975.
    [57]李冀辉,刘淑芬.膨胀石墨吸附工业油品的研究[J].河北师范大学学报(自然科学版),2004,28(6):599-601.
    [58]李冀辉,杨丽娜,武戈.膨胀石墨对水相中酸性媒介黄GG的吸附研究[J].化工环保,2004,24:374-375.
    [59]刘淑芬,李冀辉,杨丽娜.膨胀石墨对直接染料废水吸附脱色研究[J].化工环保,2006,26(3):182-184.
    [60]Dedov AV. Kinetics of sorption of petroleum products from the surface of water by thermally expanded graphite[J]. Tekhnologiya Topliv Masel,2005:48-49.
    [61]Kang F, Zheng Y, Zhao H, et al. Sorption of heavy oils and biomedical liquids into exfoliated graphite search in China[J]. New Carbon Material,2003,18 (3):161-73.
    [62]Dedov AV. Sorption properties of thermally expanded graphite from different oxidation states[J]. Chemical land Technology of Fuels and Oils,2002,38 (2):128-130.
    [63]沈万慈,曹乃珍,李晓峰.多孔石墨吸附材料的生物医学应用研究[J].新型碳材料,1998,13(1):49-53.
    [64]Celzard A, Krzesinska M, Mareche JF, et al. Sealer and vectorial Percolation in compressed expanded graphite[J]. Physiea A,2001,294:283-94.
    [65]吴腊英,李长江.纳米二氧化钛粉末的溶胶-凝胶法合成及晶相转化[J].无机化学学报,2002(4):399-403.
    [66]任达森.溶胶-凝胶法制备纳米二氧化钛播磨及其光致特性研究.博士学位论文,2004:6.
    [67]Bahnemann. Detal mechanistic studies of water detixification in TiO2 illuminated suspensions[J]. Solar Energy Materials,1991, (24):564-583.
    [68]Chen F, Liu X. Photocatalysis oxidition ro2damin BU sing sunlinght [J]. Environmental Protection of Chemical Industry,1997,17:3-5.
    [69]林华香,王绪绪,付贤智.TiO2表面羟基及其性质[J].化学进展,2007(5):665-669.
    [70]尚静,徐自力,杜尧国.Ti02纳米粒子制备方法对其光催化活性的影响[J].分子催化,2001,15(4):28-286.
    [71]张岩峰,魏雨,武瑞涛.纳米Ti02粉体的制备及应用进展[J].功能材料,2000(4):354-356.
    [72]董国利,王建国,高荫本,等.CeO2-TiO2复合氧化物的制备及其表征[J].无机材料学报,1999,14(6):873-889.
    [73]Mahshid S, Askari M, Ghamsari S. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution[J]. Journal of Materials Processing Technology,2007,189:296-300.
    [74]张毓芳,张正国,方晓明.TiO2一维纳米材料及其纳米结构的合成[J].化学进展,2007,19(4):494-500.
    [75]Nam H-J, Ii, Murabayashi M. Photocatalytic activity of thin film-Effect of substrate[J]. Denki Kagaku oyobi Kogyo Butsuri Kagaku,2002,70(6):429-431.
    [76]Sonawane S, Hegde G, Dongare MK. Preparation of titanium(IV)oxide thin film photocatalyst by sol-gel dipcoating[J]. Materials Chemistry and Physics,2003,77(3):744-750.
    [77]管自生,姚建年.紫外光辐照对TiO2溶胶的影响[J].高等学校化学学报,2002,23(10):1956-1959.
    [78]彭峰,任艳群.TiO2-SO2复合纳米膜的制备与光催化降解甲苯的性能[J].催化学报,2003,24(4):243.
    [79]彭峰,任艳群.提高二氧化钛光催化性能的研究进展[J].现代化工,2002,22(10):6.
    [80]蒋晓凤,赵一先,盛兆琪.掺银负载型TiO2光催化剂降解水中氯苯的动力学研究[J].华东理工大学学报(自然科学版).2005,31(1):122-125.
    [81]王仪春,陈建林,杨凯,等.载银TiO2可见光降解活性蓝染料废水研究[J].环境科学与技术,2006,29(11):86-88.
    [82]彭振,韦宗元,李明.银掺杂TiO2催化剂的制备表征及其光催化消除甲醇[J].湖南科技大学学报(自然科学版),2009,24(1):111-115.
    [83]马登峰,彭兵,柴立元.载银纳米二氧化钛抗菌粉体的制备工艺研究[J].精细化工中间体,2006,36(1):63-66.
    [84]黄东升,陈朝凤,李玉花,等.铁、氮共掺杂二氧化钛粉末的制备及光催化活性[J].无机化学学报,2007,(4):738-742.
    [85]孙旋,刘红,倪听.Fe2O3-TiO2光催化剂的制备及其对碱性嫩黄的降解[J].水处理技术.2008,34(4):61-64.
    [86]郑琦,陈恒初,王靖宇,等.铁掺杂纳米二氧化钛溶胶的制备及性能研究[J].环境科学与技术,2007,30(4):14-18.
    [87]吴玉程,宋林云,李云,等.Ce掺杂TiO2纳米粉体的制备及其光催化性能研究[J].人工晶体学报.2008,37(2):427-430.
    [88]赵秀峰,孟宪锋,张志红,等.Pb掺杂TiO2薄膜的制备及光催化活性研究[J].无机材料学报,2004,19(1):140-146.
    [89]任凌,杨发达,张渊明.氮掺杂TiO2光催化剂的制备及可见光催化性能研究[J].无机化学学报,2008,24(4):541-546.
    [90]许珂敬,尚超峰,李芳.S掺杂纳米TiO2的可见光响应机制[J].中国有色金属学报,2008,18(5): 884-889.
    [91]石健,李军,蔡云法.具有可见光响应的C、N共掺杂Ti02纳米管光催化剂的制备[J].物理化学学报,2008,24(7):1283-1286.
    [92]李冀辉,贾志欣,冯莉莉.负载二氧化钛的膨胀石墨的制备及表征[J].材料导报,2006,20(6):97-108.
    [93]黄绵峰,郑治祥,徐光青,等.膨胀石墨负载纳米二氧化钛光催化剂的制备、表征与其光催化性能[J].硅酸盐学报,2008,36(3):325-329.
    [94]陈阳,庞秀言,游婷婷,等.负载氧化钛的膨胀石墨的制备[J].炭素,2008,136:8-12.
    [95]马恩宝.纳米二氧化钛修饰膨胀石墨催化降解含油污水研究.硕士学位论文,2006:5.
    [96]蒋丽娜,李庆,王玲.以复合插入剂制备低温可膨胀石墨[J].河北农业大学学报,2007,30(5):103-106.
    [97]宫象亮.无硫高抗氧化性可膨胀石墨的制备研究[J].化学工程师,2008(2):56-58.
    [98]孙明,魏锡文,胡小华.铁掺杂Ti02纳米粉的制备、表征及其光催化活性[J].材料导报,2007,5(21):153-155.
    [99]Symoms M, Edwads J. In Perovide Mechanisms[M]. New Yourk:SP Medical & Scientific.1962:137.
    [100]Ho P. In Management of Hazadous and Toxic Waters Wastes in the Process Industries[M]. Ed. By S Kdaczkowski. New York:Elsvier,1987:563.
    [101]Augugkiaro V. Crystal and molecular structure of lapachenole[J]. Toxicology Environment Chemistry,1988(16):89-94.
    [102]贲宇恒,李贺,张卫国,等.纳米二氧化钛薄膜光催化氧化降解苯胺的研究[J].工业催化,2005,13(5):36-39.
    [103]何建波,张鑫,魏凤玉,等.Ti02薄膜晶相组成对苯胺光催化降解的影响[J].应用化学,1999,16(5):57-60.
    [104]张青红,高镰,郭景坤.二氧化钦纳米晶的光催化活性研究[J].无机材料学报,2000,15(3):556-560.
    [105]Christensen PA, Dilks A, Egerton TA, et al. Photocatalytic oxidation of alkyd paint filmsmeasured by FTIR analysis of UV generated carbon dioxide[J]. Journal of Materials Science,2002,37:4901-4909.
    [106]宋彦龙,游俊琴,张忠良,等.真空紫外光降解苯的研究[J].环境工程学报,2008,2(11):1535-1538.
    [107]白杨.H202在苯酚降解过程中的作用研究[J].化学通报,2004,(2):154-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700