用户名: 密码: 验证码:
膨胀石墨的制备及其对金属离子去除性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膨胀石墨是一种多孔性材料,孔径范围广,总孔容大,在吸附方面有巨大的潜力。本文的目的主要是研究膨胀石墨对于几种代表性的金属离子的吸附性能,优化吸附条件,并且在实验数据的基础上进行数学分析和机理研究,为进一步提高膨胀石墨的吸附能力和应用范围提供理论依据和方向。此外,本文还制备了改性膨胀石墨,以提高膨胀石墨的吸附性能。
     本文以青岛宏达购买的可膨胀石墨为原料采用微波膨胀法制备出膨胀石墨,通过BET方程和BJH法计算其比表面积、孔体积和孔径分布;采用扫描电子显微镜(SEM)和FT-IR红外分析仪观察了膨胀石墨的微观形貌结构以及膨胀石墨含有的官能团。
     膨胀石墨吸附铅、铬、锡离子吸附实验结果表明:溶液pH是控制三种金属离子吸附过程的重要因素;当溶液呈中性或偏酸性时,铅溶液的初始浓度为300mg/L,吸附时间为300min时,膨胀石墨对含铅离子的吸附量达到63mg/g;当溶液在pH=3时,膨胀石墨对铬离子的吸附效果最好;当溶液呈偏酸性,锡溶液的初始浓度为300mg/L,吸附时间为120min时,膨胀石墨对锡离子的吸附量达到343mg/g。另外,分别采用Langmuir吸附等温线方程、Freundlich吸附等温线方程和Temkin吸附等温线方程对膨胀石墨吸附三种金属的实验数据进行拟合,结果表明Langmuir等温线方程能较好地描述三种金属离子在膨胀石墨上的吸附平衡,膨胀石墨吸附三种金属离子的Langmuir模型极限吸附容量分别为70.42mg/g,2.77mg/g,378.78mg/g。采用准一级、准二级、Elovich和Ritchie's-二阶吸附动力学模型分析了实验数据,发现准二级动力学模型能更好地描述吸附过程。
     经过纳米氢氧化镁改性后的膨胀石墨对铅离子吸附的实验结果表明:对比原膨胀石墨,可以发现改性膨胀石墨能有效地吸附铅离子,其吸附量由原来的70mg/g提高到105mg/g。当初始pH值为4-6、含Pb(Ⅱ)废水初始浓度为100mg/L、改性膨胀石墨投加量为0.035g、吸附时间为120min,25℃条件下,含铅废水的去除率为98%左右。
     采用Langmuir、Freundlich以及Temkin吸附等温模型对数据进行了拟合,发现Langmuir模型具有更好的线性相关性。分别采用准一级动力学模型、准二级、Elovich、Ritchie's-二阶动力学模型分析了实验数据,发现改性膨胀石墨吸附铅离子的整个过程能更好地符合准二级动力学模型。
Expanded graphite is a kind of poriferous material. It has a wide range of pore diameter and a great pore volum. So it has a great potential in practical use for a adsorption. The main objective of this research is to study the adsorption capability of expanded graphite against three kinds of metal ions and optimize the reaction condition. Based on the data aquired in experiments, some mathematical analysis is conducted and some theories are given to explain the experiment results. Furthemore, in order to improve the metal ion adsorption capability of expanded graphite, the expanded graphite is modified by applying relevant modifier.
     Commercial expandable graphite (purchased from Qingdao Nanshu Hongda Graphite Co. Ltd, China) was directly placed into MicroWave oven.Then, the expanded graphite was prepared. For provide the material characterization, the BET equation and BJH method were used to calculate the specific surface area, pore volume and pore size distribution. The scan electric microscope (SEM) and FT-IR were used to investigate the morphology and chemistry structural characteristics.
     The experimental results of Pb,Cr and Sn adsorption onto the expanded graphite showed that the pH value of solutions is the most important factor to the effect on the three kinds of metal ions adsorption capacity of expanded graphite.
     Under the conditions of the initial pH:4-6,concentration of Pb(Ⅱ):300mg/L and the adsorption time:300min, the adsorption capacity could reach at 63mg/g. Under the condition of the initial pH of Cr(Ⅵ)=3, the expanded graphite reveals the highest adsorption capability for Cr solution. Under the conditions of the initial pH:2-3, concentration of Sn(Ⅱ):300mg/L and the adsorption time:120min, the adsorption capacity could reach at 343mg/g. Furthermore, the adsorption equilibrium data were fitted according to Langmuir, Freundlich and Temkin adsorption isotherms, respectively. The results show that the Langmuir isotherm can agree with the adsorption behavior of the three kinds of metal ions on expanded graphite. The calculated Langmuir limit adsorption capacities were 70.42mg/g,2.77mg/g and 378.78mg/g. The adsorption was analyzed using pseudo-first-order, pseudo-second-order, Elovich and Ritchie's kinetics models and the adsorption kinetics were found to follow pseudo-second-order kinetics model.
     The experimental results of Pb adsorption onto the modified expanded graphite by loading Mg(OH)2 showed that the adsorption capacity increased greatly comparing the expanded graphite. The adsorption quantity could reach at 105mg/g from the original 70mg/g. Under the conditions of the initial pH:4-6,concentration of Pb(Ⅱ):300mg/L, dosage of the modified expanded graphite:0.035g and the adsorption time:120min, the removal rate could reach at 98%. The adsorption equilibrium data were fitted according to Langmuir, Freundlich and Temkin adsorption isotherms, respectively. The results show that the Langmuir isotherm can agree with the adsorption behavior of Pb on modified expanded graphite. The adsorption was analyzed using pseudo-first-order, pseudo-second-order, Elovich and Ritchie's kinetics models and the adsorption kinetics were found to follow pseudo-second-order kinetics model.
引文
[1]王光龙,蒋廉洁.污水集中处理厂污水中金属的分布[J].重庆环境化学,2002,24(5):48.
    [2]王爱平.活性炭对溶液中重金属的吸附研究[D].昆明:昆明理工大学:2003.
    [3]孟祥和,胡国飞 .重金属废水处理[M],北京:北京化学工业出版社,2000,5.
    [4]安成强,崔作兴.电镀三废治理技术[M].北京:国防工业出版社,2002,53-76.
    [5]张勇.微波活性炭处理重金属废水研究[D],昆明:昆明理工大学:2007.
    [6]陈佛顺.有色金属环境保护[M],北京:冶金工业出版社,1984,11.
    [7]陆雍来,蒋展鹏,张世森,奚旦立合编.环境工程手册(环境监测卷),北京:高等教育出版社,1998.
    [8]卢敬科.改性活性炭的制备及其吸附重金属性能的研究[D].浙江:浙江工业大学:2009.
    [9]詹亮,李月蓉.氢氧化钾法制备活性竹活性炭[J].中国科技信息,2005,19(1):23-33.
    [10]张丽丹,冯霞.以果物壳为原料制备活性炭及其改性研究[J].宁夏大学学报(自然科学版),1996,17(2):32-35.
    [11]Chiang, Figueiredo J L, Pereiva M R. Modification of the surface chemistry of activated carbons[J].Carbon,1999,37:1379-1389.
    [12]白树林,赵桂英,付希贤.改性活性炭对水溶液中Cr3+吸附的研究[J].化学研究与应用,2001,13(6):670-672.
    [13]Vinke L, Mangtm Kelly R, Benak J.E, et al. Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia[J]. Carbon,2001,39(12):1809-1820.
    [14]GilW S, Maxl G Q. Effects of acidic treatment on the pore and surface properties of Ni catalyst supported on activated carbon[J]. Carbon,1998,36(3):283-292.
    [15]范延臻,王宝贞,王琳等.改性活性炭的表面特性及其对金属离子的吸附性能[J].环境化学,2001,20(5):437-443.
    [16]李玉峰.细鳞片石墨膨胀机理的研究[D].南充:西南石油大学.2006.
    [17]段承敬,罗益清.中国非金属矿产概况[J].硅酸盐学报,1990,18(6):270.
    [18]徐世江.核石墨的发展[J].新型碳材料,1991,(3):115-121.
    [19]段惠彬.对我国石墨资源开发与利用的探讨[J].中国矿业,2001,10(6):22-24.
    [20]刘开平,周敬恩.膨胀石墨化学氧化法制备技术研究进展[J].长安大学学报,2003,25(4):85-91.
    [21]张倩,高欣宝,高敏,等.纳米复合材料-石墨层间化合物研究进展[J].材料导报,2006,20(4):193-195.
    [22]林雪梅.可膨胀石墨的化学氧化法制备研究进展[J].炭素,2005,(4):44-49.
    [23]陈志刚,张勇,杨娟.膨胀石墨的制备、结构和应用[J].江苏大学学报,2005,26(3):248-253.
    [24]陈难先.插层化合物的研究与进展[J].物理,1992,21(4):216-222.
    [25]黎梅,李冀辉.浓硫酸在可膨胀石墨制备中的作用[J].河北师范大学学报,1999,23(2):238-240.
    [26]Ji~hui Li,Li~li Feng,Zhi~xin Jia. Mechanical properties of monolithic compressed expanded graphite~based adsorbents related to the temperature of pyrolysis and activation, studied with ultrasound[J]. Materials Characterization,2004,52(3):195-202.
    [27]赵正平.硝化法制取无硫膨胀石墨存在的问题及方法研究[J].非金属矿,2000,23(2):11-12.
    [28]陈小文,夏金童.制备低硫高倍膨胀石墨的正交法研究[J].炭素,2000,(3):1-7.
    [29]杨晓燕,关明.电化学法制备膨胀石墨的改进[J].精细化工,2000,15(增刊):72-74.
    [30]张正国,王学泽,方晓明.石蜡/膨胀石墨复合相变材料的结构与热性能[J].华南理工大学学报,2006,34(3):1-5.
    [31]任慧,康飞宇,焦清介.掺杂磁性铁粒子膨胀石墨的制备及其对毫米波的干扰作用[J].新型炭材料,2006,21(1):24-27.
    [32]刘淑芬,郭英.膨胀石墨浮油吸油行为及机理研究[J].石家庄职业技术学院学报,2005,17(6):22-24.
    [33]刘振宇,郑经堂,等.多孔碳的纳米结构及其解析[J].化学进展,2001,13(1):10.
    [34]松全才,杨莹惠,金韶华.炸药理论[M],北京:兵器工业出版社,1997:4.
    [35]LIU Guo-qin,YAN Min. The preparation of expanded graphite using fine flaky graphite[J].New Carbon Mater.,2002,17(2):13-18.
    [36]朱继平,陈祖耀,韩德宏.KmnO4~H2O2联合氧化法制备可膨胀石墨[J].合肥工业大学学报(自然科学版),1998,21(1):131-134.
    [37]宋克敏,刘金鹏.制备无硫可膨胀石墨的研究[J].无机材料学报,1997,12(2):3-7.
    [38]Inaqaki,Michio. Exfoliation Process of Graphtie Via Intercalation Compounds With Sulfuric Acid[J]. Journal of Physics and Chemistry of Solids,2004,65(2):133-137.
    [39]薛美玲,于永良,任志华.电化学法制造膨胀石墨的再改进[J].精细化工,2002,19(10):568-570.
    [40]陈翔峰,陈国华,吴大军.聚合物/石墨纳米复合材料研究进展[J].高分子通报,2004,(4):41-45.
    [41]朱继平.可膨胀石墨的稳定性研究[J].合肥工业大学学报,2002,25(2):25-30.
    [42]Chung DDL. Review exfoliation of graphite[J].J Mater Sci 1987,22:4190-4198.
    [43]T.Wei,Z,J.Fan,G.L Luo,C.Zheng,D.S.Xie.A rapid and efficient method to prepare exfoliated graphite by microwave irradiation[J].Carbon,2008,313-347.
    [44]张东,田胜力,肖德炎.微波法制备纳米多孔石墨[J].非金属矿,2004,27(6):22-24.
    [45]李冀辉、刘巧云、黎梅,等.低硫可膨胀石墨的制备[J].精细化工,2003,20(6):341-342.
    [46]甄捷,乔英杰,王慎敏.低硫可膨胀石墨工艺研究[J].哈尔滨理工大学学报,2005,10(3):54-55.
    [47]魏兴海,张金喜,史景利,等.无硫高倍膨胀石墨的制备及影响因素探讨[J].新型炭材料,2004.19(1):4548.
    [48]周明善,李澄俊,徐铭.石墨层间化合物FeCl3-CrO3-GIC的制备及性能研究[J].无机化学学报,2006,22(11):2049-2054.
    [49]魏兴海,刘朗,张金喜,等.一种制备膨胀石墨的新方法及其压制品的性能研究[J].材料工程,2007(z1):156-159.
    [50]应宗荣,杨坤,李静,等.聚丙烯/低温可膨胀石墨阻燃复合材料的性能研究[J].塑料工业,2006.34(12):43-45.
    [51]林雪梅.低温可膨胀石墨的结构与性能研究[J].火工品,2006.(5):1-4.
    [52]程俊华,闻荻江.抗氧化可膨胀石墨及其防火涂料的制备和性能[J].化工新型材料,2007,35(5):74-76.
    [53]金立国,赵晓旭,等.耐高温氧化石墨材料抗氧化性能的研究[J].炭素,2005,2:18-21.
    [54]许章色,添加剂硼酸对柔性石墨性能影响[J].碳素技术,2006,5:33-36.
    [55]吴泽,张达威,黄荣华,等.可膨胀石墨的制备及影响因素[J].哈尔滨理工大学学报,2007,12(2):128-130.
    [56]高林.氧化酸液浸泡法制造可膨胀石墨过程中污染治理的研究[J].贵州环保科技,2001(4):5-7.
    [57]张静,肖筱瑜.膨胀石墨表面非极性吸附研究[J].矿产与地质,2003,17(4):571-573.
    [58]吴翠玲,翁文桂.膨胀石墨的多层次结构[J].华侨大学学报,2003,24(2):147-150.
    [59]王楠.膨胀石墨对污染物去除性能研究[D].哈尔滨:哈尔滨工业大学:2006.
    [60]杨晓东,顾安忠.活性炭吸附的理论研究进展[J].炭素,2000,4:11.
    [61]周不严.H3P04-KOH活化法桐壳基活性炭的制备及其吸附性能的研究[D].福建:福建师范大学:2007.
    [62]邱滔,陈志刚.膨胀石墨深度处理油田废水研究[J].江苏工业学院学报,2006.18(4):11-13.
    [63]王宏喜,王宏霞,薛丽.关于膨胀石墨吸油性能的研究[J].炭素技术,2004.23(5):21-23.
    [64]Michio Inagaki,Akihiro Kawahara. Recovery of heavy oil from contaminated sand by using Exfoliated graphite[J].2004(170):77-82.
    [65]连锦明,陈前火,等.膨胀石墨对甲醛废弃吸附行为的研究[J].吉林化工学院学报,2005,22(1):1-3.
    [66]张占辉,默丽萍.石墨催化的有机化学反应[J].河北师范大学学报(自然科学版),2000,24(3):366-370.
    [67]赵少飞,庞秀言,李瑞芳,等.可膨胀石墨对动物油脂的催化酯交换反应研究[J].炭素,2007,4:19-22.
    [68]陈国华,吴翠玲,吴大军,等.聚甲基丙烯酸甲酯/石墨薄片纳米复合及其导电性能研究[J].高分子学报,2003,5:742-745.
    [69]黄启忠,谢有赞,吴国锋,等.颗粒膨胀石墨在干电池中的应用研究[J].碳素,1993,3:45-49.
    [70]赖奇,李玉峰,刘国饮.细鳞片膨胀石墨在燃料电池中的应用分析[J].攀枝花学院学报,2007,24(6):1-2.
    [71]Shen WC, Wen S Z,Cao N Z,et al. Expanded graphite—a new kind of biomedical material[J].Carbon,1999,37(2):356-358.
    [72]梁莹娜.用于红外/毫米波干扰材料的可膨胀石墨制备及性能研究[D].南京:南京理工大学:2007.
    [73]曹宏,李儒,蔡细荣,等CoCl2-FeCl3-膨胀石墨层间化合物电学及磁学性能表征[J].炭素技术,2008,27(2):15-18.
    [74]曹宏,宾晓蓓,蔡细荣,等CoCl2-FeCl3-膨胀石墨层间化合物制备[J].化学与生物工程,2006,23(5):9-11.
    [75]赖奇,李敏杰,刁毅,等.膨胀石墨颗粒对黑曲霉生长的影响[J].安徽农业科学,2008,36(7):2620-2623.
    [76]近藤精一,安部郁夫著.李国希译.吸附科学[M].第二版,北京:化学工:业出版社,2005.
    [77]Motoi Maehida,Masami Aikawa,Hideki Tatsumoto. Predietion of simultaneous adsorption of Cu(II) and Pb(II) onto activated carbon by conventional Langmuir type equations[J]. Journal of Hazardous Materials,2005,120(1-3):271-75.
    [78]张利波.烟杆基活性炭的制备及吸附处理重金属废水的研究[D].云南理工大学博士学位论文,2007.
    [79][1] F.B ergton, Ann. Phys,1912,37:472.
    [80][日]近藤精一,[日]石川达雄,[日]安部郁夫著,吸附科学,北京:化学工业出版社,2005,10,101-103.
    [81]Mitali Sarkar, Apama Banerjee,Partha Pratim Pramanick, AsitR.Sarkar.Use of laterite for the removal of fluoride from contaminated drinking water[J].Joumal of Colloid and Interface Science,2006, 302:432-441.
    [82]Numan Hoda,EdiP Bayram,Erol Ayranci.Kinetic and equllibrium studies on the removal of acid dyes from aqueous solutions by adsorption onto activated carbon cloth[J]. Journal of Hazardous Materials,2006,137:344-351.
    [83]E.I.Unuabonah,K.O.Adebowale,B.I.Olu-owolabi.Kinetic and thermodynamic studies of the adsorption of lead(Ⅱ) ions onto phosphate modified kaolinite clay [J]. Journal of Hazardous Materials,2006,102:201-205.
    [84]C. W. Cheung, J. F. Porter, G. Mckay, Sorption kinetics for the removal of copper and zinc from effluents using bone char, Sep. Purif. Technol.,2000(19) 55-64.
    [85]M. Koh, T. Nakajima Adsorption of aromatic compounds on CxN-coated activated carbon[J], Carbon,2000 (38) 1947-1954.
    [86]牛耀兰.废弃麻纺品制备活性炭及其应用[D],上海:东华大学:2009.
    [87]H. L. Chiang, C. P. Huang, P. C. Chiang.The adsorption of benzene and methylethylketone onto activated carbon:thermodynamic aspects[J],Chemosphere,2002 (46) 143-152.
    [88]S. Y. Qi, K. J. Hay, M. J. Rood, M. P. Cal, Carbon Fiber Adsorption Using Structure-Activity Relationship[J]. Environ. Eng.,2000 (126):865-868.
    [89]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第四版,北京,中国环境科学出版社,2002:304-306.
    [90]吴云海,李斌,冯仕训,等.活性炭对废水中Cr(Ⅵ)、As(Ⅲ)的吸附[J].化工环保,2010,30(2):108-111.
    [91]孙小莉,曾庆轩,冯长根,李明愉.多胺型阴离子交换纤维吸附Cr(Ⅵ)的热力学[J].功能材料,2009,40(10):1571-1575.
    [92]姜述芹,于秀娟,周保学,等.含铬废水的氢氧化镁净化研究[J].哈尔滨工业大学学报,2004,36(8):1080-1084.
    [93]于泊蕖,吕树芳,马建薇.镁剂在重金属离子脱除方面的应用研究进展[J].煤炭技术,2010,29(5):219-220.
    [94]万军喜;唐国翌.纳米氢氧化镁的制备方法[P].中国,200710124792,2009-03-04.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700