用户名: 密码: 验证码:
浮选柱气含率的影响机制与调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贫杂难选矿石中细颗粒及微细颗粒难以矿化问题是柱分选研究的难题之一。浮选过程中气体含量的多少和气体质量直接决定了疏水性矿物产率的高低和气泡的荷载能力。气含率是对浮选过程中气体含量大小和气体质量的表述。目前,浮选柱浮选过程中,依据充气量来调控气体含量技术比较成熟,但气泡的质量往往无法得到保证,影响了浮选的回收率和选择性。因此,本文开展基于气泡的浮选柱气含率影响机制与调控研究,为在高紊流、高充气量分选环境中如何控制气泡尺寸提供理论基础,为浮选柱满足工业过程控制需要提供技术支撑,实现浮选柱对微细颗粒的高效分选。
     首先,本文开展了浮选柱分选煤泥、硫化铜、赤铁矿和铝土矿的适宜气含率试验研究。试验采用压差法测定气含率,分析了不同气含率情况下浮选柱分选煤泥、硫化铜、赤铁矿和铝土矿的效果。结果表明:气含率对分选指标的影响有一定共性,气含率的增加会导致目的矿物回收率的提高,精矿品位逐渐降低;不同的矿物达到最佳分选效果时,所对应的气含率大小并不相同。由此说明,气含率对矿化效率有一定影响,从而影响浮选精矿品位和回收率,通过气含率调控可优化浮选过程和提高浮选效率。
     浮选过程中,气泡尺寸直接影响气含率的大小,而影响气泡尺寸和气含率大小的参数很多,其中循环压力、充气量和起泡剂用量是最关键的因素。为深入研究这三种因素对气含率的影响关系,本文开展了试验研究和流场数值模拟研究。试验研究部分借助MATLAB软件作为气泡图像分析手段,分别研究了循环压力、充气量和起泡剂用量对气泡尺寸和气含率大小的影响,探索了各因素的影响规律。数值模拟研究部分利用流体力学软件FLUENT对浮选柱内气液两相流场进行了数值模拟研究,从理论上探讨各种因素对气含率的影响规律,并分析了气速随循环压力、充气量的变化规律,结果表明:两相流场模拟结果与试验结论基本一致;气含率在柱体内的径向分布为中心处较高、四周较低,轴向分布为中间高、两边低。通过影响因素试验研究和流场数值模拟研究,为气含率的影响机制和调控研究打下了良好的基础。
     在前面研究的基础上,又从理论上探讨了气含率的影响机制和调控,从控制的角度确定气含率调控策略。首先依据质量守恒定律,对浮选柱内气-液-固三相流动进行恒算,从而得到浮选柱气含率的计算公式。在此基础上,对矿化气泡的运动进行了深入分析,以矿化气泡受力平衡为出发点,重点讨论了气泡大小与循环压力、循环流量、液相表面张力等因素的关系,结合气相体积流量、处理量以及浮选回收率等因素的分析,得到基于工况参数的气含率关系模型数学表达式。再将该数学表达式进行单因素化,通过清水试验和矿物分选试验对单因素化的公式进行验证,发现通过公式计算的结果与试验结果基本一致。然后,基于气含率的分析计算,对气含率的调控策略进行了探讨。通过分析浮选动力学,确定气含率调控的基本思想为:以浮选作业指标为最终目标,通过综合调控起泡剂用量、循环压力和充气量等因素,提出了以专家控制系统为核心、以入料性质为前馈、以参数检测量为反馈的气含率调控策略。
     最后,本研究结合大红山铜矿开展了分选试验,进行强化流程控制与气含率调节的实践。结果表明:在原矿品位为0.72%的情况下,采用浮选柱一粗一精工艺,得到精矿品位25.25%,回收率93.39%的指标,而且回收率比浮选机分选高出0.97个百分点。分选试验成功实现了浮选柱气含率的可控、可调,这对矿物分选的过程控制具有重要的指导作用,大大推进了柱式短流程分选过程控制技术的发展。
     该论文有图69幅,表35个,参考文献148篇。
Fine and micro-fine particles in poor, mixed, difficult mineral are difficult to mineralize, which is one of the most difficult problems in column separation research. The ammount of gas hold-up and the quality of gas decide the hydrophobic mineral yield and load ability directly. Gas hold-up characterizes the ammount and quality of gas in flotation process. At present, the techology of regulating the ammount of gas based on inflating volume has been quite mature in column flotation process. However, the quality of bubbles can’t always be ensured which has effect the recovery and selectivity of flotation. With the aims mentioned above, the study on the formation mechanism and regulation of flotation column gas hold-up has been made in this dissertation, which will provide theory fundamental for controlling the size of bubbles in the environment of strong turbulent with a great amount of inflating volume, and provide technology support for flotation column industrial concrol to achieve effective separation of micro-fine particles.
     First of all, the research on suitable gas hold-up of coal slime, copper sulfide, hematite and bauxite column flotation separation has been made. Using pressure-difference method to measure gas hold-up, under the condition of differernt gas hold-up, the column separation effect of coal slime, copper sulfide, hematite and bauxite have been analysized. The results show that the influence of gas hold-up on separation index has some kind of commonness. Increasing gas hold-up leads to increasing recovery of purpose mineral while the concentrate grade reduces gradually. While achieving the best separation effect, the corresponding gas hold-up of different mineral ores is different. Therefore, gas hold-up affects mineralization to some extent, which affects concentrate grade and recovery. By regulating gas hold-up the flotation process can be optimized to improve flotation effect.
     In flotation process, the size of bubbles affects gas hold-up directly. Circulating pressure, inflating volume and frother dosage are the key factors while there are many factors affect the size of bubbles and gas hold-up. To research the influence of these three factors on gas hold-up, experimental and flow field numerical simulation study has been made. During experimental study process, using software MATLAB as bubble image analysis tool to research the influence of circulating pressure, inflating volume and frother dosage on the size of bubbles and gas hold-up separately and get the effect regularity. During numerical simulation study process, using fluid dynamics software FLUENT to make numerical simulation research of gas-fluid two-phase flow field in flotation column. Effect regularity of each factor has been investigated theoretically, also the gas velocity variation regularity while changing circulating pressure and inflating volume has been analysized. The results show that two-phase flow field simulation results are consisitent with experimental results. The radial distribution of gas hold-up in column is higer in the middle and lower at around. The axial distribution is higher in the middle and lower on both sides. Factors experimental and flow field numerical simulation research has provided great basic for the study on the formation mechanism and regulation of gas hold-up.
     Basing on the research mentioned above, the formation mechanism and regulation of gas hold-up has been discussed. From the perspective of controlling the regulation strategy of gas hold-up has been made. Basing on conservation of mass to make balance caculation of gas-liquid-solid three-phase flow, the flotation column gas hold-up caculation formula has been achieved. On this basis, making force balance of mineralization bubble as a starting point, the relationship between the bubble size and the factors of circulating pressure, circulating flow, liquid-phase surface tension has been emphatically discussed. Combined with the factors analysis such as gas-phase volume flow, processing capacity and flotation recovery, the gas hold-up relationship model mathematical expression basing on working parameters has been got. Then make this mathematical expression single-factor change. Through fair-faced water experiment and mineral separation experiment the expression has been verified and it has been found out that the results caculated using expression are the same with experiment results. Then the regulation strategies has been discussed basing on gas hold-up analysis caculation. By analyzing flotation dynamics, the basic idea of gas hold-up regulation can be confirmed as follow: making flotation index as the final goal, through comprehensive regulation of the factors of frother dosage, circulating pressure and inflating volume, the gas hold-up regulation strategy with core of expert regulation system, feedforward of feed properties, feedback of parameter test quantity has been proposed.
     Finally, the separation experiments combined with Dahongshan copper ore have been carried out to strengthen flow-chart control and gas hold-up regulation. The results show that the index of concentrate grade 25.25%, recovery 93.39% has been achieved using flotation column one-coarse-one-regrade flow-chart in the situation of raw ore grade 0.72%, and the recovery is 0.97 percent point which is higer than that of flotation machine. separation experments have achieved flotation column gas hold-up contrallable and adjustable successfully, which is an important orientation for mineral separation process regulation and will promote the development of column short-flow separation regulation techonolgy greatly.
引文
[1]申宝宏,赵路正.高碳能源低碳化利用途径分析[J].中国能源, 2010, 32(1): 10-13.
    [2]管清友.中国能源战略新思维[J].中国经济周刊, 2010, (1): 79-80.
    [3]卢寿慈.矿物浮选原理[M].北京:冶金工业出版社, 1989: 112-130.
    [4]刘炯天.旋流-静态微泡浮选柱及洁净煤制备研究[D].北京:中国矿业大学, 1999.
    [5]周晓华,赵朝勋,刘炯天.浮选柱研究现状及发展趋势[J].选煤技术, 2003, 6: 51-54.
    [6] N.K.Mittal, P.K.Sen, S.J.Chopra. India’s First Column Flotation Installation in the Zinc Cleaning Circuit at Rajpura Dariba Mine India [J]. Minerals engineering, 2000, 13(5): 581-584.
    [7] M.T.Ityokumbul. What Really Determines the Height in Column Flotation [J]. Mineral and metallurgical processing, 1996, (13): 36-41.
    [8]翟爱峰.基于可浮性过程特征的硫化铜矿柱式分选研究[D].徐州:中国矿业大学, 2008.
    [9]徐振洪,皇甫京华,张荣曾.新型高效煤炭浮选起泡剂的研究[J].选煤技术, 1996, (12): 14-18.
    [10] Tavera.F J, Escuder.o.R, Finch J, A. Gas Holdup in Flotation Columns:Laboratory Measurements [J]. International Journal of Mineral Processing, 2001, 61(1): 23-40.
    [11] Menter.F.R. Two-Equation Eddy-Viscosity Turbulence Models Fou Engineering Applications [J]. AIAA-Journal, 1994, 32(8): 1598-1605.
    [12] Garca-Calvo.E, Leton.P. Prediction of Gas Hold-up and Liquid Velocity in Airlift Reactors Using Two-Phase Flow Friction Coefficients [J]. Journal of Chemical Technology﹠Biotechnology, 1996, 67(3): 388-396.
    [13]范维国,李敏哲,代敬龙.旋流微泡浮选柱分选效果影响因素分析[J].煤炭加工与综合利用, 2010, 19(6): 38-39.
    [14] Nallasamy.M. Turbulence Models and Their Applications to the Prediction of Internal Flows [J]. Computers and Fluids, 1987, 215(3): 151-182.
    [15]罗孝君.我国自然资源状况及可持续利用途径[J].合作经济与科技, 2010, (387): 4-5.
    [16]程瑜,宋永胜,李宾.旋流喷射浮选柱气含率影响因素研究[J].金属矿山, 2008, 390(12): 116-120.
    [17]王丽雅,庄华洁,宋景祯,等.高气速下鼓泡塔内气含率分布的测定[J].化学反应工程与工艺, 2006, 2(1): 1-6.
    [18] Wu.Y.X, Ong.B.C, Aldahhan.M.H. Predictions of Radial Gas Holdup Profiles in Bubble Column Reactors [J]. Chemical Engineering Science, 2001, 56(3): 1207-1210.
    [19] Krishna.R, Urseanu.M.I, Van.Baten e a. Influence of Scale on the Hydrodynamics of BubbleColumns Operating in the Churn Turbulent Regime:Experiments Vs Eulerian Simulations [J]. Chemical Engineering Science, 1999, 54(21): 4903-4911.
    [20]陈泉源,张泾生.浮选柱的研究与应用[J].矿冶工程, 2000, 20(3): 1-5.
    [21] Shetty.S.A, Kantak.M.V, Kelkar.B.G. Gas-Phase Backmixing in Bubble Column Reactors [J]. AIChE, 1992, 38(7): 1013-1026.
    [22]张妍琴,安彩红,杨宏丽,等.射流浮选柱内纵向气泡均匀性的试验研究[J].煤炭学报, 2009, 34(1): 95-99.
    [23] H.赫尔兰德兹.浮选柱中气体分散与废纸脱墨研究[J].国外金属矿选矿, 2004, (4): 41-44.
    [24]阮永宏,王嘉麟.浮选柱中气泡参数影响因素及其改善方法[J].石油大学学报, 1999, 21(4): 64-66.
    [25]刘炯天.旋流-静态微泡柱分选方法及应用(之二):柱分离过程的静态化及其充填方式[J].选煤技术, 2000, (2): 1-5.
    [26]刘炯天,王永田.自吸式微泡发生器充气性能研究[J].中国矿业大学学报, 1998, 27(1): 27-31.
    [27] Liu-jiongtian, Fan-mingqiang. Theoretical Floatability Curve of Coal and Its Model [J]. Journal of Coal Science and Engineering, 1998, (2): 91-95.
    [28]王丽祥,吴桂英,李阳,等.采用间接膨胀法研究鼓泡床内气含率特性[J].化工学报, 2010, 61(9): 2353-2357.
    [29]李方天.鼓泡塔内气液两相流动的cfd模拟[D].天津:天津大学, 2007.
    [30] Bankoff.S.G. A Variable Density Single-Fluid Model for Two-Phase Flow with Particular Reference to Steam-Water Flow [J]. Heat transfer, 1960, 82(2): 265-270.
    [31] Levy.S. Prediction of Two-Phase Pressure Drop and Density Distribution from Mixing Length Theory [J]. Heat transfer, 1963, 88(2): 137-152.
    [32] Beattie.D.R. Two-Phase Flow Structure and Mixing Length Theory [J]. Nucl Eng. Des, 1972, (21): 46-64.
    [33] Serizawa.A, Nicholas.W.G. Richard.G.R.Circulation and Scale-up in Bubble Columns [J]. AIChE, 1992, 38(1): 76-82.
    [34] Nakoryakov.V.E, Kashinsky.O N, Randin.V.V. Gas-Liquid Bubbly Flow in Vertical Pipes [J]. Journal of Fluid Engineering, 1996, 118: 377-382.
    [35]蔡清白,沈雪松,沈春银,等. Ect研究浅层鼓泡塔中的气含率行为[J].华东理工大学学报, 2010, 36(2): 157-164.
    [36]张文晖,李鑫钢.气升式内环流反应器内局部气含率径向分布[J].化工学报, 2010, 61(5): 1118-1122.
    [37]李鸿莉,李登新,刘广涛,等.三相流化床中表观气速对电导率及相含率的影响[J].过程工程学报, 2010, 10(2): 236-239.
    [38] Hyndman.C.L, Larachi.F, Guy.C. Understanding Gas-Phase Hydrodynamics in Bubble Column:A Convective Model Based on Kinetic Theory [J]. Chem Eng Sci, 1997, (52): 63-77.
    [39]马永乾,孙宝江,王志远,等.垂直上升气液柱塞流中含气率分布[J].中国石油大学学报, 2010, 34(1): 64-69.
    [40]陈泉源.实验室规模高气泡表面积通量浮选柱的原理、研制及应用[D].长沙:中南大学, 2002.
    [41] Gomez.C.O, Cortes– Lopez.F, Finch.J.A. Industrial Testing of a Gas Holdup Sensor for Flotation Systems [J]. Minerals Engineering, 2003, 16(6): 493-501.
    [42]郭梦熊.新结构浮选柱的理论基础与实践[J].国外金属矿选矿, 1991, 28(7): 27-31.
    [43]陈志友,李忠.浮选柱充气率的影响因素探讨[J].煤炭加工与综合利用, 2008, 29(5): 18-20.
    [44]张同旺.气液鼓泡床中气含率的实验研究[J].石油化工高等学校学报, 2002, (10): 1-5.
    [45]崔巍,朱家文,杨志东,等.多级搅拌塔气液体系的轴向混合和气含率[J].化学反应工程与工艺, 2009, 25(2): 116-120.
    [46]刘靖,月琼.使用电导率测定法测定浮选柱中的气体含量[J].国外金属矿选矿, 1992, 29(12): 102 -104.
    [47] F.J.塔维拉.浮选柱中的充气量和矿浆固体浓度在线电导率测定法[J].国外金属矿选矿, 2007, (9): 24-28.
    [48] F.J.塔维拉.使用电导率测定法测定浮选柱中的气体含量[J].国外金属矿选矿, 1992, (12): 10-14.
    [49]吕术森,陈雪莉,于广锁,等.应用电导探针测鼓泡塔内气泡参数[J].化学反应工程与工艺, 2003, 12(4): 344-351.
    [50]高正明,王英琛,施力田,等.应用电导探针测气泡参数[J].化学反应工程与工艺, 1992, 3 (1): 105-110.
    [51] R.Perez - Garibay, Villar R D. On-Line Gas Holdup Measurement in Flotation Columns [J]. Canadian Metallurgical Quarterly, 1999, 38(2): 141-148.
    [52] Manqiu Xu, J.A.Finch, B.J.Huls. Measurement of Radial Gas Holdup Profiles in a Flotation Column [J]. International Journal of Mineral Processing,, 1992, (36): 229-244.
    [53]张海军,刘炯天,王永田.矿用旋流-静态微泡浮选柱的分选原理及参数控制[J].中国矿业大学学报, 2006, 15(5): 70-73.
    [54]张兴昌. Cpt浮选柱工作原理及应用[J].有色金属(选矿部分), 2003, (2): 22-24.
    [55]郑礼全,郑钢丰,朱金波.旋流器式浮选柱的研究[J].选煤技术, 2003, (3): 16-17.
    [56]路迈西,刘文礼. Fxz系列静态浮选柱的工业应用[J].选煤技术, 2001, (6): 6-8.
    [57]卢世杰. Kyz型浮选柱机理研究[J].有色金属(选矿部分), 2002, (1): 20-23.
    [58]张敏,刘炯天,张建强.浮选柱气含率及其影响因素对煤泥分选的研究[J].煤炭学报, 2009, 34(6): 823-826.
    [59]刘炯天,张敏,刘焕彬,等.筛板充填浮选柱浮选流体的速度场分布[J].中国矿业大学学报, 2007, 36(5): 578-581.
    [60]王国峰.气液两相及气液固三相鼓泡床流动特性的实验研究[D].北京:北京化工大学, 2006.
    [61]王丽军,张煜,李希.湍动浆态床流体力学研究(Ⅰ)气含率及其分布规律[J].化工学报, 2008, 59(12): 2996-3002.
    [62]刘炯天,王永田,张海军.微泡浮选柱在中国的应用与发展[J].第十五届国际选煤大会论文, 2006.
    [63]刘炯天.旋流-静态微泡柱分选方法及应用之一:两种浮选设备的比较与旋流-静态微泡柱分选方法[J].选煤技术, 2000, (1): 42-44.
    [64]刘炯天.旋流-静态微泡柱分选方法及应用之三:射流微泡与管流矿化的研究[J].选煤技术, 2000, (3): 42-44.
    [65]刘炯天.旋流-静态微泡柱分选方法及应用(之四)旋流力场分离与强化回收机制[J].选煤技术, 2000, (4): 1-4.
    [66]刘炯天.旋流-静态微泡柱分选方法及应用(之五)柱分选设备系列化及大型旋流-静态微泡浮选床[J].选煤技术, 2000, (5): 1-4.
    [67] Scott.A.Idlas, Joseph.A.Fjtzpatrick, John.C.Slattery. Conceptual Design of Packed Flotation Columns [J]. Industrial and Engineering Chemistry Research, 1990, 29(6): 943-949.
    [68]林松,李良超,王嘉骏,等.鼓泡塔中气泡尺寸分布和局部气含率研究[J].化学工程, 2008, 36(2): 21-24.
    [69]宋巍,靖英,于波.浆态床反应器气含率研究进展[J].天津化工, 2009, (1): 12-15.
    [70]李方天,曾爱武.逆流鼓泡塔气含率分布的试验测量与cfd模拟[J].化学工业与工程, 2009, (1): 62-65.
    [71]杨汶雨,张喆,袁景淇,等.气升式反应器结构参数优化设计cfd仿真研究[J].合肥工业大学学报(自然科学版), 2009, (9): 1301-1303.
    [72]朱友益,张强,王化军. Lhj浮选柱充气性能的研究[J].金属矿山, 1996, 245(11): 30-33.
    [73]朱友益,张强,王化军,等. Lhj浮选柱流体静力学研究[J].北京科技大学学报, 1999, (2): 15-18.
    [74]荀志远,张强,王化军,等.新型低高度浮选柱数学模型及按比例放大[J].有色金属(选矿部分), 1996, (3): 37-39.
    [75]朱友益,张强,王化军. Lhj浮选柱中的气泡特性[J].北京科技大学学报, 1996, (5): 40-44.
    [76]朱友益,张强,王化军.新结构短柱体浮选柱的研究现状[J].化工矿物与加工, 1996, (5): 22-24.
    [77]荀志远,张强,王化军.低高度浮选柱几个重要参数的研究[J].金属矿山, 1998, (3): 19-23.
    [78]朱友益,张强,王化军,等. Pda测试浮选柱液-气两相流中气泡的流速分布[J].北京科技大学学报, 1999, (2): 25-28.
    [79]丁一刚,李定或,吴元欣.充填浮选柱捕集区气含率的实验研究[J].化工矿山技术, 1996, 25(4): 13-14.
    [80]丁一刚,李定或,吴元欣.充填浮选柱的混合传质特性及操作参数(Ⅱ)模拟研究及选矿试验[J].中国有色金属学报, 1995, (2): 32-35.
    [81]李定或,丁一刚,吴元欣.充填浮选柱的混合、传质特性及操作参数ⅰ理论分析及试验原理[J].中国有色金属学报, 1995, (1): 18-20.
    [82]丁一刚,李定或,吴元欣.充填浮选柱捕收区流体混合模型参数的估计[J].武汉化工学院学报, 1996, (2): 26-29.
    [83]程瑜,宋永胜,李宾,等.微细粒黄铁矿柱浮选试验[J].金属矿山, 2009, (6): 64-68.
    [84]刘燕,张廷安,赵秋月,等.气泡细化过程中气含率的实验研究[J].过程工程学报, 2009, 9(1): 97-101.
    [85]卢寿慈,翁达.界面分选原理及应用[M].北京:冶金工业出版社, 1992: 160-170.
    [86] Collins.G.L, Jameson.G.J. Double-Layer Effects in the Flotation of the Particles [J]. Chemical Engineering Science, 1997: 239-246.
    [87] Yekeler M, Ibrahim. Effect of the Hydrophobic Fraction and Particle Size in the Collectorless Column Flotation Kinetics [A]. Colloids and Surfaces A: Physicochemical and Engineering [C]. 1997. 9-13.
    [88] Carvalho T, Durao F, Fernandes C. Dynamic Characterization of Column Flotaion Process Laboratory Case Study [A]. Minerals Engineering [C]. 1999. 1339~1346.
    [89] Weber.W, Paddok.D. Interceptional and Gravitational Collision Efficiencies for Single Collectors at Intermediate Raynolds Numbers [J]. Journal of Colloid and Interface Science, 1994: 328~335.
    [90] R.H.Roon.矿粒-气泡作用中的流体动力和表面力[J].国外金属矿选矿, 1993, (6): 5-11.
    [91] Schubert.H, Bischofberger.C. On the Optimization of Hydrodynamics in Flotation Process [J]. International Journal of Mineral Processing, 1999: 1261~1287.
    [92]邱冠周.颗粒间相互作用与细粒浮选[M].长沙:中南工业大学出版社, 1992: 110-151.
    [93] Schulze, Radoev H J, B.Geidle. Investigations of the Collision Process between Particles and Gas Bubbles in Flotation-a Theoretical Analysis [J]. Miner Process, 1999: 263一278.
    [94] A N V. On the Sliding Time in Flotation [A]. International Journal of Mineral Processing [C]. 1993. 1-25.
    [95] Bobby.G.S, Finch.J.A. Particle Size Dependence in Flotation Derived from Fundamental Model of the Capture Process [A]. International Journal of Mineral Processing [C]. 1996. 241~260.
    [96]谢广元.选矿学[M].北京:中国矿业大学出版社, 2001: 69-78.
    [97] D.G赫尔伯特.选矿过程的建模、控制和仿真[J].国外金属矿选矿, 2004, (3): 27-33.
    [98]曾克文,余永富.浮选矿浆紊流强度对矿物浮选的影响[J].金属矿山, 2000, (9): 17-20.
    [99] Joshi.J.B, Sharma.M.M.A. Circulation Cell Model for Bubble Columns [J]. Trans Inst Chem Eng, 1979, (57): 244-251.
    [100] M.J L, R.D K. Ideal Bubbly Flow and Actual Flow in Bubble Columns [J]. Trans Inst Chem Eng, 1975, 53: 267-273.
    [101] Koide K, Takazawa A, Komura M, et al. Gas Holdup and Volumetric Liquid Phase Mass Transfer Coefficient in Solid-Suspended Bubble Column [J]. Chem Eng Jpn, 1984, 17: 459-466.
    [102] Sada.E, Katoh.S, Yoshil.H. Performance of the Gas-Liquid Bubble Column in Molten Salt Systems [J]. Ind Eng Chem Process Des Dev, 1984, 23: 151-154.
    [103] Kumar.A, Dageleesan.T.E, Ladda.G.S. Bubble Swarm Characteristics in Bubble Columns [J]. Can J Chem Eng, 1976, 54: 503-508.
    [104] Grover.G.S, Rode.C.V, Chaudrai.R.V. Effect of Temperature on Flow Regimes and Gas Holdup in a Bubble Column [J]. Can J Chem Eng, 1986, 64: 501-504.
    [105] Zou.R, Jiang.X i, B Z. Studies on Gas Holdup in a Bubble Column Operated at Elevated Temperatures [J]. Ind Eng Chem Res, 1988, 27: 1910-1916.
    [106] Hughmark.G.A. Holdup and Mass Transfer in Bubble Columns [J]. Ind Eng Chem Process Des Dev, 1967, 6: 218-220.
    [107] Kawase.Y, Moo-Young.M. Heat Transfer in Bubble Column Reactors with Newtonian and Non-Newtonian Fluids [J]. Chem Eng Res Des, 1987, 65: 121-126.
    [108] Kawase.Y, Umeno.S, Kumagai.T. The Prediction of Gas Hold-up in Bubble Column Reactors:Newtonian and Non-Newtonian Fluids [J]. Chem Eng Jpn, 1992, 50(1): 1-7.
    [109] Akita.K, Yoshida.F. Bubble Size,Interfacial Area and Liquid-Phase Mass Transfer Coefficient in Bubble Columns [J]. Ind Eng Chem Process Des Dev, 1974, 12: 76-80.
    [110] Hikita H, Kikukawa H. Liquid Phase Mixing in Bubble Columns:Effect of Liquid Properties[J]. Chem Eng Jpn, 1974, 8: 191.
    [111] Hikita H, Asal S, Tanigawa K. Gas Holdup in Bubble Column [J]. Chem Eng Jpn, 1980, 20: 59-67.
    [112] Reilley I, Scott D, Bruijin D, et al. A Correlation for Gas Holdup in Turbulent Coalescing Bubble Columns [J]. Can J Chem Eng, 1986, 64: 705-717.
    [113] Godbole S, Honath M, Shah Y. Holdup Structure in Highly Viscous Newtonian and Non-Newtonian Liquids in Bubble Columns [J]. Chem Eng Commun, 1982, 16: 119-134.
    [114] Schumpe A, Deckwer W. Viscous Media in Tower Bioreactors:Hydrodynamic Characteristics and Mass Transfer Properties [J]. Bioprocess Eng, 1987, 2: 79-94.
    [115] Smith D N, Fuchs W, Lynn R J, et al. Bubble Behavior in a Slurry Bubble Column Reactor Model,Chemical and Catalytic Reactor Modeling [J]. ACS Symp Ser, 1984, 237: 125.
    [116] Roy N, Guha D, Rao M. Fractional Gas Holdup in Two-Phase and Three-Phase Batch-Fluidized Bubble-Bed and Foam-Systems [J]. Indian Chem Eng, 1963: 27-31.
    [117] Luttrell G H.细粒煤浮选的流体力学和数学模型[J].国外金属矿选矿, 1990, (1): 42-48.
    [118] Espinosa-Gemez R, Yianotos J. Carrying Capacity Limitations in Flotation Columns [J]. column flotation, 1988, (15): 143-148.
    [119]李冬莲.充填式浮选柱充气性能研究[J].中国矿业大学学报, 1999, 8(3): 15-18.
    [120] Yoon R H, Luttrell G H. The Effect of Bubble Size on Fine Particle Flotatio [J]. Mine process.Extr.Metall Rev, 1989, 5: 101-122.
    [121] Luttrell G H, Adel G T, Yoon R H. Hydrodymics and Mathematical Modeling of Fine Coal Flotation [A]. Proceedings of XVIIMPC [C]. 1991. 1791~1802.
    [122]林小竹,谷莹莹,赵国庆.煤泥浮选泡沫图像分割与特征提取[J].煤炭学报, 2007, 32(3): 304-308.
    [123]阳春华,周开军,牟学民,等.基于计算机视觉的浮选泡沫颜色及尺寸测量方法[J].仪器仪表学报, 2009, 30(4): 717-721.
    [124] R.A.格劳,王德燕,童雄,等.起泡剂对气泡大小的影响[J].国外金属矿选矿, 2006, (3): 33-36.
    [125] Y.S.楚,周高云,雨田.浮选起泡剂对气泡大小和泡沫稳定性的影响[J].国外金属矿选矿, 2002, (9): 17-21.
    [126]辛益军.方差分析与实验设计[M].北京:中国财政经济出版社, 2002: 60-78.
    [127]周振英,刘炯天.选煤工业试验研究方法[M].徐州:中国矿业大学出版社, 1991: 43-57.
    [128]傅德薰.计算流体力学[M].北京:高等教育出版社, 2002: 79-102.
    [129]温正. Fluent流体计算应用教程[M].北京:清华大学出版社, 2009: 1-12.
    [130]张远君.两相流体动力学[M].北京:北京航空学院出版社, 1987: 73-77.
    [131]岳湘安.液-固两相流基础[M].北京:石油工业出版社, 1996: 40-55.
    [132] G.K.巴切勒.流体动力学引论[M].北京:科学出版社, 1997: 265-287.
    [133] Willis G B. One-Dimensional Two-Phase Flows [M]. New York: McGraw-Hill, 1969: 234-237.
    [134]郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社, 1998: 69-75.
    [135] P.Moin. Progress in Large Eddy Simulation of Turbulence Flows [J]. AIAA paper, 1997, 97(15): 145-151.
    [136] Shih T-H, W. W. Liou, A. Shabbir, et al. A New K-E Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation Computers Fluids [J]. Indian Chem Eng, 1995, 24(3): 227-238.
    [137] J B. Essay of the Theory of Flow Water [M]. Paris: Mem. Acad. Sci, 1877: 523-546.
    [138] Hetsroni G. Handbook of Multiphase Systems [M]. Washington: Hemisphere Publishing Corporation, 1982: 54-87.
    [139] Pai S L. Two-Phase Flow [M]. Braunschweig: Vieweg-Verlag, 1977: 132-154.
    [140]陈翼孙,胡斌.气浮净水技术的研究与应用[M].上海:上海科学技术出版社, 1985: 61.
    [141] Hazi G, Mayer G, Markus A. Drag Force Acting on Bubbles in a Subchannel of Triangular Array of Rods [J]. International Journal of Heat and Mass Transfer, 2009, 52(5-6): 1486-1487.
    [142] Kishore N, Chhabra R P, Eswaran V. Bubble Swarms in Power-Law Liquids at Moderate Reynolds Numbers: Drag and Mass Transfer [J]. Chemical Engineering Research and Design, 2008, 86(1): 39-53.
    [143]徐奇焕.长喉部射水抽气器的结构特点及计算方法[J].水利电力机械, 1985, (6): 28-33.
    [144] J.A.Finch, G.S.Dobby. Column Flotation [M]. Pergamon Press, 1989: 37-73.
    [145]曾云南.现代选矿过程在线品位分析仪的研究进展[J].开发应用, 2008, (5): 12-15.
    [146] R?T?罗德里盖斯,周廷熙,王皓.气泡尺寸分布检测新方法[J].国外金属矿选矿, 2004, (10): 39-43.
    [147]刘炯天课题组.云南大红山铜矿工业分流实验报告[M]. 2006: 1-10.
    [148]张兴昌.大山选矿厂浮选柱的推广应用[J].有色金属(选矿部分), 2010, (3): 38-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700