用户名: 密码: 验证码:
厌氧好氧生物滤池组合工艺处理城市污水脱氮效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市化发展的加剧,污水处理厂大多需建于城市内部。目前我国建设的城市污水处理厂多采用活性污泥工艺,由于其占地面积过大,且运行时有臭味发出,对于建于城市内的污水处理厂,该工艺已不能满足此种需求。而且大多城市对于位于市内的污水处理厂要求其出水达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)中的一级A出水标准,一般的活性污泥法无法达到此要求,尤其是其对总氮的出水限制。
     厌氧好氧生物滤池组合工艺是结合了A/O生物脱氮工艺与曝气生物滤池工艺的特点设计而成的新型工艺。它既具有曝气生物滤池工艺占地面积小、管理方便、出水水质好、无臭味等特点,又具有A/O工艺对总氮高效去除的特点。本文重点对厌氧好氧生物滤池组合工艺处理城市污水的脱氮效能进行了深入研究,其中包含该工艺的挂膜启动方法、生物膜和反冲洗污泥的特性、脱氮效能的影响因素、低温时提高脱氮效能的方法、实际应用效能以及流体动力学和底物去除动力学等内容。本文的主要研究成果简述如下:
     对厌氧好氧生物滤池组合工艺的启动方法和启动阶段污染物的去除特性进行了研究。采用先间歇进水后连续进水,连续进水时采用逐渐增加流量和回流比的挂膜方法启动反应器,经过30d的培养,系统出水COD保持在40mg/L左右,氨氮保持在4mg/L左右,总氮保持在15mg/L左右,系统启动完成。
     系统研究了厌氧好氧生物滤池的工艺参数,溶解氧、反冲洗、回流比、温度、水力负荷、厌氧/好氧容积比等对该工艺脱氮效能的影响。实验结果表明,滤料层上部污水溶解氧控制在3.0~3.5mg/L、回流比控制在130%、厌氧/好氧容积比控制在1:1.5时,系统对污染物的去除效果达到最佳。水力负荷增加,系统的出水水质也随之恶化,但当水力负荷恢复到原值后系统短期内即能完全恢复其处理能力。小试反应器的反冲洗周期为5d(厌氧生物滤池)和10d(好氧生物滤池);反洗对厌氧和好氧生物滤池都具有较大影响,但在短时间(130~150min)内基本可恢复到反洗前水平。而温度降低时,硝化、反硝化和同步硝化反硝化作用都受到较大影响,其中低温对硝化作用受到影响最为严重。厌氧好氧生物滤池工艺中好氧滤池的同步硝化反硝化率较低,在上述最佳工况下为12.00%左右,溶解氧、反冲洗、回流比、温度、水力负荷、厌氧/好氧容积比等因素也都对好氧滤池的同步硝化反硝化率具有一定影响。系统进入稳定运行阶段后,在进水流量控制在8.5L/h、回流比控制在130%、溶解氧控制在3.0~3.5mg/L、水温在19~25℃时,对COD、氨氮、总氮都有较好的去除效能。
     对滤料上的生物膜量、生物相、滤料挂膜的微观结构等进行了分析。并对滤池的反冲洗污泥特性进行了研究,发现滤池的反冲洗污泥对氨氮有一定的吸附作用,好氧滤池的反洗泥吸附值要高于厌氧滤池的反洗泥吸附值,反洗污泥活性对反洗污泥的对氨氮的吸附能力影响较小,金属盐混凝剂对反洗污泥的氨氮吸附能力影响也较小。
     温度的降低对系统脱氮性能有很大影响。低温下,可以通过适当的增加溶解氧浓度(提高到4.0mg/L)和回流比(提高到150%)及延长生物滤池的反冲洗周期(好氧滤池提高至10d,厌氧滤池提高至17d)来提高系统的脱氮效能。同时应用这三种优化方法对系统脱氮效能的提高更加显著,系统出水氨氮平均浓度可达到7.70mg/L,总氮平均浓度可达到15.25mg/L。
     将厌氧好氧生物滤池组合工艺应用于实际工程项目,通过现场实验对在调试运行中出现的问题查找了原因并提出了解决方案;并对实际工程中氮的转换途径及效能进行了实验分析,发现反冲洗污泥对氨氮的吸附可以达到7.22%,硝化率达72.30%,反硝化率达46.97%,同步硝化反硝化率达13.65%。无论常温或低温,工程项目处理后出水均可达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)中一级A出水标准。
     以生物滤池堵塞模型和均质滤料毛细管模型为基础建立了厌氧好氧生物滤池的流体动力学模型;以Monod方程和微元法为基础建立了厌氧好氧生物滤池的底物去除动力学模型;并对建立的模型进行了模拟仿真和验证。仿真值与实验实测值的对比结果表明模型模拟仿真的效果较好。
With the urbanization intensifies in China, many municipal sewage treatment plants need to built inside the city. Most of the municipal sewage treatment plants built in China was adopted the activated sludge process. Activated sludge process was not suitable the municipal sewage treatment plants which need to built inside the city,because its area is too big and stink when running out. The effluent was demand to meet the National discharge standard of level 1-A (GB 18918-2002) in china for many municipal sewage treatment plants which need to built inside the city. It is impossible to reach for the general activated sludge process, especially its total nitrogen effluent limitations.
     Anaerobic-oxic biological filter conbination process was designed combined with the advantages of A/O biodenitrification technology and biological aerated filters. Its area is small, management is convenient, effluent is high standards, no odor and so on which was similar with biological aerated filters; it had a high removal efficiency to total nitrogen which was similar with A/O biodenitrification technology. The removal characteristics of anaerobic-oxic biological filter conbination process for municipal sewage treatment were in-depth studied in this paper, such as cultivation and acclimation of biofilm, the characteristics of biofilm and backwash sludge, efficiency factors of nitrogen removal, preparation of new filter, application efficiency of the process, fluid dynamics and substrate removal dynamics research. The main conclusion briefly described as follows:
     At first, the startup method and removal characteristics of pollutant in startup stage have been studied. The method of startup of intermittence inflow at first then continuous inflow, gradually increase the flow and reflux ratio was adopted. The effluent of the system achieved COD about 40mg/L, ammonia nitrogen about 4mg/L, total nitrogen about 15mg/L after 30days of cultivation.
     Then, the process parameters of anaerobic-oxic biological filter conbination process were systematic studied, such as DO, backwash, reflux ratio, temperature, hydraulicload, anoxia /aerobic volumetric ratio,and so on. Results were shown that: The removal efficiency of system to pollutants achieved the best, when the DO was controlled in 3.0~3.5mg/L, the reflux ratio was controlled in 130% and the anoxia /aerobic volumetric ratio was controlled in 1:1.5.When the hydraulicload was increased, the pollutants of effluent was increased.When the hydraulicload recovered, the pollutants of effluent would recovered in short time.The backwash cycle was 5 days (anaerobic biological filter) and 10 days(aerobic biological filter) in reactor test. Backwash had a great influence to both aerobic biological filter and anaerobic biological filter. But it could be basic recovery the level before backwash in a short time (130~150 minutes).When the temperature droped, the nitrification, denitrification and simultaneous nitrification denitrification were all had great influence, and the most heavily influence of low temperature was nitrification.The SND rate is low in anaerobic-oxic biological filter conbination process.It reached about 12.00% in the best condition taking above. DO, backwash, reflux ratio, temperature, hydraulicload and anoxia /aerobic volumetric ratio all had influence on SND. It has good removal efficiency for COD, ammonia nitrogen and total nitrogen in the system under the process conditions like that water flow 8.5L/h, eflux ratio 130%, dissolved oxygen 3.0~3.5mg/L and water temperature 19~25℃.
     The characteristics of biofilm and backwash sludge were studied. The biological membrane and biological phaser, microstructure of filter were analyzed. When the characteristics of backwash sludge were studied, the ability of adsorb ammonia nitrogen was found. The adsorption property of backwash sludge in aerobic filter was stronger than that in anaerobic filter. The liveness of backwash sludge had little influence to the adsorption of ammonia nitrogen. Metal salt coagulants had little influence to the adsorption of ammonia nitrogen,too.
     Temperature had a great influence to the performance of nitrogen removal. Improve DO (increased to 4.0mg/L), improve reflux ratio (increased to 150%) properly and extended backwash period (anaerobic filter 10d and oxic filter 17d) could improve the denitrification efficiency of system when the temperature was low. Using the three methods meanwhile in low temperature had even more significant improvement role to nitrogen removal. The effluent of the system achieved ammonia nitrogen about 7.70mg/L, total nitrogen about 15.25mg/L at that time.
     The anaerobic-oxic biological filter conbination process was applied in practical engineering project. Problem, reason and solution in operation period in application project were researched by the field experiment.Conversion ways and efficiency for nitrogen in practical engineering project were researched. The efficiency of adsorption of ammonia by backwash sludge was about 7.22%, the efficiency of nitrification in aerobic biological filter was about 72.30%, the efficiency of denitrification in anaerobic biological filter was about 46.97% and the efficiency of SND in aerobic biological filter was about 13.65% in practical engineering project.
     This technology had high removal rate of nitrogen to the municipal sewage. The effluent could meet the National discharge standard of level 1-A (GB 18918-2002) in china whatever low or normal temperature.
     At last, a fluid dynamics model was built based on filtering jams model in biological filter and capillary model in biological filter. The substrate removal dynamics models were built based on Monod equation and micro element method. And the models were analyzed and simulated.
引文
[1]邓铭江,龙爱华,李湘权,等.中亚五国跨界水资源开发利用与合作及其问题分析[J].地球科学进展,2010,25(12):1337-1345.
    [2]张利平,夏军,胡志芳.中国水资源状况与水资源安全问题分析[J].长江流域资源与环境,2010,18(2):116-120.
    [3]丁文喜.中国水资源可持续发展的对策与建议[J].中国农学通报,2011,27(14):221-226.
    [4]褚俊英,陈吉宁,王灿,等.城市公共用水的节水和污水再生利用潜力分析[J].给水排水,2007,33(3):49-53.
    [5]陈元.我国水资源开发利用研究[M].北京:研究出版社,2008:13-15.
    [6]张杰,李冬.城市水系统健康循环理论与方略[J].哈尔滨工业大学学报,2010,42(6):849-854.
    [7]钱正英,张光斗.中国可持续发展水资源战略研究综合报告及各专题报告[M].北京:中国水利水电出版社,2001:1-2.
    [8]楮俊英,陈吉宁.中国城市节水与污水再利用的潜力评估与政策框架[M].科学出版社,2009:13-60.
    [9]高俊发,王彤,郭红军.城镇污水处理及回用技术[M].北京:化学工业出版社,2003:33-36.
    [10]林杉.水解酸化前置反硝化曝气生物滤池工艺技术研究[D].哈尔滨:哈尔滨工业大学,2009:1-3.
    [11]郑俊,吴浩汀.曝气生物滤池工艺的理论与工程应用[M].北京:化学工业出版社,2005:59-107.
    [12]吴婉娥,葛红光,张克峰.废水生物处理技术[M].北京:化学工业出版社,2003:25-29.
    [13]曹琳.曝气生物滤池中的短程硝化过程及短程反硝化动力学研究[D].重庆:重庆大学,2005:1-3.
    [14]高艳玲.污水生物处理新技术[M].北京:中国建材工业出版社,2006:25-27.
    [15] Abeliovich A. Transformations of ammonia and the environmental impact of nitrifying bacteria[J]. Biodegradation,1992,3(3):255-264.
    [16] Hagopian DS,Riley JG. A closer look at the bacteriology of nitrification[J]. Aquacultural Engineering,1998,18(4):223-224.
    [17] Hunik JH, Tramper J,Wijffels RH. A strategy to scale up nitrification processes with immobilized cells of Nitrosomonas europaea and Nitrobacter agilis[J]. Bioprpcess Engineering,1994,11(2):73-82.
    [18] Burrell PC,Keller J,Blackall LL. Microbiology of a nitrite-oxidizing bioreactor[J]. Appl Environ Microbial,1998,64(5):1878-1883.
    [19] Van Loosdrecht MCM,Jetten MSM. Microbiological conversions in nitrogen removal[J]. Wat.Sci. Technol,1998,38(1):1-7.
    [20] Holt JG,Krieg NR,Sneath PHA,et al. Bergey’s manual of determinative bacteriology[M]. Williams&Wilkins,1994:427-455.
    [21] Kent TD.,Williams S.C.,et al. Ammoniacal nitrogen removal in biological aerated filters:The effect of media siez[J]. Water and Environment Journal,2000,14(6):409-414.
    [22]叶剑锋.废水生物脱氮新技术[M].北京:化学工业出版社,2006:53-55.
    [23]史云祥,阮文权,顾强.同步硝化反硝化好氧颗粒污泥脱氮过程条件研究[J].江苏环境科技,2004,17(2):18-20.
    [24] Hyung Seok Yoo. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification(SND) via nitrite in a intermittently-aerated reactor[J]. Water Research,1999,33(1):145-154.
    [25] Xiaolian Wang,Yong Ma,Yongzhen Peng. Short-cut nitrification of domestic wastewater in a pilot-scale A/O nitrogen removal plant[J]. Bioprocess Biosyst Eng,2007,30(2):91-97.
    [26] Zhe-Xue Quan,Sung-Keun Rhee. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing(anammox) reactor[J]. Environmental Microbiology,2008,10(11):3130-3139.
    [27] Pachana J.,Keller P.,Lant. Model Devoloment for Simutaneous Nitrification and Dennitrification[J]. Wat.Sci.Tech.,1999,39(1):235-243.
    [28] Collivignarelli C.,Bertanza G.. Simutaneous Nitrification Dennitrification Process in Activated Sludge Plants:Performance and Applicability[J]. Wat.Sci.Tech.,1999,40(4):187-194.
    [29]吕锡武,李丛娜,稻川悠平.溶解氧及活性污泥浓度对同步硝化反硝化的影响[J].城市环境和城市生态,2001,14(1):33-35.
    [30]万金保,王敬斌.同步硝化反硝化脱氮机理分析及影响因素研究[J].江西科学,2008,26(2):345-350.
    [31] Verstraete W.,Philips S. Nitrification-denitrification processes and technologiesin new contexts[J]. Environ. Pollut.,1998,102(1):717-726.
    [32] Hanaki K.,Wantawin C.,Ohgaki S.. Nitrification at low levels of dissolved oxygen with and without loading in a suspended growth reactor[J]. Water Research,1990,24(3):297-302.
    [33]李玉萍.曝气生物滤池脱氮工艺的技术研究[D].济南市:山东大学,2006:17-20.
    [34] Frette L,Gejlsbjerg B,Westermann P. Aerobic denitrifiers isolated from an alternating activated sludge system[J]. FEMS Microbiology Ecology,1997,24(4):363-370.
    [35] Kim YJ,Yoshizawa M,Takenakas S,et al. Isolation and culture conditions of a Klebsiella pneumoniae strain that can utilize ammonium and nitrate ions simultaneously with controlled iron and molybdate ion concentrations[J]. Bioscience,Biotechnology and Biochemistry,2002,66(5):996-1001.
    [36] Wang P,Li XT,Xiang MF,et al. Characterization of efficient aerobic denitrifiers isolated from two different sequencing batch reactors by 16S-rRNA analysis[J]. Journal of Bioscience and Bioengineering,2007,103(6):563-567.
    [37] Kim M,Jeong SY,Yoon SJ,et al. Aerobic denitrification of Pseudomonas putida AD-21 at different C/N ratios[J]. Journal of Bioscience and Bioengineering,2008,106(5):498-502.
    [38] Pai SL,Chong NM,Chen CH. Potential applications of aerobic denitrifying bacteria as bioagents in wastewater treatment[J]. Bioresource Technology,1999,68(2):179-185.
    [39] Robertson LA,Van Niel EWJ,Torreman RAM,et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha[J]. Appl Environ Microbial,1988,54(11):2812-2818.
    [40]梁书诚,赵敏,卢磊等.好氧反硝化菌脱氮特性研究进展[J].应用生态学报,2010,21(6):1581-1588.
    [41]蒋胜韬,王三秀,万金保.同步硝化反硝化研究进展[J].江西科学,2008,26(6):905-909.
    [42] Marshall Spector. Production and decomposition of nitrous oxide gas during biological denitrification[J]. Water Enironmental Research,1998,70:(5)1096-1098.
    [43]刘剑.曝气生物滤池脱氮工艺与过程控制研究[D].湘潭市:湘潭大学,2005:3-10.
    [44]王建龙.生物固定化技术与水污染控制[M].北京:科学出版社,2002:28-30.
    [45] Surmacz-Gorska J,Cichon A,Miksch K. Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification[J]. Wat.Sci.Tech.,1997,36(10):73-78.
    [46] Dawen Gao,Yongzhen Peng. Shortcut nitrification-denitrification by real-time control strategies[J]. Bioresource Technology,2009,100(7):2298-2300.
    [47] Voets J.P,Vanstanen H,Verstroete W. Removal of nitrogen from highly nitrogenous wastewater[J]. J.wat.poll.Contr.Fed,1975,47(2):394-398.
    [48] Mulder JW,Van Loosdrecht M C,Hellinga C,et al. Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering[J]. Wat.Sci.Tech.,2001,43(11):127-134.
    [49]袁林江,彭党聪,王志盈.短程硝化—反硝化生物脱氮[J].中国给水排水,2000,16(2):29-3l.
    [50]梁越敢.常温下短程硝化反硝化的研究[D].合肥市:合肥工业大学,2004:15-18.
    [51] Hyungseok Yoo. Nitrogen Removal from Synthetic Wastewater by Simultaneous Nitrification and Denitrification via Nitrite in an Intermittently—Aeated Reactor[J]. Water Research,1999,33(1):146-152.
    [52] Balmelle B. Study of Factors Controlling Nitrite Build-up in Biological Processes for Water Nitrification[J]. Wat.Sci.Tech.,1992,26(12):1018-1025.
    [53]高大文,彭永臻,潘威. SBR法短程硝化—反硝化生物脱氮工艺的研究[J].环境污染治理技术与设备,2003,4(6):1-4.
    [54]王淑莹,曾薇,董文艺等. SBR法短程硝化及过程控制研究[J].中国给水排水,2002,18(10):1-5.
    [55]高景峰,彭永臻,王淑莹.温度对亚硝酸型硝化/反硝化的影响[J].高技术通讯,2002,12(12):88-93.
    [56]徐薇,谢水波,田发新.短程反硝化影响因素的研究[J].江苏环境科技,2007,20(1):5-8.
    [57]方士,李筱焕. PH值对高氨氮废水亚硝化/反亚硝化速率的影响[J].高校化学工程学报,2001,15(4):346-350.
    [58] Villaverde S,Gareia-Eneina P A,et al. Influence of pH over nitrifying biofilm aetivity in submerged biofilters[J]. Wat.Sei.Teeh,1997,31(5):1180-1186.
    [59] Joanna surmacz-Gorska , Andrej Cichon , Komeliuszh Mikseh. Nitrogen Removal from Wasterwater with High Ammonia Nitrogen Concentration viaShorter Nitrification and Denitrification[J].Wat.Sci.Tech,1997,36(10):73-78.
    [60] Hanaki K, Wantawin C, Ohgaki S. Nitrification at Low Level of Dissolved Oxygen with and without Loading in a Suspended Growth Reactor[J]. Water Research,1990,24(3):297-302.
    [61]汤琪.生物脱氮除磷新技术[J].重庆大学学报(自然科学版),2006,29(9):138-143.
    [62] Kuai L.P,Verstraete W. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system[J]. Appl.Environ.Microbiol,1998,64(11):4500-4506.
    [63]陈滢,王洪臣,彭永臻.控制低溶解氧浓度实现生活污水短程硝化研究[J].哈尔滨商业大学学报(自然科学版),2004,20(3):339-341.
    [64]任勇翔,彭党聪,王志盈,袁林江.亚硝酸型硝化—反硝化工艺处理焦化废水中试研究[J].西安建筑科技大学学报(自然科学版).2002,34(3):256-259.
    [65]王志盈,刘超翔,彭党聪等.高氨浓度下生物流化床内亚硝化过程的选择特性研究[J].西安建筑科技大学学报,2000,32(l):1-4.
    [66]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002:45-48.
    [67] Broda E.Two Kinds of Lithotrophs Missing in Nature[J].Z Allg Mikrobiol, 1977,17(6):491-493.
    [68] Mulder A,et al. Anaerobic Ammonium Oxidation Discovered in a Denitrifying Fluidized Bed Reactor[J].FEMS Microbiol Ecol,1995,16(3):177-184.
    [69] Van de Graaf A A,De Bruijn P,Robertson L A,et al. Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor[J]. Microbiol,1997,143(7):2415-2421.
    [70]姚俊芹,周少奇.厌氧氨氧化生物脱氮研究进展[J].化工学报,2005,56(10):1826-1831.
    [71]赵丹,任南琪,马放等.生物脱氮微生物学及研究进展[J].哈尔滨建筑大学学报,2002,35(5):60-65.
    [72] Jetten M SM,Strous M,et al. The anaerobic oxidation of ammonium[J].FEMS Microbiol.,1998,22(5):421-437.
    [73]胡宝兰,管丽莉,郑平. Anammox反应器中氨氧化菌的分离鉴定及特性研究[J].浙江大学学报(农业与生命科学版),2001,27(3):314-316.
    [74]郑俊,吴浩汀,程寒飞.曝气生物滤池污水处理工艺新技术及工程实例[M].北京:化学工业出版社,2002:23-25..
    [75]陈真贤,张朝升,荣宏伟.曝气生物滤池的研究进展[J].广东化工,2007,34(170):89-93.
    [76]徐丽华,李亚新.一种好氧生物处理有机废水的新工艺设备—生物曝气滤池[J].给水排水,1999,25(11):l-4。
    [77] Moore R.,Quarmby J.,Stephenson T. The effects of media size on the performance of biological aerated filters[J]. Water Research,2001,35(10):2541-2522.
    [78] Jefferson B., Laine A.L., Stephenson T.,et al. Advanced biological unit processes for domestic water recycling[J]. Wat.Sci.Tech.,2001,43(10):211-218.
    [79]徐亚明,蒋彬.曝气生物滤池的原理及工艺[J].工业水处理,2002,22(6):1-5.
    [80] Pujol R.,Canler J.P.,Iwema A. Biological aerated filters:an attractive and alternative biological process[J]. Water Sci. Tech.,1992,26:693-702.
    [81]李汝琪,孙长虹,钱易等.曝气生物滤池去除污染物的机理研究[J].环境科学,1999,20(6):49-52.
    [82]张红晶.侧向流曝气生物滤池处理生活污水的特性及其除磷脱氮效能研究[D].重庆:重庆大学,2006,1-3.
    [83]崔福义,张兵,唐利.曝气生物滤池技术研究与应用进展[J].环境污染治理技术与设备,2005,6(10):1-7.
    [84]郑俊,程寒飞,王晓众.上流式曝气生物滤池工艺处理生活污水[J].中国给水排水,2001,17(1):51-53.
    [85] Dillon G.R.,Thomas V.K. A pilot-scale evaluation of the BIOCAARBONE process for sewage and for tertiary nitrification of secondary effluent[J]. Wat.Sci.Tech.,1990,20(2):305-316.
    [86] Chunrong Wang,Jun Li,Baozhen Wang. Development of an empirical model for domestic wastewater treatment by biological aerated filter[J]. Process Biochemistry,2006,41(4):778-782.
    [87]孟雪征,曹相生,张杰.曝气生物滤池的研究进展[J].中国给水排水,2002, (8):7-11.
    [88]马军,邱立平.曝气生物滤池及其研究进展[J].环境工程,2002,20(3):7-11.
    [89] Hong-jing Zhang, Teng-rui Long, Yan-xiao Cao. Performances of lateral flow biological aerated filter in treating domestic wastewater[J]. ChongqingUniv-Eng.Ed,2006,5(3):152-156.
    [90]张红晶,龙腾锐,何强等.侧向流曝气生物滤池处理生活污水的实验研究[J].中国给水排水,2007,23(7):82-85.
    [91]张红晶,龙腾锐,何强等.侧向流曝气生物滤池前置脱氮的研究.给水排水[J]. 2007,33(1):44-46.
    [92] Teng-rui Long,Yan-xiao Cao,Hong-jing Zhang. Performances of simultanouse nitrification and denitrification in lateral flow biological aerated filter[J]. Chongqing Univ-Eng.Ed,2006,5(4):16-20.
    [93]张红晶,龙腾锐,何强等.侧向流曝气生物滤池运行周期的确定[J].重庆大学学报(自然科学版),2006,29(4):34-37.
    [94]严子春.折流曝气生物滤池处理城市污水的特性及其除磷脱氮效能研究[D].重庆:重庆大学,2004:1-3.
    [95]严子春,王晓丽.沸石强化过滤的效果及其对水质的影响[J].重庆大学学报(自然科学版),2002,25(2):130-133.
    [96]郑蓓.交替式曝气生物滤池组合系统生物除磷实验研究[D].重庆:重庆大学,2007:1-3.
    [97]郑蓓,龙腾锐.厌氧预酸化-间歇曝气生物膜系统的生物除磷性能[J].环境科学,2008,29(5):1227-1232.
    [98]郑蓓,龙腾锐.间歇曝气生物滤池长运行周期下的除磷性能研究[J].中国给水排水,2008,24(1):54-61.
    [99] M. Tsehui,M.Bolle,et al. Tertiary nitrification in aerated pilot biofilers[J]. Wat.Sci.Tech.,1993,29(11):53-60.
    [100]杨青,赵玉华,周晴等.曝气生物滤池快速启动性能实验[J].沈阳建筑大学学报(自然科学版),2005,2(4):371-376.
    [101]白海龙.曝气生物滤池在市政污水处理工程中的应用[J].中国市政工程,2006,3:50-51.
    [102]乔晓时.马栏河污水处理厂BIOFOR曝气生物滤池工艺运行效果评价[D].大连市:大连理工大学,2004:1-2.
    [103]霍玉龙.水解酸化—流化床—曝气生物滤池处理腈纶废水实验研究[D].哈尔滨市:哈尔滨工业大学,2008,1-2.
    [104]陈鸣.水解—曝气生物滤池处理生活污水脱氮技术研究[D].南京市:东南大学,2006:1-2.
    [105]蒋胜韬,王三秀.混凝沉淀/水解酸化/BAF工艺处理明胶废水[J].中国给水排水,2010,26(6):66-68.
    [106]刘建广.水解—气浮—曝气生物滤池工艺在印染废水处理中的应用[J].给水排水,2001,27(2):43-45.
    [107]王阳.曝气生物滤池—化学沉淀—砂滤的中试应用[J].山西建筑,2007,33(18):175-176.
    [108]Clark T,Stephenson T,et al. Phosphorus removal by chemical precipitation in a biological aerated filter[J]. Water Research,1997,31(10):57-63.
    [109]Hong-Duck Ryu , et al. Nitrogen removal from low carbon-to-nitrogen wastewater in four-stage biological aerated filter system[J]. Process Biochemistry,2008,43(7):729-735.
    [110]Anette A.. Denirtifieation in a packed bed biofilm reactor(biofor) -experiments with Differet carbon soucres[J]. Water Reseacrh,1998,32(5):1463-1470.
    [111]马迎霞.曝气生物滤池—超滤(BAF-UF)组合工艺处理二级出水实验研究[D].西安:西安科技大学,2009:1-2.
    [112]李达宁,汪晓军.曝气生物滤池—臭氧氧化—曝气生物滤池组合工艺对印染废水的深度处理[J].工业水处理,2009,29(11):74-76.
    [113]Kent T.D.,Fitzpatrick C.S.B.,Williams S.C. Testing of biological aerated filter (BAF) media[J]. Wat.Sci.Tech.,1996,34(3):363-370.
    [114]张启磊,孙毅,赵群.曝气生物滤池填料的研究进展[J].中国环境管理干部学院学报,2008,18(4):72-74.
    [115]孙霞,王清杰,纪轶.填料对曝气生物滤池影响的概述.中小企业管理与科技,2010,1:159-160.
    [116]李柏林.稻壳填料曝气生物滤池处理生活污水的实验研究[D].武汉市:武汉理工大学,2007:1-3.
    [117]高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社,1999:45-47.
    [118]王英伟,史雪廷,张洪敏.填料在曝气生物滤池中的应用与研究进展[J].中国新技术新产品,2010,7:4.
    [119]常欣,王艺,丛喜彬.污水生物处理反应填料的应用现状及发展前景[J].吉林建筑工程学院学报,2005,22(4):11-4.
    [120]查建明,张苗苗,王立久.生物陶粒在污水处理中作滤料的研究与应用[J].广东建材,2005,l:8-10.
    [121]Fu D,Liu L. The Summarize of Media' Effect on the Biological Aerated Filter[J]. Environ. Sci. Manage,2008,33(3):101-103.
    [122]Won-Seok Chang,Won-Seok Hong,Joonkyu Park. Effect of zeolite media for the treatment of textile wastewater in a biological aerated filter[J]. Process Biochemistry,2002,37(7):693-698.
    [123]刘金香,娄金生,陈春宁.沸石—陶粒曝气生物滤池处理微污染水源水实验[J].工业用水与废水,2005,36(4):10-12.
    [124]田文华,文湘华,钱易.沸石滤料曝气生物滤池启动性能研究[J].环境污染治理技术与设备,2002,3(12):38-42.
    [125]Sheng-Bing He,Gang Xue,Hai-Nan Kong. The performance of BAF using natural zeolite as filter media under conditions of low temperature and ammonium shock load[J]. Journal of Hazardous Materials,2007,143(2):291-295.
    [126] Wen-hua Tian,Xiang-hua Wen,Yi Qian. Using a zeolite medium biofilter to remove organic pollutant and ammonia simultaneously[J]. Journal of Environment Sciences,2004,15(1):90-93.
    [127]钱福国.低密度沸石曝气生物滤池处理低浓度氨氮实验研究[D].合肥市:合肥工业大学,2008:1-2.
    [128]朱乐辉,朱衷.水处理滤料—球形轻质陶粒的研制[J].环境保护,2001,1:35-36.
    [129]井涛.开发利用再生资源粉煤灰保护生态环境[J].黑龙江环境通报,2002,26(1):44-45.
    [130]卢小丽,骆颖,商华等.粉煤灰资源化及其管理研究[J].中国资源综合利用,2004,3:19-21.
    [131]王莉.蒸养粉煤灰陶粒的研究[J].东北电力技术,1997,10:28-29.
    [132]刘耀兴.牡蛎壳填料曝气生物滤池处理城市生活污水的实验研究[D].厦门市:厦门大学,2008:1-3.
    [133]李柏林.稻壳填料曝气生物滤池处理生活污水的实验研究[D].武汉市:武汉理工大学,2007:1-3.
    [134]周爱姣.木炭曝气生物滤池的特性及效能研究[D].武汉市:华中科技大学,2008:1-3.
    [135]Aijiao Zhou,Tao Tao,Zhaohui Bian,et al. Effect of Charcoal media for the treatment of wastewater in a biological filter[J]. IEEE Engineering in Medieine and Biology Society. The 2nd International Conference on Bioinformatics and Biomedieal Engineering.Shanghai:Institute of Electrical and Electronics Engineers Computer Society,2008:3527-353.
    [136]Mendoza-Espinosa L,Stephenson T. A review of biological aerated filters (BAFs) for wastewater treatment[J]. Environ. Eng. Sci.,1999,16(3):201-216.
    [137]Canler J.P.,Perret J.M. Biological aerated filter: assessment of the process based on 12 sewage treatment plants[J]. Wat.Sci.Tech.,1994,29(10):13-22.
    [138]Xin Zhao,Yanming Wang,Zhengfang Ye,et al. Oil field wastewater treatment in biological aerated filter by immobilized microorganisms[J]. Proeess Biochemistry,2006,37:l-9.
    [139]WeiJie Liu , HongLi Yuan , JinShui Yang , et al. Characterization of bioflocculants from biologically aerated filter backwashed sludge and its application in dying wastewater treatment[J]. Bioresource Technology,2009,100(9):2629-2632.
    [140]Ma Xingguan,Shang Jun,Piao Fenshu,et al. Biological Removal of Iron, Manganese and Ammonia Nitrogen from Low-Temperature Groundwater Using Biological Aerated Filter[J]. E-Product E-Service and E-Entertainment International Conference(ICEEE),2010:1-5.
    [141]Xiaojun Wang,Sili Chen,Xiaoyang Gu,et al. Pilot study on the advanced treatment of landfill leachate using a combined coagulation, fenton oxidation and biological aerated filter process[J]. Waste Managenent,2009,29(4):1354-1358.
    [142]John Greenman,Antonia G,Lorenzina Giusti,et al. Electricity from landfill leachate using microbial fuel cells:Comparison with a biological aerated filter[J]. Enzyme and Microbial Technology,2009,44(2):112-119.
    [143] Wang X. J.,Chen S. L.,Gu X. Y.,et al. Biological aerated filter treated textile washing wastewater for reuse after ozonation pre-treatment[J]. Wat.Sci.Tech.,2008,58(4):919-923.
    [144]Fang Liu,Chao-Cheng Zhao,Guo-Hua Liu. Tertiary treatment of textile wastewater with combined media biological aerated filter (CMBAF) at different hydraulic loadings and dissolved oxygen concentrations[J]. Journal of Hazardous Materials,2008,160(1):161-167.
    [145]Won-Seok Chang,Hung-Thuan Tran,et al. Ammonium nitrogen removal characteristics of zeolite media in a Biological Aerated Filter (BAF) for the treatment of textile wastewater[J]. Journal of Industrial and Engineering Chemistry,2009,15(4):524-538.
    [146] Westerman P.W.,Bicudo J.R,Kantardjieff A. Upflow biological aerated filtersfor the treatment of flushed swine manure[J]. Bioresource Technology,2000, 74(3):181-190.
    [147]李永泽,成炜.水解酸化/前置反硝化上向流生物滤池工艺处理城镇污水[J].中国给水排水,2006,22(12):63-66.
    [148]熊志斌,邵林广.曝气生物滤池技术研究进展[J].当代化工,2009,38(1):61-64.
    [149]张林军,徐颖.曝气生物滤池在国内的研究现状及应用前景[J].南通职业大学学报,2005,19(2):22-25.
    [150]张薇,史开武,孔惠.曝气生物滤池(BAF)的发展与现状[J].北京石油化工学院学报,2005,13(3):24-30.
    [151]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [152]中华人民共和国住房和城乡建设部.中华人民共和国城镇建设行业标准:水处理用人工陶粒滤料(CJT_229-2008)[M].北京.
    [153]周大石,夏澜.活性污泥培养与驯化[J].环境科技,2003,9(2):35-37.
    [154]高艳玲.悬浮载体生物流化床反应器脱氮实验研究[D].哈尔滨市:哈尔滨工业大学,2007:42-44.
    [155]布坎南RE,吉本斯NE.中国科学院微生物研究所翻译组译.伯杰细菌鉴定手册(第八版)[M].北京:科学出版社,1984.
    [156]刘志培,刘双江.硝化作用微生物的分子生物学研究进展[J].应用与环境生物学报,2004,10(4):521-525.
    [157]Sinha B. , Annachhatre A.P.. Assessment of partial nitrification reactor performance through microbial population shift using quinone profile,FISH and SEM[J]. Bioresource Technology,2007,98(18):3602–3610.
    [158]Jacob J. Dynamic Simulation of Biofilters[J]. Simulation Practics and Theory,1996,4(5):335-348.
    [159]Bolte JP. Mathematical Simulation of Up-flow Anaerobic Fixed Bed Reactors[J]. American Society of Agricultural Engineers,1984,27(5):1483-1490.
    [160]Tallec XL,Vdal A,Thornber G.. Upflow Biological Filter Modeling and Simulation of Filteration[J]. Wat.Sci.Tech.,1999,39(1):79-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700