用户名: 密码: 验证码:
面向精密定位的平面电容式多自由度位移测量传感器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多自由度的精密位移测量广泛应用于半导体及光学元器件的加工定位、细胞的操纵所需的定位及操纵、超精密机床的运动驱动等,是保证加工、定位、控制精度的关键技术。传统的多自由度精密位移测量系统需要多组单自由度传感器组合而成,存在着结构复杂、误差叠加、价格高等不足,因此研究结构简洁、高精度、低成本的多自由度精密位移测量技术与系统具有重要意义。本论文结合国家自然科学基金“基于平面电容传感器的大行程高分辨率二维位移直接解耦测量方法研究”(No.50875241)和“基于柱状电容传感器的高精度主轴回转误差在线检测方法研究”(No.51275465)等项目,以平面电容传感器为研究对象,研究并建立大行程、高分辨率、多自由度位移直接解耦测量方法与系统。
     第一章简要阐述超精密位移测量技术的国内外研究现状和发展趋势,并就其中的多自由度精密位移测量技术展开进一步的讨论,分析存在的问题与不足;最后提出论文的研究目标、意义以及主要研究内容。
     第二章介绍电容传感器实现位移测量的工作原理,提出可以实现大行程位移测量要求的一维栅式平面电容位移传感器(Encoder-like Planar Capacitive Displacement Sensor, EPCDS)。并在此基础上,设计基于EPCDS的大行程、高分辨率二维位移直接解耦测量方法;构建二维EPCDS实验系统,以验证所提出的二维位移直接解耦测量方法;开展误差分析,提出改进的方法。
     第三章分析电容传感器产生边缘效应的原因,并简要阐述目前消减边缘效应对测量精度影响的几种方法。针对论文提出的EPCDS,利用MAXWELL方程组建立电容量计算模型,通过参数优化,减小并消除边缘效应对传感器测量精度的影响。
     第四章从原理上剖析影响二维EPCDS测量精度的主要误差源。通过理论分析,建立二维EPCDS的误差模型,量化各个误差源对测量精度的影响,并尝试通过合理的算法减小并消除传感器误差对测量精度的影响。
     第五章在基于EPCDS的X-Y二维位移直接解耦测量方法的基础上,采用改进的对称化结构设计,提出新型的多自由度EPCDS.在X-Y方向上各增加两组传感电容电极,使得X-Y方向各有四组传感电容,运用单传感器实现五自由度位移的直接解耦测量,包括水平运动方向的大行程线位移(X,Y),以及三个旋转自由度的小行程角位移(θx,θy,θz),并通过仿真分析进行验证。
     第六章主要阐述EPCDS信号采集与细分系统的软硬件设计,包括微弱电容信号检测电路的设计以及基于LabVIEW的细分算法开发。首先基于运算放大器采用锁相自相关检测原理消减测量电路中噪声对微弱电容信号的影响,实现微弱电容信号的检测;其次设计反正切相移细分算法;最后基于LabVIEW软件构建五自由度位移直接解耦测量软件系统。
     第七章搭建面向超精密定位的平面电容式五自由度精密位移测量传感器实验装置;然后针对硬件检测电路的稳定性从相移电路、检测电路输出两个方面展开相关实验;最后展开五自由度位移直接解耦测量的对比实验,通过对比不同运动情况下各自由度位移测量的精度、稳定性及解耦性,验证本文提出X-Y-θx-θy-θz五自由度精密位移直接解耦测量方法的正确性与有效性。
     第八章对论文的研究工作进行总结,并对后续应开展的研究工作进行讨论。
Multiple degree-of-freedom (DOF) precision displacement measurement as an indispensable part of precision manufacturing and assembly, is now widely used for the fabrication of semiconductors and optical elements, the positioning and manipulation of cells, the actuation of precision machine tools and etc. However, multiple DOF precision measurement is conventionally realized by stacking multiple single-DOF stage systems, resulting in a bulky metrology prototype involving a complicated structure, errors superposition and high cost. Thus, it is of paramount meaning to propose a fast, simple, effective cost multiple DOF metrology system. On the basis of planar capacitive sensor, thorough study on large scale, high resolution, multiple-DOF precision displacement measurement was presented in this dissertation. The research work is supported by the National Natural Science Foundation of China (Grant No.50875241),"Study on two dimensional long range direct decoupling precision displacement measuring system based on planar capacitive sensor", and the National Natural Science Foundation of China (Grant No.51275465),"Study on cylindrical capacitive sensors for on-line monitoring rotation error of high precision spindle"
     The dissertation is organized as follows:
     In chapter1, the backgrounds and significant achievements of precision measurement were introduced. Further discussion on the advantages and shortcomings of multiple DOF precision displacement measurement was then presented. The motivation, meaning and research contents were proposed in the end.
     In chapter Ⅱ. the basic principle of capacitive displacement sensor was introduced firstly, based on which, a single DOF encoder-like planar capacitive sensor(EPCDS) is proposed for large scale precision displacement measurement, with the discussion of the shortcomings of single DOF precision measurement, a two dimensional long range direct decoupling precision displacement measuring system is constructed, the experimental results implied that two dimensional precision displacement measurement was realized with a single capacitor. Finally, the merits and withdraws were both concluded, potential solutions were proposed.
     In chapter III, the influences of electric field fringe component was introduced. Feasible methods to diminish whose influences on measuring accuracy is presented either. For EPCDS, a capacitance model with the consideration of electric field fringe component was calculated under MAXWELL'S equations. With an optimized geometric layout, influences of electric field fringe component was reduced.
     In chapter IV, the major errors of the two dimensional EPCDS were analyzed firstly. Based on the analysis, the sensor model against errors was built. Measurement errors were precisely calculated; and approaches have been carried out to diminish the measurement errors.
     In chapter V, based on the two dimensional EPCDS, a five-DOF precision displacement measurement system was presented. The capacitor electrodes were rearranged and symmetrically positioned, X-Y long range linear displacement measurement was decoupled from the measurement errors, and extra roll, yaw, pitch angular readouts(θx,θy,θz) were achieved. Finite element analysis(FEA) authenticated the five-DOF precision displacement measurement system.
     In chapter VI, the signal acquisition system of the five-DOF EPCDS was proposed, including the weak capacitive signal sampling system and signal interpretation algorithm. Firstly, phase locked-in correlation detection was adopted to reduce the effects of noises. Secondly, arctangent phase shifted (APS) interpretation algorithm was presented under Lab VIEW(?) to increase measurement resolution and accuracy.
     In chapter VII, the five-DOF precision displacement measurement system based on EPCDS was constructed firstly, the stability of signal acquisition system was investigated secondly. Then, experiments of five-DOF displacement measurement were carried out. The experimental results indicated that X-Y-θx-θy-θz displacements measurement was successfully achieved, accuracy and resolution have both been increased.
     In chapter VIII, the key achievements and innovations of this dissertation were offered, and potential researches in the future were presented in the end.
引文
[1]杨叔子,吴波,李斌.再论先进制造技术及其发展趋势.机械工程学报,2006,42(1):1-5.
    [2]祁国宁.制造业信息化技术发展趋势.浙江,杭州:浙江省机电一体化论坛,2007.
    [3]自春礼.纳米科技:梦想与现实.中国纳米技术应用研讨会.2004.
    [4]国家中长期科学和技术发展规划纲要(2006-2020).
    [5]863计划先进制造技术领域战略目标.
    [6]蒋向前.现代产品几何量技术规范(GPS)国际标准体系.机械工程学报,2004,40(12):133-137.
    [7]袁哲俊,王先逵.精密和超精密加工技术.北京:机械工业出版社,2005.
    [8]李玉和,郭阳宽.现代精密仪器设计.北京:清华大学出版社,2010.
    [9]李庆祥.现代精密仪器设计.北京:清华大学出版社,2004.
    [10]董永贵.精密测控与系统.北京:清华大学出版社,2005.
    [11]王立鼎,褚金奎,刘冲等.中国微纳制造研究进展.机械工程学报,2008,44(11):2-11.
    [12]孙立宁,陈立国,荣伟彬等.面向微机电系统组装与封装的微操作装备关键技术.机械工程学报,2008,44(11):13-19.
    [13]Blais F. Review of 20 years of range sensor development. Journal of Electronic Imaging,2004,13(1): 231-243.
    [14]周兆英.微/纳机电系统.仪表技术与传感器,2003,(2):1-5.
    [15]周兆英,叶雄天,崔天佑等.微纳米技术及微型机电系统.光学精密工程,1998,6(1):1-7.
    [16]Bao M, Wang W. Future of microelectromechanical systems (MEMS). Sensors and Actuators A: Physical,1996,56(1-2):135-141.
    [17]Craighead H G. Nanoelectromechanical systems. Science,2000,290(5496):1532-1535.
    [18]Whitehouse D J. Nanotechnology instrumentation. Measurement And Control, (1991),24(2):37-46.
    [19]Franks A. Nanotechnology. Journal of Physics E:Scientific Instruments,1987,20(12):1442.
    [20]Jones B E. Sensors in industrial metrology. Journal of Physics E:Scientific Instruments,1987,20(9): 1113.
    [21]Rakels J H. Nanometric surface finish measurement by optical diffraction. Measurement and Control, 1991,24(2):156-162.
    [22]谢建平,明海,王沛.近代光学基础.北京:高等教育出版社,2006.
    [23]王楚,汤俊雄.光学.北京:北京大学出版社,2001. [24]孙长库,叶声华.激光测量技术.大津:天津大学出版社,2001.[25]程晓辉,赵洋,李达成.光学纳米测量方法及发展趋势.光学技术,1999,3:73-77.[26]殷纯永.现代干涉测技术.大津:天津大学出版社,1999.[27] 胡志军.双频激光纳米干涉测量技术的研究.清华大学工学博士学位论文,2000.[28] Fielding S J. A laser interferometer with harmonically matched cavities. Journal of Physics E:
    Scientific Instruments,1972,5(9):920. [29] Yasuhara R, Akiyama T, Yamada I, et al. Fiber interferometer for calibration of electron density profile
    measured by Thomson scattering in LHD. Journal of Instrumentation,2012,7(01):C01090. [30] Harrison J W. The use of divergent beam interferometry in the measurement of small displacements:
    an application to the measurement of the thermal expansion of copper up to 1200K. Journal of Physics
    E:Scientific Instruments,1976,9(7):545. [31] Ma C H, Hutchinson D P, Sluis K L V. Two-wavelength infrared interferometer/polarimeter system
    for CIT. Review of Scientific Instruments,1988,59(8):1629-1631. [32] Kawahata K, Akiyama T, Pavlichenko R, et al. Two color far infrared laser interferometer. Review
    of Scientific Instruments,2006,77(10):10F132.[33] 白剑,曹天宇.基于相干波面光强分布的静态干涉图的数字分析.光学技术.2001,27(6):564-566.[34]朱日宏,陈磊,王青,高志山,何勇.相移干涉测量术及其应用.应用光学,2006,27(2):85-88.[35] Oreb B F, Farrant D I, Walsh C J, et al. Calibration of a 300-mm-aperture phase-shifting fizeau
    Interferometer. Applied Optics,2000,39(28):5161-5171. [36] Creath K. Phase-shifting speckle interferometry. Applied Optics,1985,24(18):3053-3058. [37] Kothiyal M P, Delisle C. Shearing interferometer for phase shifting interferometry with polarization
    phase shifter. Applied Optics,1985,24(24):4439-4442. [38] Agilent.激光干涉计定位系统[DB/OL].[2013-4-1].http://www.home.agilent.com/agilent/
    product.jspx?nid=-536900386.0.00&cc=CN&lc=chi. [39] ZYGO. Interferometer[DB/OL]. [2012-4-1]. http://www.zygo.com/?/met/interferometers/. [40] Renishaw. XL-80激光干涉仪[DB/OL].[2013-4-1]. http://www.renishaw.com.cn/zh/laser-
    interferometer-systems--6800.[41]蒋向前,肖少军,谢铁邦等.光栅技术在纳米测量中的应用.仪器仪表学报,1995,16(1):374-377.[42] Post D.莫尔条纹技术在精密测量中的应用.国外计量,1975,(5):8-10.[43]焦子麟。应用莫尔条纹记数系统的精密测量仪器.国外计量,1976,(6):3-5.[44]董莉莉,熊经武,万秋华.光电轴角编码器的发展动态.光学精密工程,2000,8(2):198-202.
    [45]Fujiwara Y. The characteristic of the newest encoder and future expansion. Mechanical Automation. 1986,18(7):18-22.
    [46]Renishaw. RG2和RG4增量式直线光栅[DB/OL].[2013-4-1].http://www.renishaw.com.cn/zh/ optical-linear-encoders--6433.
    [47]Renishaw. SiGNUMTM RESM圆光栅[DB/OL].[2013-4-1]. http://www.renishaw.com.cn/zh/optical-angle-encoders-6434.
    [48]Heidenhain. Sealed Linear Encoders [DB/OL]. [2013-4-1]. http://www.heidenhain.com/en_US/ products-and-applications/length-measurement/sealed-linear-encoders/.
    [49]Heidenhain. Exposed Linear Encoders [DB/OL]. [2013-4-1]. http://www.heidenhain.com/en_US/ products-and-applications/length-measurement/exposed-linear-encoders/.
    [50]Opton.I4-1340nm series [DB/OL]. http://www.optonlaser.com/spip.php?rubrique7&lang=en.
    [51]Mitutoyo. AT102光栅尺[DB/OL].[2012-4-1].http://www. mitutoyo. com. cn/products/detail. asp? catalog=10&pno=1000335.
    [52]白春礼,田芳,罗克.扫描力显微术.北京:科学出版社,2000.
    [53]陈成均。扫描隧道显微学引论.北京:中国轻工业出版社,1996.
    [54]侯玉斌.高精密扫描隧道显微镜及原子力显微镜研制.中国科学技术大学博士学位论文,2009.
    [55]Jeol. JSM-6510扫描电子显微镜[DB/OL].[2013-4-1].http://www.jeol.cn/?p=30.
    [56]Binnig G, Quate C F, Gerber C. Atomic force microscope. Physical Review Letters,1986,56(9): 930-933.
    [57]Binnig G, Rohrer H, Gerber C, et al. Tunneling through a controllable vacuum gap. Applied Physics Letters,1982,40(2):178-180.
    [58]Jarvis S P, Oral A, Weihs T P, et al. A novel force microscope and point contact probe. Review of Scientific Instruments,1993,64(12):3515-3520.
    [59]Rosner B T, Weide D W V D. High-frequency near-field microscopy. Review of Scientific Instruments,2002,73(7):2505-2525.
    [60]张德添,何昆等.原子力显微镜发展近况及其应用.现代仪器,2002,3:6-9.
    [61]Kirtley J R, Ketchen M B, Stawiasz K G, et al. High-resolution scanning SQUID microscope. Applied Physics Letters,1995,66(9):1138-1140.
    [62]Hartmann U. Magnetic force microscopy. Advanced Materials,1990,2(11):550-552.
    [63]Khotkevych V V, Bending S J. A milliKelvin scanning Hall probe microscope for high resolution magnetic imaging. Journal of Physics:Conference Series,2009,150(1):012021.
    [64]Veeco. SPM Database [DB/OL]. [2012-4-1]. http://www.veeco.com/products/mocvd.aspx.
    [65]Molecular Imaging. Diagnostic imaging agent services [DB/OL]. [2013-4-1]. http://www.wmis.org/ 2011/12/diagnostic-imaging-agent-services/.
    [66]JPK. NanoWizard(?) 3 NanoOptics AFM [DB/OL]. [2013-4-1]. http://www.jpk.com/atomic-force-microscopy.27.en.html.
    [67]日本精工.L-trace Ⅱ扫描探针显微镜[DB/OL].[2013-4-1].http://www.siint.com.cn/product/ productinfo.aspx?CatalogID=242.
    [68]上海卓伦.MicroNano D5A型多模式扫描探针显微镜[DB/OL]. [2013-4-1]. http: //www.chinaspm.com/page/chanp/d5a.php.
    [69]娄莉娜.基于MEMS技术的三相栅式位移传感器关键技术的研究.重庆理工大学硕士学位论文,2011.
    [70]Ruhle. Linear transducer[DB/OL]. [2013-4-1]. http://www.ruhle.com/lineartransducers.htm.
    [71]Renishaw. LM10直线磁栅[DB/OL].[2013-4-1].http://www.renishaw.com.cn/zh/magnetic-linear-encoders-and-magnetic-ring-encoders-9802.
    [72]Heidenhain. Magnetic modular encoders [DB/OL]. [2013-4-1]. http://www.heidenhain.com/en_US/ products-and-applications/angle-measurement/magnetic-modular-encoders/.
    [73]Avagotech. AEAT-6010-A0610-bits Magnetic Encoder[DB/OL]. [2013-4-1]. http://www.avagotech. com/pages/en/motion_control_encoder_products/magnetic_encoders/.
    [74]Schaevitz. LVDT (Transmitter-2 Wire) [DB/OL]. [2013-4-1]. http://www.cdiweb.com/ Manufacturers/schaevite/Cate/LVDT_Transmitter-2_Wire/?ManfNo=141&type=527.
    [75]iTarget Sensor. Core-separated DC LVDT sensor [DB/OL]. [2013-4-1]. http://www.itargetsensors. com/html_products/LVDT-sensor-DC-46.html.
    [76]SensPro. SLGA09-Miniature AC LVDT [DB/OL]. [2013-4-1]. http://www.spsensors.com/ products.asp?sid=4.
    [77]章烨辉.基于平面电容传感器的大量程高精度二维位移直接解耦测量方法和系统研究.浙江大学硕士学位论文,2008.
    [78]Kim M, Moon W. A new linear encoder-like capacitive displacement sensor. Measurement,2006, 39(6):481-489.
    [79]Kim M, Moon W, Yoon E, et al. A new capacitive displacement sensor with high accuracy and long-range. Sensors and Actuators a-Physical,2006,130:135-141.
    [80]Pedrocchi A, Hoen S, Ferrigno G, et al. Perspectives on MEMS in bioengineering:a novel capacitive position microsensor. Biomedical Engineering, IEEE Transactions on,2000,47(1):8-11.
    [81]王碧波,岳金福,周泽兵,彭益武.基于二维精密电容微位移传感器的二维纳米定位系统,纳米技术与精密工程,2005,3(2):137-141.
    [82]Hartwell P G, Walmsley R G, Fasen D J, et al. Integrated position sensing for control of XY actuator. Sensors,2004. Proceedings of IEEE,2004,1403:1407-1410.
    [83]Kuijpers A A, Wiegerink R J, Krijnen G J M, et al. Capacitive long-range position sensor for microactuators.17th Ieee International Conference on Micro Electro Mechanical Systems, Technical Digest,2004:544-547.
    [84]Kuijpers A A, Krijnen G J M, Wiegerink R J, et al. A micromachined capacitive incremental position sensor:part 1. Analysis and simulations. Journal of Micromechanics and Microengineering,2006, 16(6):S116-S124.
    [85]Kuijpers A A, Krijnen G J M, Wiegerink R J, et al. A micromachined capacitive incremental position sensor:part 2. Experimental assessment. Journal of Micromechanics and Microengineering,2006, 16(6):S125-S134.
    [86]Furuichi H, Fearing R S. A planar capacitive micro positioning sensor. Proceedings of the Seventh International Symposium Micro Machine and Human Science,1996:85-90.
    [87]Wang W, Li X X, Chen Z C. A planar capacitive sensor for large scale measurement. Key Engineering Materials,2008,381-382:509-512.
    [88]Yu J, Wang W, Li X, et al. Simulation analysis on characteristics of a planar capacitive sensor for large scale measurement.2009 2nd International Conference on Intelligent Computing Technology and Automation,2009:201-204.
    [89]Kolb P W, Decca R S, Drew H D. Capacitive sensor for micropositioning in two dimensions. Review of Scientific Instruments,1998,69(1):310.
    [90]Barker M J, Colclough M S. A two-dimensional capacitive position transducer with rotation output. Review of Scientific Instruments,1997,68(8):3238-3240.
    [91]PI. D015/050/100 Sub-Nanometer-Resolution Capacitive Position Sensors [DB/OL]. [2013-4-1]. http: //www.physikinstrumente.com/en/products/capacitive_sensor/nanometrology_sensor_selection.php#se n.
    [92]Lion precisioin. CPL190/290 Elite series sensor modules [DB/OL]. [2013-4-1]. http://www. lionprecision.com/capacitive-sensors/cap-products.html.
    [93]Queensgate instruments. NXA Series nanosensors [DB/OL]. [2013-4-1]. http://www.nanopositioning. com/nanosensors/.
    [94]Saito Y, Arai Y, Gao W. Detection of three-axis angles by an optical sensor. Sensors and Actuators A:Physical,2009,150(2):175-183.
    [95]Lee J I, Huang X H, Chu P B. Nanoprecision MEMS capacitive sensor for linear and rotational positioning. Journal of Microelectromechanical Systems,2009,18(3):660-670.
    [96]Huang X H, Lee J I, Ramakrishnan N, et al. Nano-positioning of an electromagnetic scanner with a MEMS capacitive sensor. Mechatronics,2010,20(1):27-34.
    [97]Gao W, Dejima S, Shimizu Y, et al. Precision measurement of two-axis positions and tilt motions using a surface encoder. CIRP Annals-Manufacturing Technology,2003,52(1):435-438.
    [98]Gao W, Dejima S, Kiyono S. A dual-mode surface encoder for position measurement. Sensors and Actuators a-Physical,2005,117(1):95-102.
    [99]Ahn H J, Han D C. Optimal multi-segment cylindrical capacitive sensor. Measurement Science & Technology,2003,14(5):531-542.
    [100]Ahn H J. A cylindrical capacitive sensor (CCS) for both radial and axial motion measurements. Measurement Science & Technology,2006,17(7):2027-2034.
    [101]Ahn H J, Park J H, Um C Y, et al. A disk-type capacitive sensor for five-dimensional motion measurements. Measurement Science & Technology,2008,19(4):045202.
    [102]Birch K P. Optical fringe subdivision with nanometric accuracy. Precision Engineering-Journal of the American Society for Precision Engineering,1990,12(4):195-198.
    [103]Downs M J, Birch K P. Bi-directional fringe counting interferometer refractometer. Precision Engineering-Journal of the American Society for Precision Engineering,1983,5(3):105-110.
    [104]Downs M J, Raine K W. Un-modulated bi-directional fringe-counting interferometer system for measuring displacement. Precision Engineering-Journal of the American Society for Precision Engineering,1979,1(2):85-88.
    [105]朴伟英.球面光栅干涉式表面测量仪若干关键技术研究.哈尔滨工业大学工学博士学位论文,2009.
    [106]Jourlin Y, Jay J, Parriaux O. Compact diffractive interferometric displacement sensor in reflection. Precision Engineering,2002,26(1):1-6.
    [107]余文新,胡小唐,邹自强.一种高分辨率和高频响的光栅纳米测量细分方法.天津大学学报,2002,35(1):1-4.
    [108]王跃琼.高速莫尔条纹信号单片机细分的一种方法.光学精密工程,1997,5(1):112-118.
    [109]郭雨梅,崔晋玲,刘雪艳等.锁相式莫尔条纹信号细分方法.哈尔滨工业大学学报.2007,39(9):1496-1498.
    [110]罗华,高山,李翔龙.粗光栅信号全数字化处理法实现高倍数细分.光学精密工程,2007,15(2): 283-288.
    [111]Heydemann P L M. Determination and correction of quadrature fringe measurement errors in interferometers. Applied Optics,1981,20(19):3382-3384.
    [112]Benammar M, Ben-Brahim L, Alhamadi M A, et al. A novel method for estimating the angle from analog co-sinusoidal quadrature signals. Sensors and Actuators a-Physical,2008,142(1):225-231.
    [113]Tan K K, Zhou H X X, Lee T H. New interpolation method for quadrature encoder signals. Ieee Transactions on Instrumentation and Measurement,2002,51(5):1073-1079.
    [114]Hu H J, Qiu X Q, Wang J, et al. Subdivision and direction recognition of W16 of orthogonal fringes for nanometric measurement. Applied Optics,2009,48(33):6479-6484.
    [115]徐科军.容栅传感器的研究与应用.北京:清华大学出版社,1995.
    [116]张增耀,骆家贤.容栅技术.北京:中国计量出版社,2002.
    [117]NANOMOTION. Linear motion systems [EB/OL]. [2013-4-1]. http://www. lioindustries.com/ linear-motion-systems.html.
    [118]田应仲,沈建忠,何永义.基于DMC数字运动控制器的研究及应用.机械与电子,2004(3):23-25.
    [119]吴忠.基于Galil运动控制器的切割机控制系统.机电工程,2003,20(4):44-46.
    [120]高龙,傅攀.基于Lab VIEW和PCI-1711的高速数据采集系统.网络与信息技术,2007,26(2):60-61。
    [121]Wang Wen, Wen Yaohua, Yu Jianping, Chen Zichen. Impact of fringe effect on measuring accuracy of planar capacitive sensors. Sensor Letters,2011,9(4):1458-1461.
    [122]张艳臻,马全喜,聂金柱.电场的边缘效应对平板电容的影响.静电,1997,12:37-38.
    [123]Takasugi K, Iguchi H, Fujiwara M, Ikegami H. Development of concentric equipotential surfaces in bumpy torus plasma. Journal of the Physical Society of Japan 1983,52:2389-2393.
    [124]Sartori C A F, Orlandi A, Antonini G. Optimization of the LPS configuration for minimization of the radiated electromagnetic field. IEEE International Symposium on Electronic Compatibility,2000,2: 827-832.
    [125]Benedek P, Silvester P. Capacitacne of parallel rectangular plates separated by a dielectric sheet. IEEE Transactions on Microwave Theory and Techniques,1972,20:504-510.
    [126]Wolff I, Knoppik N. Rectangular and circular microstrip disk capacitors and resonators. IEEE Transactions on Microwave Theory and Techniques,1974,22:857-864.
    [127]Li X, De J G, Meijer G C M. Influence of electric-field bending on the nonlinearity of capacitive sensors. IEEE Transactions on Instrumentation and Measurement,2000,49:256-259.
    [128]宁平治,闵德芬.微波信息传输技术,上海:上海科学技术出版社,1985.
    [129]李勇,李玉和,李庆祥,訾艳阳.计及边缘效应的非平行梳状驱动器的静电力计算.清华大学学报(自然科学版),2003,4(8):1024-1026.
    [130]Richard P. Robot manipulators:mathematics, programming, and control:the computer control of robot manipulators. Cambridge:MIT Press.1981.
    [131]谭福年.常用传感器应用电路.北京:电子科技出版社,1987.
    [132]戴逸松.微弱信号检测方法及仪器.北京:国防工业出版社,1994.
    [133]董永贵.传感器技术与系统.北京:清华大学出版社,2006.
    [134]高晋占.微弱信号检测.北京:清华大学出版社,2004.
    [135]刘鹏民,莫德举,洪峰.T型反馈电阻网络在微弱信号放大电路中的应用.电测与仪表,1999(12):31-32.
    [136]邹燕,冯丽爽,张春熹,刘军.锁定放大器在微弱光信号检测中的应用.电测与仪表,2005(11):15-18.
    [137]Texas Instruments. OP27/37技术手册[EB/OL]。[2013-4-1].http://www.ti.com.cn/product/cn/op27.
    [138]Anolog Device Corporation. AD633技术手册[EB/OL].[2013-4-1].http://www.analog.com /en/special-linear-functions/analog-multipliersdividers/ad633/products/product.html.
    [139]National Instruments. USB-6259BNC技术手册[EB/OL].[2013-4-1].http://sine.ni.com/nips /cds/view/p/lang/zhs/nid/209150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700