用户名: 密码: 验证码:
木醋杆菌炼制纤维素废料制备细菌纳米纤维素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细菌纤维素(bacterial cellulose,简称BC)是一种由微生物产生的具有纳米结构的纤维素,因此,也称为细菌纳米纤维素。与植物纤维素相比它具有许多优良的特性,譬如:高持水性、高聚合度、高结晶度、高纯度、良好的生物相容性和高机械强度,因此在生物医学材料、食品、高级音响振动膜、燃料电池、造纸和纺织等领域具有广阔的应用前景。由于细菌纤维素生产成本偏高,尤其是培养基成本偏高,限制了其规模化工业生产和商业应用。纤维素废料是地球上最丰富的可再生聚糖类资源,可作为生物炼制的碳源。由于其来源广、价格低,因此最有希望用于细菌纤维素的规模化低成本发酵生产。本文从细菌纤维素规模化工业生产和纤维素废料资源化利用的多角度出发,利用不同来源的纤维素废料开发细菌纤维素的生物炼制技术。
     由于原料的结构和化学组成不同,在生物炼制过程中所面临的问题也不尽相同。因此,本文针对高效生物利用木质纤维素资源的共性关键技术,分别以纤维素行业(纺织和造纸)中产生的三种不同纤维素废料为原料模型,研究探讨这三种原料制备细菌纤维素的可行性,重点研究制备细菌纤维素过程中所遇到的关键技术问题。主要包括原料水解前预处理、水解液脱毒、降低纤维素酶水解成本、发酵废液资源化利用和废液减排等核心问题。通过对以上问题的研究,开发针对不同类型纤维素废料制备细菌纤维素的共性关键技术,为今后的细菌纤维素规模化工业生产提供必需的技术路线,并倡导资源节约型理念。本文的主要研究内容和结果如下:
     1、以云杉木屑为原料,经SO2预处理、酶水解获得可发酵糖以制备细菌纤维素。重点比较了多种脱毒方法对水解液中抑制物的去除效果,并研究了水解液脱毒前后对木醋杆菌生长和细菌纤维素产量的影响。结果显示活性炭吸附脱毒对抑制物去除效果最好,在四大类主要抑制物的去除中效率最高,分别去除了94%的醛类、88%的酚类、39%的甲酸和28%的乙酸,因此BC产量也最高。木醋杆菌主要利用葡萄糖,少量利用木糖和甘露糖,几乎不利用阿拉伯糖和半乳糖。乙酸比甲酸更易被细菌代谢利用,糠醛和5-羟甲基糠醛除了挥发外还应该可以被细菌消耗或转化为其它化合物。通过酚氧化酶的专一性去除酚类抑制物的实验结果表明,水解液中的酚类相对于弱酸和呋喃醛类抑制物有更强的抑菌性,是今后木质纤维素水解液制备细菌纤维素工艺中必须重点除去的抑制物。
     2、以硫酸盐和亚硫酸盐纸浆废料为原料,经直接酶水解获得可发酵糖以制备细菌纤维素。重点探讨以酶水解液为碳源制备细菌纤维素及其发酵废液资源化利用制备木质纤维素水解酶的可行性。结果显示,两种纸浆废料经水解后都能很好地作为碳源生产细菌纤维素。硫酸盐和亚硫酸盐纸浆酶解液制备的细菌纤维素产量分别可达11和10g/L,但是里氏木霉利用两种发酵废液的产酶情况差异巨大。硫酸盐纸浆发酵废液为速效碳源,补充硫酸盐纸浆为诱导物时,纤维素酶活力可达5.2U/mL,与葡萄糖为速效碳源获得的活力(5.1U/mL)相当,然而木聚糖酶活力高达74.7U/mL,比葡萄糖对照组的22.6U/mL局了3倍多。以亚硫酸盐纸浆发酵废液为速效碳源,亚硫酸盐纸浆为诱导物时,纤维素酶和木聚糖酶的活力都很低,但是分别以发酵废液和亚硫酸盐纸浆与其它碳源结合时都能获得接近于葡萄糖对照组的活力。综合分析后发现,可能是亚硫酸盐纸浆废料发酵液结合亚硫酸盐纸浆废料会产生强抑制,不利于产酶。为寻找其中可能的抑制物,探讨在培养基中添加小于100mM的Na2SO4和小于10mM的Na2SO3对里氏木霉产酶的影响。结果发现100mM浓度以内的硫酸钠对提升纤维素酶和木聚糖酶活力都有一定作用,尤其促木聚糖酶活力明显。5mM以内的亚硫酸盐也具有一定的促产酶效果,但是当浓度达到10mM时会强烈抑制产酶。生物炼制企业的发酵废液资源化利用产纤维素水解酶,不仅可以减少废液排放,而且可以充分利用原料资源,获得的水解酶用于补充木质纤维素原料水解用酶以降低酶解成本。
     3、以废弃棉织物为原料,通过新型绿色溶剂——离子液体[AMIM]Cl预处理以提高酶水解效率和得糖率,成功制备细菌纤维素。获最佳酶解效果所需的处理工艺为:1g棉布在110℃下溶于10g离子液体。再生棉纤维素中残余[AMIM]Cl浓度高于20mg/mL时将抑制纤维素酶的活性;浓度高于0.5mg/mL时会降低BC产量。研究发现,当活性染料浓度超过5g/L时也会抑制纤维素酶活力,降低酶水解效率;当浓度大于1g/L时,则会抑制BC产量。预处理后棉织物的酶解得糖率可达95%以上,是未处理的3-6倍。棉织物酶解液可以成功制备BC,产量比葡萄糖对照组高出约2倍。离子液体预处理显著提高酶解效率和得糖率,为木质纤维素资源的高效利用提供了新途径。
     4、为了进一步研究发酵废液产酶的机理,本文研究了不同微生物源的发酵废液对里氏木霉生产木质纤维素水解酶的影响。结果表明利用木醋杆菌、大肠杆菌和金黄色葡萄球菌的发酵废液都可以作为里氏木霉的培养基组分生产纤维素酶和木聚糖酶。纤维素酶活力与葡萄糖对照组的相当,而木聚糖酶活力比对照组的高3-15倍。促进产酶的原因可能包括:发酵废液中剩余的原培养基成分(譬如:氮源和无机盐等),以及微生物的代谢物(譬如:寡糖等)。
Bacterial cellulose (BC) is a nanostructured polymer product of some bacteria, which is sometimes named bacterial nanocellulose. Compared to plant cellulose, the nanofibril network of BC has unique properties, such as excellent water-holding capacity, high degree of polymerization, high crystallinity, high purity, good biocompatibility, and excellent mechanical properties. Therefore, BC has a great potential in wide applicationas including biomedical materials, health foods, high-quality audio membranes, functional paper, fuel cell membranes, and textiles. However, the cost of BC production is very high, principally due to the high cost of culture medium, which heavily prevents the large-scale industrial production and commercial application of BC. Cellulosic waste is the most abundant renewable polysaccharide resource in the world, and it can be developed as feedstock for biorefinery. Because of its abundant sources and relatively cheap price, it is the most promising raw material for large-scale and low-cost production of BC. From the perspective of the large-scale industrial production of BC and the utilization of waste cellulosic resource, in this work biorefinery technologies of Gluconacetobacter xylinus for production of BC was studied by using three different cellulosic wastes as fermentation feedstocks.
     Because the structure and chemical composition of cellulosic wastes are different, the key problems faced in the biorefinery process are also different. Therefore, for the common key technologies of the utilization of lignocellulosic resources, in this thesis the feasibility of the bacterial cellulose production by using three different cellulosic wastes that were used as models of raw materials for lignocellulose feedstocks, such as spruce chips, waste fiber sludges and waste cotton-based fabrics from textile and paper-making industry was investigated, and the key technical problems were focused on for those encountered in the process of BC production by using the cellulosic wastes. The problems contain four parts,(i) raw materials pretreatment before enzymatic hydrolysate,(ii) detoxification of lignocellulosic hydrolysate,(iii) decreasing the cost of cellulase,(iv) utilization of spent fermentation liquid and waste stream emission reduction. Through the study of the key technical problems, common key technologies in BC production were developed in order to use different types of cellulose waste as feedstock. The study provided the necessary technical routes for large-scale industrial production of BC in the future and pioneered the resource-saving concept. The major contents and results of the dissertation are summarized as follows:
     1. For spruce wood chips as raw material, an enzymatic hydrolysate of spruce wood was prepared after SO2-pretreatment to obtain fermentable sugars for BC production. The effects of different detoxification methods were compared by investigating the impact on the concentrations of potential fermentation inhibitors, as well as on the growth of G. xylinus and BC production in the spruce hydrolysate before and after detoxification. Among the different treatments, the activated charcoal treatment was most efficient, removing94%furans,88%total phenolics,39%formic acid and28%acetic acid, and therefore the highest yield of BC was obtained. Glucose was the main nutrient source and it was consumed efficiently in all cultivation. Some of xylose and mannose was also consumed, but arabinose and galactose with used little. It is expected that acetic acid would be more easily metabolized than formic acid by G. xylinus. The decrease in the concentration of furfural and5-hydroxymethyl-furfural in the cultures that obtained BC is probably due to a combination of bioconversion and evaporation. Through the detoxification experiments with phenol-oxidizing enzymes that specifically remove phenolic compounds, phenolic compounds were identified to be key fermentation inhibitors in the production of BC by G. xylinus, while furan aldehydes and aliphatic acids probably play a less important role. Therefore, phenolic compounds must be removed for the BC production with lignocellulose hydrolysate.
     2. For sulfate fiber sludge (SAFS) and sulfite fiber sludge (SIFS) as raw materials, the fiber sludge were hydrolyzed enzymatically without prior thermochemical pretreatment and the resulting hydrolysates were used for BC production. The objectives of this study were to investigate the feasibility of using waste fiber sludge for BC production, and the possibility to use the fermentation broth (spent hydrolysate) after harvesting BC to produce lignocellulose hydrolytic enzymes. It was shown that sulfate and sulfite fiber sludges were suitable raw materials for BC production. The highest volumetric yield of BC from the enzymatic hydrolysate of SAFS and SIFS was11g/L and10g/L (DW), respectively. But the enzyme production by Trichoderma reesei was different between SAFS and SIFS spent hydrolysates. The cellulase activity reached5.2U/mL when the SAFS spent hydrolysate supplemented with2%sulfate fiber sludge. And the cellulase activity was the same as the reference medium with glucose as carbon source (5.1U/mL). The xylanase activity from SAFS spent hydrolysate reached74.7U/mL, which was3-times higher than that of reference medium (22.6U/mL). The activity of cellulase and xylanase was very low when the SIFS spent hydrolysate was supplemented with2%sulfite fiber sludge. If the SIFS spent hydrolysate and SIFS were used to produce enzyme separately, the enzyme production was the same as the reference medium. It is concluded that sulfite fiber sludge would make some inhibition on the enzymes production by T. reesei only when combined with its spent fermentation broth. In order to identify possible inhibitors, the effects of Na2SO4(10-100mM) and Na2SO3(1-10mM) on enzyme production by T. reesei were investigated. It was shown that addition of Na2SO4would promote the cellulase and xylanase activity, especially the xylanase activity. Na2SO3of less than5mM could also promote the enzymes production, but it would make inhibition when increasing to10mM. That the hydrolytic enzymes were produced by using spent fermentation broth from biorefinery enterprises may not only reduce waste emissions but also take full advantage of resources. And the obtained hydrolytic enzymes can be supplemented to for the hydrolytic process of lignocellulosic feedstock in order to decrease the cost of enzymatic hydrolysis.
     3. For the waste cotton fabrics as raw material, a new green solvent [AMIM]Cl ionic liquid (IL) was chosen to dissolve cotton fabrics as a pretreatment to enhance the efficiency of enzymatic hydrolysis and sugar yield for bacterial cellulose production. The optimal pretreatment condition for enzymatic hydrolysis is as follows:1g cotton fabric was selected for the pretreatment at110℃in10g [AMIM]Cl. The cellulase activity would be partial inhibited when the concentration of residual [AMIM]Cl was higher than20mg/mL in regenerated cellulose, and the BC production was decreased when the concentration of [AMIM]Cl was higher than0.5mg/mL. It was indicated that the cellulase activity would be inhibited when the concentration of reactive dyes was higher than5g/L and reactive dyes of more than1g/L could decrease the BC production. IL-treated cotton fabrics exhibited higher enzymatic hydrolysis rate of up to95%and gave3-6times larger yield of reducing sugar. The enzymatic hydrolysates of cotton fabrics can be used as the carbon source for BC production and the yield of BC from cotton hydrolysate is2-times higher than that from reference medium with glucose. IL pretreatment can significantly enhance the efficiency of enzymatic hydrolysis and sugar yields, which would provide a new approach for efficient utilization of lignocellulosic resources.
     4. In order to get further study on the mechanisms of enzymes production by spent fermentation broth, in this work, the hydrolytic enzyme production by T. reesei was investigated by using various spent fermentation broth. It was shown that the spent fermentation broth from G. xylinum, Escherichia. coil, Staphylococcus. aureus served as good media for cellulase and xylanase production with T. reesei. The cellulase activities were the same as reference medium with glucose as carbon source, but the xylanase activities were much higher (3-15times) than those of reference medium. The possible reasons behind improvement of enzyme production may be ascribed to the residual medium composition in the spent fermentation broth, such as nitrogen sources and inorganic salts, and to the microbial metabolites, such as oligosaccharides.
引文
[1]Brown A J. On an acetic ferment which forms cellulose[J]. Journal of the Chemical Society,1886,49:432-439.
    [2]Ross P, Mayer R, Benziman M. Cellulose biosynthesis and function in bacteria[J]. Microbiological Reviews,1991,55(1):35-58.
    [3]Jonas R, Farah L F. Production and application of microbial cellulose[J]. Polymer Degradation and Stability,1998,59(1-3):101-106.
    [4]贾士儒,欧竑宇.细菌纤维素的生物合成及其应用[J].化工科技市场,2001,2:21-23.
    [5]马霞,王瑞明,关凤梅.发酵生产细菌纤维素的研究进展[J].中国酿造,2002,122(6):5-6.
    [6]胡晓燕,曲音波.细菌纤维素的研究进展[J].纤维素科学与技术,1998,6(4):56-64.
    [7]马承铸,顾真荣.细菌纤维素生物理化特性和商业用途[J].上海农业学报,2001,17(4):93-98.
    [8]郝常明,罗袆.细菌纤维素——一种新兴的生物材料[J].纤维素科学与技术,2002,10(2):56-61.
    [9]Iguchi M, Yamanaka S, Budhiono A. Bacterial cellulose—a masterpiece of nature's arts[J]. Journal of Materials Science,2000,35(2):261-270.
    [10]Brown R M. Cellulose and other natural polymer systems:biogenesis, structure, and degradation[M]. New York:Plenum Press,1982.
    [11]Yamanaka S, Sugiyama J. Structural modification of bacterial cellulose[J]. Cellulose, 2000,7(3):213-225.
    [12]刘四新,李从发.细菌纤维素[M].中国农业大学出版社,2007.
    [13]Baranov A, Anisimova V, Khripunov A, et al. Dielectric properties and dipole glass transition in cellulose acetobacter xylinium[J]. Ferroelectrics,2003,286(1):141-151.
    [14]Tamai N, Tatsumi D, Matsumoto T. Rheological properties and molecular structure of tunicate cellulose in LiCl/1,3-dimethyl-2-imidazolidinone[J]. Biomacromolecules,2004, 5(2):422-432.
    [15]刘勤华,马汉军,潘润淑.细菌纤维素及其在食品中的应用[J].四川食品与发酵,2008,20(1):20-22.
    [16]Czaja W K, Young D J, Kawecki M, et al. The future prospects of microbial cellulose in biomedical applications[J]. Biomacromolecules,2007,8(1):1-12.
    [17]宋海农,张远秋,郭华清.细菌纤维素在造纸工业中的应用和展望[J].广西大学学报(自然科学版),2004,29(1):018.
    [18]Gao Q, Shen X, Lu X. Regenerated bacterial cellulose fibers prepared by the NMMO·H20 process[J]. Carbohydrate Polymers,2011,83(3):1253-1256.
    [19]谢健健,洪枫.细菌纤维素发酵原料的研究进展[J].纤维素科学与技术,2011,19(3):68-77.
    [20]Keshk S M, Sameshima K. Evaluation of different carbon sources for bacterial cellulose production[J]. African Journal of Biotechnology,2005,4(6):478-482.
    [21]Mikkelsen D, Flanagan B M, Dykes G A, et al. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524[J]. Journal of Applied Microbiology,2009,107(2):576-583.
    [22]马霞,王瑞明,关凤梅,贾士儒.糖源对细菌纤维素产量的影响[J].纤维素科学与技术,2002,10(3):31-34.
    [23]Kurosumi A, Sasaki C, Yamashita Y, et al. Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693[J]. Carbohydrate Polymers,2009,76(2):333-335.
    [24]邵伟,李立勇,李王平,李爱华.猕猴桃纳塔的研制[J].农牧产品开发,2000,2:9-10.
    [25]韩向红,王明诚,黄循吟,陈华.不同培养基对纳塔形成影响的研究探讨[J].海南师范学院学报(自然科学版),2005,18(1):71-75.
    [26]Bae S, Shoda M. Bacterial Cellulose Production by Fed-Batch Fermentation in Molasses Medium[J]. Biotechnology Progress,2004,20(5):1366-1371.
    [27]Keshk S M, Razek T M, Sameshima K. Bacterial cellulose production from beet molasses[J]. African Journal of Biotechnology,2006,5(17):1519-1523.
    [28]Jung H-I, Lee O-M, Jeong J-H, et al. Production and characterization of cellulose by Acetobacter sp. v6 using a cost-effective molasses-corn steep liquor medium[J]. Applied Biochemistry and Biotechnology,2010,162(2):486-497.
    [29]张广栋,黄锦荣,严东辉,刘红阳.可食用细菌纤维素凝胶的制备方法:中国发明专利,专利申请号200910056590.9[P].
    [30]武晓炜,晋明芬,赵琼,许晓菁,王祥河.以糖蜜为原料生产细菌纤维素的方法:中国发明专利,专利申请号200910068606.8[P].
    [31]吴周新,王锡彬,裴重华,陈航.一种椰果微晶纤维素的制备方法:中国发明专利,专利申请号01122355.3[P].
    [32]陈军,杨雪霞,陈琳,陈仕艳,王华平,洪枫.利用糖蜜制备细菌纤维素的研究[J].纤维素科学与技术,2013,21(2):15-21.
    [33]洪枫,韩筱.一种以菊芋为碳源制备细菌纤维素的方法:中国发明专利,专利申请号201110176494.5P].
    [34]Moon S-H, Park J-M, Chun H-Y, et al. Comparisons of physical properties of bacterial celluloses produced in different culture conditions using saccharified food wastes[J]. Biotechnology and Bioprocess Engineering,2006,11(1):26-31.
    [35]Song H-J, Li H, Seo J-H, et al. Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes[J]. Korean Journal of Chemical Engineering,2009,26(1):141-146.
    [36]Thompson D, Hamilton M. Production of bacterial cellulose from alternate feedstocks[J]. Applied Biochemistry and Biotechnology,2001,91-93(1):503-513.
    [37]Ha J H, Shehzad O, Khan S, et al. Production of bacterial cellulose by a static cultivation using the waste from beer culture broth[J]. Korean Journal of Chemical Engineering, 2008,25(4):812-815.
    [38]李飞,陈琳,洪枫.以玉米浆和木薯为原料机械搅拌发酵制备细菌纤维素的研究[J].中国科技论文在线,2013. http://www.paper.edu.cn/releasepaper/content/201302-94
    [39]Uraki Y, Morito M, Kishimoto T, et al. Bacterial cellulose production using monosaccharides derived from hemicelluloses in water-soluble fraction of waste liquor from atmospheric acetic acid pulping[J]. Holzforschung,2002,56(4):341-347.
    [40]Kuo C-H, Lin P-J, Lee C-K. Enzymatic saccharification of dissolution pretreated waste cellulosic fabrics for bacterial cellulose production by Gluconacetobacter xylinus[J]. Journal of Chemical Technology & Biotechnology,2010,85(10):1346-1352.
    [41]Hong F, Zhu Y X, Yang G, et al. Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose[J]. Journal of Chemical Technology & Biotechnology,2011,86(5):675-680.
    [42]Chen L, Hong F, Yang X X, et al. Biotransformation of wheat straw to bacterial cellulose and its mechanism[J]. Bioresource Technology,2013,135:464-468.
    [43]Feng H, Shifen H. Biorefinery of bacterial cellulose from rice straw:enhanced enzymatic saccharification by ionic liquid pretreatment[J]. Engineering Sciences,2011,9(4):23-26, 54.
    [44]Hideno A, Inoue H, Tsukahara K, et al. Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw[J]. Bioresource Technology,2009,100(10): 2706-2711.
    [45]Rogalinski T, Ingram T, Brunner G Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures[J]. The Journal of Supercritical Fluids,2008,47(1): 54-63.
    [46]Bak J S, Ko J K, Han Y H, et al. Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment[J]. Bioresource Technology,2009,100(3): 1285-1290.
    [47]Martinez J, Negro M, Saez F, et al. Effect of acid steam explosion on enzymatic hydrolysis of O. nervoswn and C. cardunculus[J]. Applied Biochemistry and Biotechnology,1990,24(1):127-134.
    [48]Karr W, Holtzapple M. The multiple benefits of adding non-ionic surfactant during the enzymatic hydrolysis of corn stover[J]. Biotechnology and Bioengineering,1998,59(6): 419-427.
    [49]Yan L, Zhang H, Chen J, et al. Dilute sulfuric acid cycle spray flow-through pretreatment of corn stover for enhancement of sugar recovery[J]. Bioresource Technology,2009, 100(5):1803-1808.
    [50]Saha B C, Cotta M A. Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol[J]. Biomass and Bioenergy,2008,32(10):971-977.
    [51]Sidiras D, Koukios E. Simulation of acid-catalysed organosolv fractionation of wheat straw[J]. Bioresource Technology,2004,94(1):91-98.
    [52]Sun F, Chen H. Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerol pretreatment[J]. Bioresource Technology,2008,99(14):6156-6161.
    [53]王联结.一种生物质预处理的方法:中国发明专利,专利申请号200810017855[P].
    [54]Shi J, Sharma-Shivappa R R, Chinn M, et al. Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production[J]. Biomass and Bioenergy,2009,33(1):88-96.
    [55]潘亚杰,张雷,郭军,张大雷.农作物秸秆生物法降解的研究[J].可再生能源,2005,3:33-35.
    [56]Murugesan S, Linhardt R J. Ionic liquids in carbohydrate chemistry-current trends and future directions[J]. Current Organic Ssynthesis,2005,2(4):437-451.
    [57]Earle M J, Seddon K R. Ionic liquids. Green solvents for the future[J]. Pure and Applied Chemistry,2000,72(7):1391-1398.
    [58]Huddleston J G, Visser a E, Reichert W M, et al. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation[J]. Green Chemistry,2001,3(4):156-164.
    [59]王丽华,王平.离子液体的应用研究[J].广西轻工业,2009,25(10):33-34.
    [60]Kilpelainen I, Xie H, King A, et al. Dissolution of wood in ionic liquids[J]. Journal of Agricultural and Food Chemistry,2007,55(22):9142-9148.
    [61]Xie H L, Shi T J. Wood liquefaction by ionic liquids[J]. Holzforschung,2006,60(5): 509-512.
    [62]Pu Y, Jiang N, Ragauskas A J. Ionic liquid as a green solvent for lignin[J]. Journal of Wood Chemistry and Technology,2007,27(1):23-33.
    [63]Wasserscheid P, Keim W. Ionic liquids-new "solutions" for transition metal catalysis[J]. Angewandte Chemie,2000,39(21):3772-3789.
    [64]Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellose with ionic liquids[J]. Journal of the American Chemical Society,2002,124(18):4974-4975.
    [65]Fort D A, Remsing R C, Swatloski R P, et al. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride[J]. Green Chemistry,2007,9(1):63-69.
    [66]任强,武进,张军,何嘉松,过梅丽.1-烯丙基,3-甲基咪唑室温离子液体的合成及其对纤维素溶解性能的初步研究[J].高分子学报,2003,3:448-451.
    [67]Zhang H, Wu J, Zhang J, et al. 1-allyl-3-methylimidazolium chloride room temperature ionic liquid:A new and powerful nonderivatizing solvent for cellulose[J]. Macromolecules,2005,38(20):8272-8277.
    [68]张军,武进,张昊,孟涛,曹妍,何嘉松.纤维素在离子液体中的溶解与功能化[C].高分子学术论文报告会,北京,2005,10.
    [69]翟蔚,陈洪章,马润宇.离子液体中纤维素的溶解及再生特性[J].北京化工大学学报,2007,34(2):138-141.
    [70]Jonsson L J, Alriksson B, Nilvebrant N O. Bioconversion of lignocellulose:inhibitors and detoxification[J]. Biotechnology for Biofuels,2013,6:16.
    [71]Palmqvist E, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. I:inhibition and detoxification[J]. Bioresource Technology,2000,74(1):17-24.
    [72]Mussatto S I, Roberto I C. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes:a review[J]. Bioresource Technology, 2004,93(1):1-10.
    [73]Larsson S, Reimann A, Nilvebrant N O, et al. Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce[J]. Applied Biochemistry and Biotechnology,1999,77(1):91-103.
    [74]Converti A, Dominguez J M, Perego P, et al. Wood hydrolysis and hydrolyzate detoxification for subsequent xylitol production[J]. Chemical Engineering and Technology,2000,23(11):1013-1020.
    [75]Canilha L, De Almeida E Silva J B, Solenzal a IN. Eucalyptus hydrolysate detoxification with activated charcoal adsorption or ion-exchange resins for xylitol production[J]. Process Biochemistry,2004,39(12):1909-1912.
    [76]Mussatto S I, Roberto I C. Hydrolysate detoxification with activated charcoal for xylitol production by Candida guilliermondii[J]. Biotechnology Letters,2001,23(20): 1681-1684.
    [77]Zautsen R, Maugeri-Filho F, Vaz-Rossell C, et al. Liquid-liquid extraction of fermentation inhibiting compounds in lignocellulose hydrolysate[J]. Biotechnology and Bioengineering,2009,102(5):1354-1360.
    [78]Horvath I, Sjode A, Alriksson B, et al. Critical conditions for improved fermentability during overliming of acid hydrolysates from spruce[J]. Applied Biochemistry and Biotechnology,2005,124(1):1031-1044.
    [79]Persson P, Andersson J, Gorton L, et al. Effect of different forms of alkali treatment on specific fermentation inhibitors and on the fermentability of lignocellulose hydrolysates for production of fuel ethanol[J]. Journal of Agricultural and Food Chemistry,2002, 50(19):5318-5325.
    [80]Cavka A, Alriksson B, Ahnlund M, et al. Effect of sulfur oxyanions on lignocellulose-derived fermentation inhibitors[J]. Biotechnology and Bioengineering, 2011,108(11):2592-9.
    [81]Alriksson B, Cavka A, Jonsson L J. Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents[J]. Bioresource Technology,2011,102(2):1254-1263.
    [82]Jonsson L J, Palmqvist E, Nilvebrant N O, et al. Detoxification of wood hydrolysates with laccase and peroxidase from the white--rot fungus Trametes versicolor [J]. Applied Microbiology and Biotechnology,1998,49(6):691-697.
    [83]Nichols N N, Dien B S, Guisado G M, et al. Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates[J]. Applied Biochemistry and Biotechnology,2005, 121(1-3):379-390.
    [84]Koopman F, Wierckx N, De Winde J H, et al. Identification and characterization of the furfural and 5-(hydroxymethyl) furfural degradation pathways of Cupriavidus basilensis HMF14[J]. Proceedings of the National Academy of Sciences,2010,107(11):4919-4924.
    [85]Wierckx N, Koopman F, Bandounas L, et al. Isolation and characterization of Cupriavidus basilensis HMF14 for biological removal of inhibitors from lignocellulosic hydrolysate[J]. Microbial Biotechnology,2010,3(3):336-343.
    [86]Yoshino T, Asakura T, Toda K. Cellulose production by Acetobacter pastevrianus on silicone membrane[J]. Journal of Fermentation and Bioengineering,1996,81(1):32-36.
    [87]Okiyama A, Motoki M, Yamanaka S. Bacterial cellulose Ⅱ. Processing of the gelatinous cellulose for food materials[J]. Food Hydrocolloids,1992,6(5):479-487.
    [88]Hu X Y, Qu Y B. Progress on research of bacterial cellulose[J]. Journal of Cellulose Science and Technology,1998,6(4):56-64.
    [89]Hwang J W, Yang Y K, Hwang J K, et al. Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture[J]. Journal of Bioscience and Bioengineering,1999,88(2):183-188.
    [90]Jones K H. Comparing air emissions from landfills and WTE plants[J]. Solid Waste Technologies,1994,8:28-28.
    [91]Brosseau J, Heitz M. Trace gas compound emissions from municipal landfill sanitary sites[J]. Atmospheric Environment,1994,28(2):285-293.
    [92]Van Wyk J P. Biotechnology and the utilization of biowaste as a resource for bioproduct development[J]. Trends in Biotechnology,2001,19(5):172-177.
    [93]朱育平.天然彩棉的结晶度和取向度研究[J].东华大学学报(自然科学版),2009,35(6):626-631.
    [94]Mandels M, Hontz L, Nystrom J. Enzymatic hydrolysis of waste cellulose[J]. Biotechnology and Bioengineering,1974,16(11):1471-1493.
    [95]Nesse N, Wallick J, Harper J M. Pretreatment of cellulosic wastes to increase enzyme reactivity[J]. Biotechnology and Bioengineering,1977,19(3):323-336.
    [96]Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource Technology,2005,96(6):673-686.
    [97]Taherzadeh M J, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production:a review[J]. International journal of molecular sciences,2008,9(9): 1621-1651.
    [98]Jeihanipour A, Taherzadeh M J. Ethanol production from cotton-based waste textiles[J]. Bioresource Technology,2009,100(2):1007-1010.
    [99]Jeihanipour A, Karimi K, Niklasson C, et al. A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles[J]. Waste Management,2010, 30(12):2504-2509.
    [100]Hong F, Qiu K. An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770[J]. Carbohydrate Polymers,2008,72(3):545-549.
    [101]Galbe M, Zacchi G A review of the production of ethanol from softwood[J]. Applied Microbiology and Biotechnology,2002,59(6):618-628.
    [102]Cavaco-Paulo A, Almeida L. Cellulase hydrolysis of cotton cellulose:The effects of mechanical action, enzyme concentration and dyed substrates[J]. Biocatalysis and Biotransformation,1994,10(1-4):353-360.
    [103]Koo H, Ueda M, Wakida T, et al. Cellulase treatment of cotton fabrics[J]. Textile Research Journal,1994,64(2):70-74.
    [1]Fengel D, Wegener G. Wood:chemistry, ultrastructure, reactions[M]. Walter de Gruyter, 1983.
    [2]Ander P, Nyholm K. Deformations in wood and spruce pulp fibres:their importance for wood and pulp properties[C]. Proceedings of the International Symposium on Wood Machining. CD Laboratory for Fundamentals of Wood Machining, Vienna, Austria, 2000:3-19.
    [3]Chandra R P, Bura R, Mabee W E, et al. Substrate pretreatment:The key to effective enzymatic hydrolysis of lignocellulosics? [M] Biofuels.2007:67-93.
    [4]Galbe M, Zacchi G Pretreatment of lignocellulosic materials for efficient bioethanol production [M]. Biofuels. Springer Berlin Heidelberg.2007:41-65.
    [5]Cullis I F, Mansfield S D. Optimized delignification of wood-derived lignocellulosics for improved enzymatic hydrolysis[J]. Biotechnology and Bioengineering,2010,106(6): 884-893.
    [6]Shuai L, Yang Q, Zhu J, et al. Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production[J]. Bioresource Technology,2010,101(9): 3106-3114.
    [7]Viikari L, Alapuranen M, Puranen T, et al. Thermostable enzymes in lignocellulose hydrolysis [M]. Biofuels. Springer.2007:121-145.
    [8]Jorgensen H, Kristensen J B, Felby C. Enzymatic conversion of lignocellulose into fermentable sugars:challenges and opportunities[J]. Biofuels, Bioproducts and Biorefining,2007,1(2):119-134.
    [9]Jonsson L J, Alriksson B, Nilvebrant N O. Bioconversion of lignocellulose:inhibitors and detoxification[J]. Biotechnology for Biofuels,2013,6:16.
    [10]Palmqvist E, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. I:inhibition and detoxification[J]. Bioresource Technology,2000,74(1):17-24.
    [11]Chandel a K, Silva S, Singh O V. Detoxification of lignocellulosic hydrolysates for improved bioethanol production[J]. Biofuel Production-Recent Developments and Prospects,2011:225-246.
    [12]Larsson S, Reimann A, Nilvebrant N O, et al. Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce[J]. Applied Biochemistry and Biotechnology,1999,77(1):91-103.
    [13]Pienkos P T, Zhang M. Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates[J]. Cellulose,2009,16(4):743-762.
    [14]Parawira W, Tekere M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production:review[J]. Critical Reviews in Biotechnology,2011,31(1):20-31.
    [15]Carvalheiro F, Duarte L C, Lopes S, et al. Evaluation of the detoxification of brewery's spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941 [J]. Process Biochemistry,2005,40(3-4):1215-1223.
    [16]Alriksson B, Cavka A, Jonsson L J. Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents[J]. Bioresource Technology,2011,102(2):1254-1263.
    [17]Cavka A, Alriksson B, Ahnlund M, et al. Effect of sulfur oxyanions on lignocellulose-derived fermentation inhibitors[J]. Biotechnology and Bioengineering, 2011,108(11):2592-9.
    [18]Bruijn J M D, Kieboom a P G, Bekkum H V, et al. Reactions of monosaccharides in aqueous alkaline solutions.[J]. Sugar technology reviews,1986,13:21-52.
    [19]Hong F, Qiu K. An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770[J]. Carbohydrate Polymers,2008,72(3):545-549.
    [20]Hong F, Zhu Y X, Yang Q et al. Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose[J]. Journal of Chemical Technology & Biotechnology,2011,86(5):675-680.
    [21]Cantarella M, Cantarella L, Gallifuoco A, et al. Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF[J]. Process Biochemistry,2004,39(11):1533-1542.
    [22]Paraj6 J, Dominguez H, Dominguez J. Xylitol production from Eucalyptus wood hydrolysates extracted with organic solvents[J]. Process Biochemistry,1997,32(7): 599-604.
    [23]Chandel a K, Kapoor R K, Singh A, et al. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501 [J]. Bioresource Technology,2007,98(10):1947-1950.
    [24]Sutherland J P, Bayliss a J, Braxton D S. Predictive modelling of growth of Escherichia coli O157:H7:the effects of temperature, pH and sodium chloride[J]. International Journal of Food Microbiology,1995,25(1):29-49.
    [25]Nagata S, Maekawa Y, Ikeuchi T, et al. Effect of compatible solutes on the respiratory activity and growth of Escherichia coli K-12 under NaCl stress[J]. Journal of Bioscience and Bioengineering,2002,94(5):384-389.
    [26]Wadskog I, Adler L. Ion homeostasis in Saccharomyces cerevisiae under NaCl stress [M]//HOHMANN S, MAGER W. Yeast Stress Responses. Springer.2003:201-239.
    [27]Dahman Y, Jayasuriya K, Kalis M. Potential of biocellulose nanofibers production from agricultural renewable resources:preliminary study[J]. Applied Biochemistry and Biotechnology,2010,162(6):1647-1659.
    [28]Mikkelsen D, Flanagan B M, Dykes G A, et al. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524[J]. Journal of Applied Microbiology,2009,107(2):576-583.
    [29]Keshk S M a S, Sameshima K. Evaluation of different carbon sources for bacterial cellulose production[J]. African Journal of Biotechnology,2005,4(6):478-482.
    [30]Taherzadeh M J, Gustafsson L, Niklasson C, et al. Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae[J]. Journal of Bioscience and Bioengineering,1998,87(2):169-174.
    [31]Deppenmeier U. The unique biochemistry of methanogenesis [M]. Progress in Nucleic Acid Research and Molecular Biology. Academic Press.2002:223-283.
    [32]Taherzadeh M, Gustafsson L, Niklasson C, et al. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology,2000,53(6):701-708.
    [33]Vandamme E J, De Baets S, Vanbaelen A, et al. Improved production of bacterial cellulose and its application potential[J]. Polymer Degradation and Stability,1998, 59(1-3):93-99.
    [34]Jonsson L J, Palmqvist E, Nilvebrant N O, et al. Detoxification of wood hydrolysates with laccase and peroxidase from the white--rot fungus Trametes versicolor[J]. Applied Microbiology and Biotechnology,1998,49(6):691-697.
    [1]方红,刘善辉.造纸纤维原料的评价[J].北京木材工业,1996,16(2):19-22.
    [2]Pokhrel D, Viraraghavan T. Treatment of pulp and paper mill wastewater—a review[J]. Science of the total environment,2004,333(1):37-58.
    [3]Tu M, Zhang X, Paice M, et al. The potential of enzyme recycling during the hydrolysis of a mixed softwood feedstock[J]. Bioresource Technology,2009,100(24):6407-6415.
    [4]Qing Q, Yang B, Wyman C E. Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes[J]. Bioresource Technology,2010,101(24):9624-9630.
    [5]Brethauer S, Wyman C E. Review:continuous hydrolysis and fermentation for cellulosic ethanol production[J]. Bioresource Technology,2010,101(13):4862-4874.
    [6]Alriksson B, Rose S H, Van Zyl W H, et al. Cellulase production from spent lignocellulose hydrolysates by recombinant Aspergillus niger[J]. Applied and Environmental Microbiology,2009,75(8):2366-2374.
    [7]Cavka A, Alriksson B, Rose S H, et al. Biorefining of wood:combined production of ethanol and xylanase from waste fiber sludge[J]. Journal of Industrial Microbiology & Biotechnology,2011,38(8):891-899.
    [8]Vogel H J. Distribution of lysine pathways among fungi:evolutionary implications[J]. American Naturalist,1964,98(903):435-446.
    [9]Bailey M J, Biely P, Poutanen K. Interlaboratory testing of methods for assay of xylanase activity[J]. Journal of Biotechnology,1992,23(3):257-270.
    [10]Ito F, Amano Y, Shiroishi M, et al. Accumulation of cello-oligosaccharides during cellulose production by Acetobacter xylinnm[J]. Journal of Applied Glycoscience,2005, 52(1):27-30.
    [11]Ross P, Mayer R, Benziman M. Cellulose biosynthesis and function in bacteria[J]. Microbiological Reviews,1991,55(1):35-58.
    [12]Segal L, Creely J, Martin A, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal,1959,29(10):786-794.
    [13]Thompson D, Hamilton M. Production of bacterial cellulose from alternate feedstocks[J]. Applied Biochemistry and Biotechnology,2001,91-93(1):503-513.
    [14]Shin C S, Lee J P, Lee J S, et al. Enzyme production of Trichoderma reesei Rut C-30 on various lignocellulosic substrates[J]. Applied Biochemistry and Biotechnology,2000, 84-86(1):237-245.
    [15]Szengyel Z, Zacchi G, Varga A, et al. Cellulase production of Trichoderma reesei Rut C-30 using steam-pretreated spruce[J]. Applied Biochemistry and Biotechnology,2000, 84-86(1):679-691.
    [16]Szengyel Z, Zacchi G, Reczey K. Cellulose production based on hemicellulose hydrolysate from steam-pretreated willow[J]. Applied Biochemistry and Biotechnology, 1997,63(1):351-362.
    [17]Gattinger L D, Duvnjak Z, Khan a W. The use of canola meal as a substrate for xylanase production by Trichoderma reesei[J]. Applied Microbiology and Biotechnology,1990, 33(1):21-25.
    [18]Xiong H, Von Weymarn N, Turunen O, et al. Xylanase production by Trichoderma reesei Rut C-30 grown on L-arabinose-rich plant hydrolysates[J]. Bioresource Technology,2005, 96(7):753-759.
    [1]王济永.可持续发展的棉织物染整加工技术[J].纺织导报,2009,(10):52-52.
    [2]王来力,吴雄英,丁雪梅.废旧纺织品的回收再利用探讨[J].纺织导报,2009,(4):26-28.
    [3]朱育平.天然彩棉的结晶度和取向度研究[J].东华大学学报(自然科学版),2009,35(6):626-631.
    [4]Yang B, Wyman C E. Pretreatment:the key to unlocking low-cost cellulosic ethanol[J]. Biofuels, Bioproducts and Biorefining,2008,2(1):26-40.
    [5]Taherzadeh M J, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production:a review[J]. International journal of molecular sciences,2008,9(9): 1621-1651.
    [6]Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource Technology,2005,96(6):673-686.
    [7]刘德礼,谢林生,马玉录.木质纤维素预处理技术研究进展[J].酿酒科技,2009,(1):105-109.
    [8]Jeihanipour A, Karimi K, Niklasson C, et al. A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles[J]. Waste Management,2010, 30(12):2504-2509.
    [9]Jeihanipour A, Karimi K, Taherzadeh M J. Enhancement of ethanol and biogas production from high-crystalline cellulose by different modes of NMO pretreatment[J]. Biotechnology and Bioengineering,2010,105(3):469-476.
    [10]Zhu S, Wu Y, Chen Q, et al. Dissolution of cellulose with ionic liquids and its application: a mini-review[J]. Green Chem.,2006,8(4):325-327.
    [11]Zhao H, Jones C L, Baker G A, et al. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis[J]. Journal of Biotechnology,2009,139(1):47-54.
    [12]Zhang H, Wu J, Zhang J, et al. 1-allyl-3-methylimidazolium chloride room temperature ionic liquid:A new and powerful nonderivatizing solvent for cellulose[J]. Macromolecules,2005,38(20):8272-8277.
    [13]Li B, Asikkala J, Filpponen I, et al. Factors affecting wood dissolution and regeneration of ionic liquids[J]. Industrial & Engineering Chemistry Research,2010,49(5): 2477-2484.
    [14]周雅文,邓宇,尚海萍.烟蒂醋酸纤维在离子液体[AMIM]Cl中的溶解与回收[J].烟草科技,2010,(002):39-42.
    [15]Zhang H, Wu J, Zhang J, et al. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid:a new and powerful nonderivatizing solvent for cellulose[J]. Macromolecules,2005,38(20):8272-8277.
    [16]Hong F, Qiu K. An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770[J]. Carbohydrate Polymers,2008,72(3):545-549.
    [17]Hong F, Zhu Y X, Yang G, et al. Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose[J]. Journal of Chemical Technology & Biotechnology,2011,86(5):675-680.
    [18]Bailey M J, Biely P, Poutanen K. Interlaboratory testing of methods for assay of xylanase activity[J]. Journal of Biotechnology,1992,23(3):257-270.
    [19]韩士芬.离子液体在细菌纤维素低成本碳源制备中的应用[D].硕士学位论文,东华大学,2011.
    [20]武进,桑胜梅,张军,等.纤维素在离子液体中的溶解,再生和衍生化[C].中国科协第143次青年科学家论坛——离子液体与绿色化学,北京,2007,9.
    [21]张军,武进,张昊,孟涛,曹妍,何嘉松.纤维素在离子液体中的溶解与功能化[C].高分子学术论文报告会,北京,2005,10.
    [22]Dawsey T, Mccormick C L. The lithium chloride/dimethylacetamide solvent for cellulose: a literature review[J]. Journal of Macromolecular Science—Reviews in Macromolecular Chemistry and Physics,1990,30(3-4):405-440.
    [23]曹妍,李会泉,张军,张懿,何嘉松.玉米秸秆纤维素在离子液体中的溶解再生研究[J].现代化工,2008,28(10):184-187.
    [24]Matsumoto M, Mochiduki K, Kondo K. Toxicity of ionic liquids and organic solvents to lactic acid-producing bacteria[J]. Journal of Bioscience and Bioengineering,2004,98(5): 344-347.
    [25]Kuo C-H, Lin P-J, Lee C-K. Enzymatic saccharification of dissolution pretreated waste cellulosic fabrics for bacterial cellulose production by Gluconacetobacter xylinus[J]. Journal of Chemical Technology & Biotechnology,2010,85(10):1346-1352.
    [26]Isogai A, Usuda M, Kato T, et al. Solid state CP/MAS 13C NM R study of cellulose polymorph[J]. M acromolecule,1989,22(7):3168-3172.
    [27]Segal L, Creely J, Martin A, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal,1959,29(10):786-794.
    [28]王犇,曹妍,黄科林,李会泉,廖丹葵,王金淑.蔗渣纤维素在离子液体中的溶解与再生[J].化工学报,2010,(6):1592-1598.
    [29]Papid S, Koprivanac N, Loncaric Bozic A, et al. Removal of some reactive dyes from synthetic wastewater by combined Al(III) coagulation/carbon adsorption process[J]. Dyes and Pigments,2004,62(3):291-298.
    [30]Koo H, Ueda M, Wakida T, et al. Cellulase treatment of cotton fabrics[J]. Textile Research Journal,1994,64(2):70-74.
    [31]Mori R, Haga T, Takagishi T. Reactive dye dyeability of cellulose fibers with cellulase treatment[J]. Journal of Applied Polymer Science,1996,59(8):1263-1269.
    [32]Czilik M, Paszt E, Reczey I, et al. Effects of reactive dyes on the enzymatic depolymerization of cellulose[J]. Dyes and Pigments,2002,54(2):95-106.
    [33]Yamada M, Amano Y, Horikawa E, et al. Mode of action of cellulases on dyed cotton with a reactive dye[J]. Bioscience, Biotechnology, and Biochemistry,2005,69(1):45-50.
    [34]Park H S, Lee M K, Kim B O, et al. Clinical and immunologic evaluations of reactive dye-exposed workers[J]. Journal of Allergy and Clinical Immunology,1991,87(3): 639-649.
    [35]Nilsson R, Nordlinder R, Wass U, et al. Asthma, rhinitis, and dermatitis in workers exposed to reactive dyes[J]. British Journal of Industrial Medicine,1993,50(1):65-70.
    [36]Wang C, Yediler A, Lienert D, et al. Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri[J]. Chemosphere,2002,46(2):339-344.
    [37]张兴华,戴东强.浅谈活性染料结构与性能的关系[J].染料与染色,2011,48(3):14-18.
    [38]Shoda M, Sugano Y. Recent advances in bacterial cellulose production[J]. Biotechnology and Bioprocess Engineering,2005,10(1):1-8.
    [39]Ito F, Amano Y, Nozaki K, et al. Accumulation of cello-oligosaccharides during cellulose production by Acetobacter xylinum[J]. Journal of Applied Glycoscience,2005,52(1): 27-30.
    [1]黄世文,王玲,王全永.工农业发酵废水生物处理及应用研究进展[J].中国生物防治,2007,(S1).
    [2]施云芬,刘月华,于涛.酒精厂发酵废液循环利用的可行性分析[J].酿酒,2003,30(4):67-68.
    [3]王慧中,赵培洁,王冀平,等.虫草头孢菌发酵废液成分分析及其再利用[J].中国环境科学,2000,20(2):180-183.
    [4]Rode L, Mcallister T, Beauchemin K, et al. Enzymes as direct-feed additives for ruminants [M]. Biotechnology in Animal Husbandry. Springer.2002:301-332.
    [5]Eun J-S, Beauchemin K. Assessment of the efficacy of varying experimental exogenous fibrolytic enzymes using in vitro fermentation characteristics[J]. Animal feed science and technology,2007,132(3):298-315.
    [6]张明霞,段长青,张文娜.纤维素酶在食品工业中的应用与展望[J].酿酒科技,2005,4:99-100.
    [7]Galante Y, De Conti A, Monteverdi R. Application of Trichoderma enzymes in the food and feed industries[J]. Trichoderma and Gliocladium,1998,2:327-342.
    [8]Bhat M. Cellulases and related enzymes in biotechnology[J]. Biotechnology Advances, 2000,18(5):355-383.
    [9]Olson L A. Treatment of denim with cellulase to produce a stone washed appearance [M]. Google Patents.1990.
    [10]Barbesgaard P O, Jensen G W, Holm P. Detergent cellulase [M]. Google Patents.1984.
    [11]Deshpande V, Keskar S, Mishra C, et al. Direct conversion of cellulose/hemicellulose to ethanol by Neurospora crassa[J]. Enzyme and Microbial Technology,1986,8(3): 149-152.
    [12]Akhtar M, Attridge M C, Myers G C, et al. Biomechanical pulping of loblolly pine wih different strains of the white-rot fungus Ceriporiopsis subvermispora[J].1992.
    [13]Oksanen T, Pere J, Paavilainen L, et al. Treatment of recycled kraft pulps with Trichoderma reesei hemicellulases and cellulases[J]. Journal of Biotechnology,2000, 78(1):39-48.
    [14]邓天福,程梦林,莫建初.木质纤维素降解酶的应用及前景[J].中国农学通报,2010,26(14):82-85.
    [15]Sukumaran R K, Singhania R R, Pandey A. Microbial cellulases-Production, applications and challenges[J]. Journal of Scientific and Industrial Research,2005,64(11):832.
    [16]Howard R, Abotsi E, Van Rensburg E J, et al. Lignocellulose biotechnology:issues of bioconversion and enzyme production[J]. African Journal of Biotechnology,2004,2(12): 602-619.
    [17]Malherbe S, Cloete T E. Lignocellulose biodegradation:fundamentals and applications[J]. Reviews in Environmental Science and Biotechnology,2002,1(2):105-114.
    [18]Tengerdy R, Szakacs G. Bioconversion of lignocellulose in solid substrate fermentation[J]. Biochemical Engineering Journal,2003,13(2):169-179.
    [19]Wang C, Yediler A, Lienert D, et al. Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri[J]. Chemosphere,2002,46(2):339-344.
    [20]Kang S W, Park Y S, Lee J S, et al. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass[J]. Bioresource Technology,2004, 91(2):153-156.
    [21]Xiong H, Von Weymarn N, Turunen O, et al. Xylanase production by Trichoderma reesei Rut C-30 grown on L-arabinose-rich plant hydrolysates[J]. Bioresource Technology,2005, 96(7):753-759.
    [22]Pinaga F, Fernandez-Espinar M T, Vall6s S, et al. Xylanase production in Aspergillus nidulans:induction and carbon catabolite repression[J]. FEMS Microbiology Letters, 1994,115(2-3):319-323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700